COVID-Related Distress Is Associated with Increased Menstrual Pain and Symptoms in Adult Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.3.1. Demographics
2.3.2. Menstrual History and Pain
2.3.3. Menstrual Symptoms
2.3.4. Bodily Pain
2.3.5. COVID Stress Scales (CSS)
2.3.6. COVID-19 Exposure and Family Impact Survey—Adolescent and Young Adult Version (CEFIS-AYA)
2.3.7. Pain Catastrophizing Scale (PCS)
2.4. Data Analysis
2.4.1. Baseline Analysis
2.4.2. Sensitivity Analysis Using Baseline and Follow-Up Data
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGinty, E.E.; Presskreischer, R.; Anderson, K.E.; Han, H.; Barry, C.L. Psychological Distress and COVID-19-Related Stressors Reported in a Longitudinal Cohort of US Adults in April and July 2020. JAMA 2020, 324, 2555–2557. [Google Scholar] [CrossRef]
- Pierce, M.; Hope, H.; Ford, T.; Hatch, S.; Hotopf, M.; John, A.; Kontopantelis, E.; Webb, R.; Wessely, S.; McManus, S.; et al. Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population. Lancet Psychiatry 2020, 7, 883–892. [Google Scholar] [CrossRef]
- Hammarberg, K.; Tran, T.; Kirkman, M.; Fisher, J. Sex and age differences in clinically significant symptoms of depression and anxiety among people in Australia in the first month of COVID-19 restrictions: A national survey. BMJ Open 2020, 10, e042696. [Google Scholar] [CrossRef]
- Laughlin, L.; Wisniewski, M. Women Represent Majority of Workers in Several Essential Occupations. Available online: https://www.census.gov/library/stories/2021/03/unequally-essential-women-and-gender-pay-gap-during-covid-19.html (accessed on 31 March 2021).
- Magee, L.A.; Benetou, V.; George-Carey, R.; Kulkarni, J.; MacDermott, N.E.; Missmer, S.A.; Morroni, C.; Vidler, M.; Kennedy, S.H. Editorial: COVID-19 and Women’s Health. Front. Glob. Women's Health 2022, 3, 861315. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.O.D.; Babayev, E.; Bulun, S.E.; Clark, S.; Garcia-Grau, I.; Gregersen, P.K.; Kilcoyne, A.; Kim, J.J.; Lavender, M.; Marsh, E.E.; et al. Menstruation: Science and society. Am. J. Obstet. Gynecol. 2020, 223, 624–664. [Google Scholar] [CrossRef] [PubMed]
- Office on Women’s Health. Your Menstrual Cycle and Your Health. Available online: https://www.womenshealth.gov/menstrual-cycle/your-menstrual-cycle-and-your-health (accessed on 31 March 2021).
- Valsamakis, G.; Chrousos, G.; Mastorakos, G. Stress, female reproduction and pregnancy. Psychoneuroendocrinology 2019, 100, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, N.; Velez, K.; Anvari, H.; Butler, L.; Goldman, K.N.; Woitowich, N.C. Impact of Stress on Menstrual Cyclicity during the Coronavirus Disease 2019 Pandemic: A Survey Study. J. Womens Health 2022, 31, 84–90. [Google Scholar] [CrossRef]
- Takmaz, T.; Gundogmus, I.; Okten, S.B.; Gunduz, A. The impact of COVID-19-related mental health issues on menstrual cycle characteristics of female healthcare providers. J. Obstet. Gynaecol. Res. 2021, 47, 3241–3249. [Google Scholar] [CrossRef]
- Demir, O.; Sal, H.; Comba, C. Triangle of COVID, anxiety and menstrual cycle. J. Obstet. Gynaecol. 2021, 41, 1257–1261. [Google Scholar] [CrossRef]
- Phelan, N.; Behan, L.A.; Owens, L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front. Endocrinol. 2021, 12, 642755. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wang, W.; Chen, C.; Ronnennberg, A.G.; Guang, W.; Huang, A.; Fang, Z.; Zang, T.; Wang, L.; et al. Stress and dysmenorrhoea: A population based prospective study. Occup. Environ. Med. 2004, 61, 1021–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aolymat, I.; Khasawneh, A.I.; Al-Tamimi, M. COVID-19-Associated Mental Health Impact on Menstrual Function Aspects: Dysmenorrhea and Premenstrual Syndrome, and Genitourinary Tract Health: A Cross Sectional Study among Jordanian Medical Students. Int. J. Environ. Res. Public Health 2022, 19, 1439. [Google Scholar] [CrossRef] [PubMed]
