Childhood Bullying Victimization, Substance Use and Criminal Activity among Adolescents: A Multilevel Growth Model Study
Abstract
:1. Introduction
1.1. Coping with Bullying
1.2. Connecting Negative Coping Strategies to Theory
1.3. Mixed Evidence between CBV and Criminal Activity and Substance Use
1.4. Relationship between CBV, Behavioral Problems, and Gender and Race/Ethnicity
2. Current Study
3. Method
3.1. Data and Sampling
3.2. Measures
3.2.1. Dependent Variables of Interests
3.2.2. Childhood Repeated Bullying Victimization (CBV)
3.2.3. Time-Fixed Covariates
3.2.4. Time-Varying Covariates
3.3. Analytic Strategy
4. Results
4.1. Descriptive Characteristics
4.2. Substance Use and Criminal Activity in Multiple Growth Models
4.2.1. Model 1: Unconditional Growth Models
4.2.2. Model 2: Conditional Growth Models at Level 1 (Within-Individual Effects)
4.2.3. Overall Trends of Substance Use and Criminal Activity by Childhood Bullying Victimization
4.2.4. Model 3: Conditional Growth Models with Interacting Covariates at Level 2 (Between-Individual Effects)
5. Discussion
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nansel, T.R.; Overpeck, M.; Pilla, R.S.; Ruan, W.J.; Simons-Morton, B.; Scheidt, P. Bullying behaviors among US youth: Prevalence and association with psychosocial adjustment. JAMA 2001, 285, 2094–2100. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Justice. School Crime Supplement (SCS-Version 1) to the National Crime Victimization Survey. 2015. Available online: http:/nces.ed.gov/pubs2017/2017004.pdf (accessed on 15 August 2021).
- Ttofi, M.M.; Farrington, D.P.; Lösel, F.; Loeber, R. The predictive efficiency of school bullying versus later offending: A systematic/meta-analytic review of longitudinal studies. Crim. Behav. Ment. Health 2011, 21, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Bouffard, L.A.; Koeppel, M.D. Understanding the potential long-term physical and mental health consequences of early experiences of victimization. Justice Q. 2014, 31, 568–587. [Google Scholar] [CrossRef]
- Lee, J. Pathways from childhood bullying victimization to young adult depressive and anxiety symptoms. Child Psychiatry Hum. Dev. 2021, 52, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G.; Exum, M.L.; Brame, R.; Holt, T.J. Bullying victimization and adolescent mental health: General and typological effects across sex. J. Crim. Justice 2013, 41, 53–59. [Google Scholar] [CrossRef]
- Barzilay, S.; Klomek, A.B.; Apter, A.; Carli, V.; Wasserman, C.; Hadlaczky, G.; Hoven, C.W.; Sarchiapone, M.; Balazs, J.; Kereszteny, A.; et al. Bullying victimization and suicide ideation and behavior among adolescents in Europe: A 10-country study. J. Adolesc. Health 2017, 61, 179–186. [Google Scholar] [CrossRef]
- Lardier Jr, D.T.; Barrios, V.R.; Garcia-Reid, P.; Reid, R.J. Suicidal ideation among suburban adolescents: The influence of school bullying and other mediating risk factors. J. Child Adolesc. Ment. Health 2016, 28, 213–231. [Google Scholar] [CrossRef]
- Lee, J.; Chun, J.; Kim, J.; Lee, J.; Lee, S. A social-ecological approach to understanding the relationship between cyberbullying victimization and suicidal ideation in South Korean adolescents: The moderating effect of school connectedness. Int. J. Environ. Res. Public Health 2021, 18, 10623. [Google Scholar] [CrossRef]