- Maher, M.; Keeffe, A.O.; Phelan, N.; Behan, L.A.; Collier, S.; Hevey, D.; Owens, L. Female Reproductive Health Disturbance Experienced during the COVID-19 Pandemic Correlates with Mental Health Disturbance and Sleep Quality. Front. Endocrinol. 2022, 13, 838886. [Google Scholar] [CrossRef] [PubMed]
- Pagé, M.G.; Lacasse, A.; Dassieu, L.; Hudspith, M.; Moor, G.; Sutton, K.; Thompson, J.M.; Dorais, M.; Janelle Montcalm, A.; Sourial, N.; et al. A cross-sectional study of pain status and psychological distress among individuals living with chronic pain: The Chronic Pain & COVID-19 Pan-Canadian Study. Health Promot. Chronic Dis. Prev. Can. 2021, 41, 141–152. [Google Scholar] [CrossRef]
- Asquini, G.; Bianchi, A.E.; Borromeo, G.; Locatelli, M.; Falla, D. The impact of COVID-19-related distress on general health, oral behaviour, psychosocial features, disability and pain intensity in a cohort of Italian patients with temporomandibular disorders. PLoS ONE 2021, 16, e0245999. [Google Scholar] [CrossRef] [PubMed]
- Mun, C.J.; Campbell, C.M.; McGill, L.S.; Aaron, R.V. The Early Impact of COVID-19 on Chronic Pain: A Cross-Sectional Investigation of a Large Online Sample of Individuals with Chronic Pain in the United States, April to May, 2020. Pain Med. 2021, 22, 470–480. [Google Scholar] [CrossRef]
- Cankurtaran, D.; Tezel, N.; Ercan, B.; Yildiz, S.Y.; Akyuz, E.U. The effects of COVID-19 fear and anxiety on symptom severity, sleep quality, and mood in patients with fibromyalgia: A pilot study. Adv. Rheumatol. 2021, 61, 41. [Google Scholar] [CrossRef]
- Koppert, T.Y.; Jacobs, J.W.G.; Lumley, M.A.; Geenen, R. The impact of COVID-19 stress on pain and fatigue in people with and without a central sensitivity syndrome. J. Psychosom. Res. 2021, 151, 110655. [Google Scholar] [CrossRef]
- Hruschak, V.; Flowers, K.M.; Azizoddin, D.R.; Jamison, R.N.; Edwards, R.R.; Schreiber, K.L. Cross-sectional study of psychosocial and pain-related variables among patients with chronic pain during a time of social distancing imposed by the coronavirus disease 2019 pandemic. Pain 2021, 162, 619–629. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O'Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Breivik, E.K.; Björnsson, G.A.; Skovlund, E. A comparison of pain rating scales by sampling from clinical trial data. Clin. J. Pain 2000, 16, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; Turk, D.C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Katz, N.P.; Kerns, R.D.; Stucki, G.; Allen, R.R.; Bellamy, N.; et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005, 113, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Kwekkeboom, K.L.; Ward, S.E. Self-report pain and symptom measures for primary dysmenorrhoea: A critical review. Eur. J. Pain 2015, 19, 377–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.X.; Ofner, S.; Bakoyannis, G.; Kwekkeboom, K.L.; Carpenter, J.S. Symptoms-Based Phenotypes among Women with Dysmenorrhea: A Latent Class Analysis. West. J. Nurs. Res. 2018, 40, 1452–1468. [Google Scholar] [CrossRef]
- Rogers, S.K.; Rand, K.L.; Chen, C.X. Comparing dysmenorrhea beliefs and self-management techniques across symptom-based phenotypes. J. Clin. Nurs. 2021, 30, 2015–2022. [Google Scholar] [CrossRef]
- Scherrer, K.H.; Ziadni, M.S.; Kong, J.T.; Sturgeon, J.A.; Salmasi, V.; Hong, J.; Cramer, E.; Chen, A.L.; Pacht, T.; Olson, G.; et al. Development and validation of the Collaborative Health Outcomes Information Registry body map. Pain Rep. 2021, 6, e880. [Google Scholar] [CrossRef]
- Brummett, C.M.; Bakshi, R.R.; Goesling, J.; Leung, D.; Moser, S.E.; Zollars, J.W.; Williams, D.A.; Clauw, D.J.; Hassett, A.L. Preliminary validation of the Michigan Body Map. Pain 2016, 157, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Williams, D.A.; Lucia, M.S.; Clauw, D.J.; Naliboff, B.D.; Robinson, N.A.; van Bokhoven, A.; Sutcliffe, S.; Schaeffer, A.J.; Rodriguez, L.V.; et al. The MAPP research network: Design, patient characterization and operations. BMC Urol. 2014, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- Harle, C.A.; Listhaus, A.; Covarrubias, C.M.; Schmidt, S.O.; Mackey, S.; Carek, P.J.; Fillingim, R.B.; Hurley, R.W. Overcoming barriers to implementing patient-reported outcomes in an electronic health record: A case report. J. Am. Med. Inform. Assoc. 2016, 23, 74–79. [Google Scholar] [CrossRef]
- Hoang, N.S.; Hwang, W.; Katz, D.A.; Mackey, S.C.; Hofmann, L.V. Electronic Patient-Reported Outcomes: Semi-Automated Data Collection in the Interventional Radiology Clinic. J. Am. Coll. Radiol. 2019, 16, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.M.; Shearer, E.J.; Zion, S.R.; Mackey, S.C.; Morris, A.M.; Spain, D.A.; Weiser, T.G. Implementation Challenges Using a Novel Method for Collecting Patient-Reported Outcomes after Injury. J. Surg. Res. 2019, 241, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Landry, C.A.; Paluszek, M.M.; Fergus, T.A.; McKay, D.; Asmundson, G.J.G. Development and initial validation of the COVID Stress Scales. J. Anxiety Disord. 2020, 72, 102232. [Google Scholar] [CrossRef] [PubMed]
- Enlow, P.T.; Phan, T.T.; Lewis, A.M.; Hildenbrand, A.K.; Sood, E.; Canter, K.S.; Vega, G.; Alderfer, M.A.; Kazak, A.E. Validation of the COVID-19 Exposure and Family Impact Scales. J. Pediatr. Psychol. 2022, 47, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kazak, A.E.; Alderfer, M.; Enlow, P.T.; Lewis, A.M.; Vega, G.; Barakat, L.; Kassam-Adams, N.; Pai, A.; Canter, K.S.; Hildenbrand, A.K.; et al. COVID-19 Exposure and Family Impact Scales: Factor Structure and Initial Psychometrics. J. Pediatr. Psychol. 2021, 46, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Bishop, S.R.; Pivik, J. The pain catastrophizing scale: Development and validation. Psychol. Assess. 1995, 7, 524. [Google Scholar] [CrossRef]
- Fitzmaurice, G.; Davidian, M.; Verbeke, G.; Molenberghs, G. (Eds.) Longitudinal Data Analysis, 1st ed.; Chapman and Hall: London, UK; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.-Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Hardi, G.; Evans, S.; Craigie, M. A possible link between dysmenorrhoea and the development of chronic pelvic pain. Aust. N. Z. J. Obstet. Gynaecol. 2014, 54, 593–596. [Google Scholar] [CrossRef]
- Westling, A.M.; Tu, F.F.; Griffith, J.W.; Hellman, K.M. The association of dysmenorrhea with noncyclic pelvic pain accounting for psychological factors. Am. J. Obstet. Gynecol. 2013, 209, 422.e1–422.e10. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Yudkin, P.L.; Vessey, M.P.; Jenkinson, C.P.; Dawes, M.G.; Barlow, D.H.; Kennedy, S.H. Chronic pelvic pain in the community–symptoms, investigations, and diagnoses. Am. J. Obstet. Gynecol. 2001, 184, 1149–1155. [Google Scholar] [CrossRef]
- Wong, L.P. Premenstrual syndrome and dysmenorrhea: Urban-rural and multiethnic differences in perception, impacts, and treatment seeking. J. Pediatr. Adolesc. Gynecol. 2011, 24, 272–277. [Google Scholar] [CrossRef]
- Wong, L.P.; Khoo, E.M. Menstrual-Related Attitudes and Symptoms among Multi-racial Asian Adolescent Females. Int. J. Behav. Med. 2011, 18, 246–253. [Google Scholar] [CrossRef]
- Zelaya, C.E.; Dahlhamer, J.M.; Lucas, J.W.; Connor, E.M. NCHS Data Brief. In Chronic Pain and High-Impact Chronic Pain among U.S. Adults, 2019; National Center for Health Statistics: Hyattsville, MD, USA, 2020; Volume 390. [Google Scholar]