- Barboza, G.E. The association between school exclusion, delinquency and subtypes of cyber- and F2F-victimizations: Identifying and predicting risk profiles and subtypes using latent class analysis. Child Abus. Negl. 2015, 39, 109–122. [Google Scholar] [CrossRef]
- Goebert, D.; Else, I.; Matsu, C.; Chung-Do, J.; Chang, J. The impact of cyberbullying on substance use and mental health in a multiethnic sample. Matern. Child Health J. 2011, 15, 1282–1286. [Google Scholar] [CrossRef]
- Hong, J.S.; Davis, J.P.; Sterzing, P.R.; Yoon, J.; Choi, S.; Smith, D.C. A conceptual framework for understanding the association between school bullying victimization and substance misuse. Am. J. Orthopsychiatry 2014, 84, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Hong, J.S.; Resko, S.M.; Tripodi, S.J. Face-to-face bullying, cyberbullying, and multiple forms of substance use among school-aged adolescents in the USA. Sch. Ment. Health 2018, 10, 12–25. [Google Scholar] [CrossRef]
- Agnew, R. Foundation for a general strain theory of crime and delinquency. Criminology 1992, 30, 47–87. [Google Scholar] [CrossRef]
- Powers, R.A.; Matano, R. Substance use and abuse. In Treating Adolescents; Steiner, H., Yalom, I.D., Eds.; Wiley: San Francisco, CA, USA, 1996; pp. 77–152. [Google Scholar]
- Luk, J.W.; Wang, J.; Simons-Morton, B.G. Bullying victimization and substance use among US adolescents: Mediation by depression. Prev. Sci. 2010, 11, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Doherty, E.E.; Robertson, J.A.; Green, K.M.; Fothergill, K.E.; Ensminger, M.E. A longitudinal study of substance use and violent victimization in adulthood among a cohort of urban African Americans. Addiction 2012, 107, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Lee, J.M.; Cho, S.; Peguero, A.A.; Misuraca, J.A. From bullying victimization to delinquency in South Korean adolescents: Exploring the pathways using a nationally representative sample. Child. Youth Serv. Rev. 2019, 98, 305–311. [Google Scholar] [CrossRef]
- Yang, F.; Nelson-Gardell, D.; Guo, Y. The role of strains in negative emotions and bullying behaviors of school-aged children. Child. Youth Serv. Rev. 2018, 94, 290–297. [Google Scholar] [CrossRef]
- Moffitt, T.E. Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychol. Rev. 1993, 100, 674–701. [Google Scholar] [CrossRef]
- Connell, N.M.; Morris, R.G.; Piquero, A.R. Exploring the link between being bullied and adolescent substance use. Vict. Offenders 2017, 12, 277–296. [Google Scholar] [CrossRef]
- Eriksen, T.L.M.; Nielsen, H.S.; Simonsen, M. Bullying in elementary school. J. Hum. Resour. 2014, 49, 839–871. [Google Scholar] [CrossRef]
- Kerr, D.C.; Gini, G.; Capaldi, D.M. Young men’s suicidal behavior, depression, crime, and substance use risks linked to childhood teasing. Child Abus. Negl. 2017, 67, 32–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolke, D.; Copeland, W.E.; Angold, A.; Costello, E.J. Impact of bullying in childhood on adult health, wealth, crime, and social outcomes. Psychol. Sci. 2013, 24, 1958–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, E.; Harmon, C.; Mendolia, S.; Staneva, A.; Walker, I. Adolescent school bullying victimization and later life outcomes. Oxf. Bull. Econ. Stat. 2021, 83, 1048–1076. [Google Scholar] [CrossRef]
- Bradshaw, C.P.; Sawyer, A.L.; O’Brennan, L.M. A social disorganization perspective on bullying-related attitudes and behaviors: The influence of school context. Am. J. Community Psychol. 2009, 43, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Lee, J.; Espelage, D.L.; Hunter, S.C.; Patton, D.U.; Rivers, T. Understanding the correlates of face-to-face and cyberbullying victimization among U.S. adolescents: A social-ecological analysis. Violence Vict. 2016, 31, 638–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawyer, A.L.; Bradshaw, C.P.; O’Brennan, L.M. Examining ethnic, gender, and developmental differences in the way children report being a victim of “bullying” on self-report measures. J. Adolesc. Health 2008, 43, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, T.N.; Farrell, A.D.; Kliewer, W. Peer victimization in early adolescence: Association between physical and relational victimization and drug use, aggression, and delinquent behaviors among urban middle school students. Dev. Psychopathol. 2006, 18, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Connolly, E.J. Sex differences in childhood bullying victimization and trajectories of substance use from adolescence to adulthood. J. Drug Issues 2017, 47, 25–49. [Google Scholar] [CrossRef]
- Glassner, S.D.; Cho, S. Bullying victimization, negative emotions, and substance use: Utilizing general strain theory to examine the undesirable outcomes of childhood bullying victimization in adolescence and young adulthood. J. Youth Stud. 2018, 21, 1232–1249. [Google Scholar] [CrossRef]
- Achenbach, T.M.; Edelbrock, C. Manual for the Youth Self-Report and Profile; University of Vermont, Department of Psychiatry: Burlington, VT, USA, 1987. [Google Scholar]
- Walters, G.D. Pathways to early delinquency: Exploring the individual and collective contributions of difficult temperament, low maternal involvement, and externalizing behavior. J. Crim. Justice 2014, 42, 321–326. [Google Scholar] [CrossRef]
- Wong, J.S.; Schonlau, M. Does bully victimization predict future delinquency? A propensity score matching approach. Crim. Justice Behav. 2013, 40, 1184–1208. [Google Scholar] [CrossRef]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Pires, P.; Jenkins, J.M. A growth curve analysis of the joint influences of parenting, affect, child characteristics, and deviant peers on adolescent illicit drug use. J. Youth Adolesc. 2007, 36, 169–183. [Google Scholar] [CrossRef]
- Rappaport, N.; Thomas, C. Recent research findings on aggressive and violent behavior in youth: Implications for clinical assessment and intervention. J. Adolesc. Health 2004, 35, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Grant, B.F. Age at smoking onset and its association with alcohol consumption and DSM-IV alcohol abuse and dependence: Results from the National Longitudinal Alcohol Epidemiologic Survey. J. Subst. Abus. 1998, 10, 59–73. [Google Scholar] [CrossRef]
- Jordan, C.J.; Andersen, S.L. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev. Cogn. Neurosci. 2017, 25, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Harrell, J.S.; Bangdiwala, S.I.; Deng, S.; Webb, J.P.; Bradley, C. Smoking initiation in youth: The roles of gender, race, socioeconomics, and developmental status. J. Adolesc. Health 1998, 23, 271–279. [Google Scholar] [CrossRef]
- Patton, G.C.; McMorris, B.J.; Toumbourou, J.W.; Hemphill, S.A.; Donath, S.; Catalano, R.F. Puberty and the onset of substance use and abuse. Pediatrics 2004, 114, e300–e306. [Google Scholar] [CrossRef] [Green Version]
- Verdejo-Garcia, A.; Lawrence, A.J.; Clark, L. Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci. Biobehav. Rev. 2008, 32, 777–810. [Google Scholar] [CrossRef]
- Petts, R.J. Family and religious characteristics’ influence on delinquency trajectories from adolescence to young adulthood. Am. Sociol. Rev. 2009, 74, 465–483. [Google Scholar] [CrossRef]
- Loeber, R.; Farrington, D.P. From Juvenile Delinquency to Adult Crime: Criminal Careers, Justice Policy and Prevention; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Duncan, S.C.; Duncan, T.E.; Strycker, L.A. Alcohol use from ages 9 to 16: A cohort-sequential latent growth model. Drug Alcohol Depend. 2006, 81, 71–81. [Google Scholar] [CrossRef] [PubMed]
Time 1 | Time 2 | Time 3 | Time 4 | |
---|---|---|---|---|
Variables | M (SD) | M (SD) | M (SD) | M (SD) |
Childhood bullying victimization (0–1) | 0.20 (0.40) | |||
Delinquent peers in childhood (0–20) | 8.48 (3.82) | |||
Mother educational level in childhood (0–4) | 2.49 (1.41) | |||
Gangs in neighborhood (0–1) | 0.46 (0.50) | 0.44 (0.50) | 0.17 (0.38) | 0.13 (0.34) |
Sibling or friends in gangs (0–1) | 0.21 (0.41) | 0.11 (0.32) | 0.08 (0.27) | 0.05 (0.23) |
Age | 14.22 (1.46) | 16.86 (1.43) | 18.92 (1.43) | 20.88 (1.43) |
Behavioral and emotional problems (0–8) | 2.15 (1.58) | |||
Gender (female) | 0.50 (0.50) | |||
Race/ethnicity | ||||
Non-Hispanic White | 0.52 (0.50) | |||
Non-Hispanic Black | 0.27 (0.44) | |||
Hispanic | 0.21 (0.40) | |||
Urban area (0–1) | 0.75 (0.43) | 0.74 (0.44) | 0.77 (0.42) | 0.79 (0.41) |
Household size (1–17) | 4.56 (1.52) | 4.33 (1.61) | 4.03 (1.72) | 3.60 (1.73) |
Biological parents (0–1) | 0.51 (0.50) | 0.47 (0.49) | 0.40 (0.48) | 0.28 (0.35) |
Male | Female | White | Black | Hispanic | |||
---|---|---|---|---|---|---|---|
M (SD) | M (SD) | t | M (SD) | M (SD) | M (SD) | F | |
Cigarette use | |||||||
Time 1 | 2.47 (7.39) | 2.37 (10.71) | 0.54 | 3.50 (8.83) | 1.00 (4.43) | 1.50 (5.60) | 79.10 *** |
Time 2 | 5.42 (10.71) | 5.31 (10.70) | 0.44 | 7.42 (12.19) | 2.77 (7.88) | 3.57 (8.73) | 133.22 *** |
Time 3 | 7.49 (12.15) | 6.49 (11.62) | 3.41 ** | 9.20 (13.13) | 4.40 (9.77) | 4.66 (9.79) | 127.31 *** |
Time 4 | 8.69 (12.66) | 7.15 (12.13) | 4.99 *** | 9.96 (13.42) | 5.91 (11.06) | 5.17 (10.25) | 101.76 *** |
Alcohol use | |||||||
Time 1 | 0.84 (2.78) | 0.64 (2.34) | 3.12 ** | 0.39 (1.58) | 0.47 (2.25) | 0.88 (2.85) | 12.93 *** |
Time 2 | 2.51 (5.01) | 1.78 (3.85) | 6.58 *** | 2.72 (4.87) | 1.22 (3.70) | 1.97 (4.31) | 64.25 *** |
Time 3 | 3.90 (6.28) | 2.54 (4.49) | 10.03 *** | 4.04 (5.91) | 1.87 (4.32) | 3.01 (5.57) | 89.14 *** |
Time 4 | 5.11 (6.93) | 3.21 (5.08) | 12.61 *** | 5.17 (6.54) | 2.51 (5.06) | 3.77 (5.99) | 110.36 *** |
Alcohol binges | |||||||
Time 1 | 0.48 (2.12) | 0.28 (0.52) | 4.41 *** | 0.17 (0.97) | 0.21 (1.48) | 0.46 (1.86) | 9.75 *** |
Time 2 | 1.23 (3.13) | 0.64 (2.07) | 8.96 *** | 1.31 (3.14) | 0.34 (1.50) | 0.84 (2.57) | 75.23 *** |
Time 3 | 2.00 (4.35) | 0.95 (2.61) | 11.84 *** | 1.99 (4.07) | 0.59 (2.39) | 1.35 (3.51) | 86.80 *** |
Time 4 | 2.39 (4.71) | 1.06 (2.77) | 13.86 *** | 2.29 (4.38) | 0.74 (2.61) | 1.62 (3.89) | 90.12 *** |
Marijuana use | |||||||
Time 1 | 0.93 (4.26) | 0.52 (2.98) | 4.54 *** | 0.26 (1.53) | 0.66 (3.67) | 0.64 (3.41) | 1.63 |
Time 2 | 1.94 (6.26) | 1.02 (4.16) | 7.00 *** | 1.78 (5.81) | 1.01 (4.34) | 1.36 (5.20) | 12.10 *** |
Time 3 | 3.12 (8.03) | 1.58 (5.56) | 9.02 *** | 2.69 (7.29) | 1.93 (6.49) | 2.03 (6.60) | 8.60 *** |
Time 4 | 2.88 (7.76) | 1.54 (5.65) | 7.97 *** | 2.55 (7.23) | 1.98 (6.55) | 1.59 (5.84) | 10.66 *** |
Criminal activity | |||||||
Time 1 | 1.27 (1.49) | 0.71 (1.08) | 17.39 *** | 0.99 (1.31) | 0.97 (1.28) | 0.93 (1.33) | 2.35 |
Time 2 | 0.54 (1.05) | 0.31 (0.73) | 10.35 *** | 0.45 (0.95) | 0.40 (0.87) | 0.37 (0.24) | 3.55 * |
Time 3 | 0.37 (0.88) | 0.20 (0.60) | 9.44 *** | 0.29 (0.78) | 0.28 (0.71) | 0.27 (0.76) | 0.43 |
Time 4 | 0.25 (0.70) | 0.11 (0.43) | 9.62 *** | 0.17 (0.57) | 0.18 (0.57) | 0.20 (0.66) | 0.59 |
Cigarette Use | Alcohol Use | Alcohol Binges | Marijuana Use | Criminal Activity | |
---|---|---|---|---|---|
ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | |
Fixed effect | |||||
Intercept, β00 | 0.55 (0.04) *** | 1.00 (0.02) | 0.36 (0.03) *** | 0.19 (0.04) *** | 0.27 (0.02) *** |
Slope, β10 | 1.74 (0.02) *** | 1.92 (0.01) *** | 1.77 (0.01) *** | 1.34 (0.02) *** | 0.50 (0.01) *** |
Random effect (Variance) | |||||
Intercept, ro | 5.95 *** | 1.79 *** | 2.29 *** | 4.21 *** | 1.03 *** |
Slope, r1 | 0.69 *** | 0.30 *** | 0.33 *** | 0.63 *** | 0.14 |
Model fit | |||||
Deviance | 103,673.82 | 93,306.26 | 69,528.11 | 131,111.08 | 54,301.79 |
χ2 | 36,418.46 *** | 19,947.70 *** | 8451.72 *** | 2535.85 *** | 4037.37 *** |
Cigarette Use | Alcohol Use | Alcohol Binges | Marijuana Use | Criminal Activity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 2 | Model 3 | Model 2 | Model 3 | Model 2 | Model 3 | Model 2 | Model 3 | Model 2 | Model 3 | |
ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | |
Fixed effect | ||||||||||
Level-1 | ||||||||||
Intercept, β00 | 0.58 (0.03) *** | 0.57 (0.03) *** | 1.01 (0.02) | 1.00 (0.01) | 0.37 (0.03) *** | 0.34 (0.03) *** | 0.18 (0.04) *** | 0.19 (0.04) *** | 0.25 (0.02) *** | 0.24 (0.02) *** |
Slope, β10 | 1.68 (0.02) *** | 1.69 (0.02) *** | 1.94 (0.02) *** | 1.92 (0.02) *** | 1.89 (0.02) *** | 1.82 (0.02) *** | 1.40 (0.03) *** | 1.38 (0.03) *** | 0.55 (0.02) *** | 0.53 (0.02) *** |
CBV, β20 | 1.45 (0.09) *** | 1.42 (0.08) *** | 1.01 (0.05) | 1.01 (0.06) | 1.02 (0.06) | 1.01 (0.06) | 1.24 (0.08) ** | 1.20 (0.08) ** | 1.50 (0.04) *** | 1.47 (0.04) *** |
DP, β30 | 1.15 (0.01) *** | 1.18 (0.02) *** | 1.12 (0.01) *** | 1.15 (0.01) *** | 1.05 (0.01) *** | 1.07 (0.01) *** | 1.18 (0.02) *** | 1.20 (0.01) *** | 1.09 (0.01) *** | 1.11 (0.01) *** |
MEDU, β40 | 1.06 (0.03) * | 0.98 (0.03) | 1.15 (0.01) *** | 1.08 (0.02) *** | 1.12 (0.02) *** | 1.06 (0.02) ** | 1.15 (0.03) *** | 1.11 (0.03) *** | 1.08 (0.01) *** | 1.04 (0.01) ** |
BP, β50 | 1.06 (0.03) | 1.06 (0.03) | 1.03 (0.02) | 1.04 (0.02) | 0.88 (0.03) ** | 0.89 (0.03) ** | 0.98 (0.05) | 0.95 (0.05) | 0.93 (0.02) | 0.89 (0.02) * |
HH, β60 | 0.97 (0.02) | 0.98 (0.03) | 0.96 (0.02) * | 0.97 (0.02) | 0.95 (0.02) * | 0.97 (0.02) | 1.01 (0.04) | 1.02 (0.04) | 1.00 (0.01) | 1.01 (0.01) |
LIVIN, β70 | 1.06 (0.08) | 1.07 (0.08) | 1.05 (0.06) | 1.08 (0.06) | 1.04 (0.07) | 1.09 (0.07) | 1.12 (0.15) | 1.14 (0.15) | 0.98 (0.04) | 1.03 (0.03) |
GNEI, β80 | 0.78 (0.05) *** | 0.83 (0.05) *** | 0.86 (0.06) * | 0.89 (0.06) | 0.97 (0.08) | 1.00 (0.08) | 0.94 (0.11) | 0.90 (0.12) | 1.41 (0.03) *** | 1.43 (0.03) *** |
SIBLING, β90 | 1.15 (0.09) | 1.12 (0.09) | 1.16 (0.07) * | 1.10 (0.09) | 1.29 (0.10) ** | 1.23 (0.11) * | 1.25 (0.15) | 1.25 (0.15) | 1.80 (0.04) *** | 1.81 (0.04) *** |
Age, β100 | 1.07 (0.03) *** | 1.04 (0.03) ** | 1.20 (0.04) *** | 1.18 (0.05) *** | 1.19 (0.07) *** | 1.17 (0.07) *** | 0.97 (0.04) *** | 0.95 (0.05) *** | 0.93 (0.08) *** | 0.91 (0.07) *** |
BEP, β110 | 1.09(0.08) | 1.04 (0.07) | 1.09 (0.03) * | 1.12 (0.02) * | 1.11 (0.03) * | 1.12 (0.03) * | 1.23 (0.04) ** | 1.23 (0.05) * | 1.31 (0.02) *** | 1.25 (0.02) *** |
Level-2 | ||||||||||
Female, β11 | 0.90 (0.03) * | 0.95 (0.02) | 0.95 (0.03) | 1.01 (0.03) | 0.98 (0.03) | |||||
Hispanic, β12 | 1.01 (0.05) | 0.94 (0.03) ** | 0.89 (0.04) * | 0.97 (0.05) | 1.03 (0.03) | |||||
Black, β13 | 1.18 (0.05) ** | 0.97 (0.03) | 0.93 (0.04) | 1.02 (0.05) | 1.06 (0.03) * | |||||
Female, β21 | 1.19 (0.15) | 1.22 (0.10) * | 1.20 (0.11) | 1.27 (0.15) | 1.11 (0.06) | |||||
Hispanic, β22 | 1.28 (0.21) | 1.40 (0.13) ** | 1.37 (0.15) * | 1.09 (0.21) | 1.04 (0.09) | |||||
Black, β23 | 0.89 (0.18) | 1.21 (0.11) | 1.11 (0.13) | 0.93 (0.16) | 1.00 (0.06) | |||||
Random effect (Variance) | ||||||||||
Intercept, ro | 5.24 *** | 5.18 *** | 1.70 *** | 1.53 *** | 2.24 *** | 1.98 *** | 4.24 *** | 4.09 *** | 0.85 *** | 0.83 *** |
Slope, r1 | 0.72 *** | 0.63 *** | 0.33 *** | 0.32 *** | 0.31 *** | 0.33 *** | 0.64 *** | 0.65 *** | 0.11 | 0.10 |
Model fit | ||||||||||
Deviance | 106,201.43 | 102,898.32 | 93,021.43 | 92,587.98 | 69,768.98 | 68,225.84 | 96,641.87 | 96,985.93 | 53,640.90 | 53,345.07 |
χ2 | 497.56 *** | 258.34 *** | 412.96 *** | 476.43 *** | 366.54 *** | 584.54 *** | 458.35 *** | 125.89 *** | 1045.76 *** | 408.89 *** |
Cigarette Use | Alcohol Use | Alcohol Binges | Marijuana Use | Criminal Activity | |
---|---|---|---|---|---|
Time×CBV | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) | ERR (SE) |
Total | 1.46 (0.13) ** | 0.84 (0.12) | 0.93 (0.14) | 1.52 (0.18) * | 1.15 * (0.09) ** |
Male | 1.64 (0.12) * | 1.02 (0.14) | 0.89 (0.12) | 1.03 (0.17) | 1.08 (0.11) *** |
Female | 1.26 (0.13) | 0.80 (0.13) | 0.95 (0.15) | 1.67 (0.21) * | 1.09 (0.10) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Choi, M.; Holland, M.M.; Radey, M.; Tripodi, S.J. Childhood Bullying Victimization, Substance Use and Criminal Activity among Adolescents: A Multilevel Growth Model Study. Int. J. Environ. Res. Public Health 2023, 20, 770. https://doi.org/10.3390/ijerph20010770
Lee J, Choi M, Holland MM, Radey M, Tripodi SJ. Childhood Bullying Victimization, Substance Use and Criminal Activity among Adolescents: A Multilevel Growth Model Study. International Journal of Environmental Research and Public Health. 2023; 20(1):770. https://doi.org/10.3390/ijerph20010770
Chicago/Turabian StyleLee, Jungup, Mijin Choi, Margaret M. Holland, Melissa Radey, and Stephen J. Tripodi. 2023. "Childhood Bullying Victimization, Substance Use and Criminal Activity among Adolescents: A Multilevel Growth Model Study" International Journal of Environmental Research and Public Health 20, no. 1: 770. https://doi.org/10.3390/ijerph20010770
APA StyleLee, J., Choi, M., Holland, M. M., Radey, M., & Tripodi, S. J. (2023). Childhood Bullying Victimization, Substance Use and Criminal Activity among Adolescents: A Multilevel Growth Model Study. International Journal of Environmental Research and Public Health, 20(1), 770. https://doi.org/10.3390/ijerph20010770