- Nahin, R.L. Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain 2015, 16, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.; Weaver, M.; Lyon, D.E.; Kim, J.; Choi, E.; Staud, R.; Fillingim, R.B. Differences in Clinical Pain and Experimental Pain Sensitivity between Asian Americans and Whites with Knee Osteoarthritis. Clin. J. Pain 2017, 33, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Yang, G.S.; Greenspan, J.D.; Downton, K.D.; Griffith, K.A.; Renn, C.L.; Johantgen, M.; Dorsey, S.G. Racial and ethnic differences in experimental pain sensitivity: Systematic review and meta-analysis. Pain 2017, 158, 194–211. [Google Scholar] [CrossRef]
- Ostrom, C.; Bair, E.; Maixner, W.; Dubner, R.; Fillingim, R.B.; Ohrbach, R.; Slade, G.D.; Greenspan, J.D. Demographic Predictors of Pain Sensitivity: Results From the OPPERA Study. J. Pain 2017, 18, 295–307. [Google Scholar] [CrossRef]
- Austin, M.P.; Leader, L. Maternal stress and obstetric and infant outcomes: Epidemiological findings and neuroendocrine mechanisms. Aust. N. Z. J. Obstet. Gynaecol. 2000, 40, 331–337. [Google Scholar] [CrossRef]
- Casey, M.L.; MacDonald, P.C.; Mitchell, M.D. Despite a massive increase in cortisol secretion in women during parturition, there is an equally massive increase in prostaglandin synthesis. A paradox? J. Clin. Investig. 1985, 75, 1852–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, P.D.; Dunkel-Schetter, C.; Chicz-DeMet, A.; Porto, M.; Sandman, C.A. Prenatal psychosocial factors and the neuroendocrine axis in human pregnancy. Psychosom. Med. 1996, 58, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Geva, N.; Defrin, R. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response. J. Pain 2018, 19, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Vincent, K.; Warnaby, C.; Stagg, C.J.; Moore, J.; Kennedy, S.; Tracey, I. Dysmenorrhoea is associated with central changes in otherwise healthy women. Pain 2011, 152, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.A.; Seidman, L.C.; Sim, M.-S.; Rapkin, A.J.; Naliboff, B.D.; Zeltzer, L.K. Experimental evaluation of central pain processes in young women with primary dysmenorrhea. Pain 2019, 160, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Edelman, A.; Boniface, E.R.; Benhar, E.; Han, L.; Matteson, K.A.; Favaro, C.; Pearson, J.T.; Darney, B.G. Association between Menstrual Cycle Length and Coronavirus Disease 2019 (COVID-19) Vaccination: A U.S. Cohort. Obstet. Gynecol. 2022, 139, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Edelman, A.; Boniface, E.R.; Male, V.; Cameron, S.T.; Benhar, E.; Han, L.; Matteson, K.A.; Van Lamsweerde, A.; Pearson, J.T.; Darney, B.G. Association between menstrual cycle length and covid-19 vaccination: Global, retrospective cohort study of prospectively collected data. BMJ Med. 2022, 1, e000297. [Google Scholar] [CrossRef]
- Gibson, E.A.; Li, H.; Fruh, V.; Gabra, M.; Asokan, G.; Jukic, A.M.Z.; Baird, D.D.; Curry, C.L.; Fischer-Colbrie, T.; Onnela, J.P.; et al. COVID-19 vaccination and menstrual cycle length in the Apple Women's Health Study. NPJ Digit. Med. 2022, 5, 165. [Google Scholar] [CrossRef] [PubMed]
Baseline Only (n = 715) | Baseline + Follow-Up (n = 223) | |
---|---|---|
Age | ||
Mean (SD) | 34.5 (9.19) | 37.4 (8.42) |
Education | ||
Some high school | 25 (3.5%) | 3 (1.3%) |
High school diploma or GED | 149 (20.8%) | 43 (19.3%) |
Some college or 2-year degree | 202 (28.3%) | 48 (21.5%) |
4-year college graduate | 211 (29.5%) | 86 (38.6%) |
Some school beyond college | 14 (2.0%) | 3 (1.3%) |
Graduate or professional degree | 114 (15.9%) | 40 (17.9%) |
Race | ||
White | 546 (76.4%) | 172 (77.1%) |
Black or African American | 66 (9.2%) | 18 (8.1%) |
Asian | 74 (10.3%) | 27 (12.1%) |
American Indian/Native Hawaiian/Multi-Racial | 29 (4.1%) | 6 (2.7%) |
Number of Hormones using | ||
Mean (SD) | 0.425 (0.691) | 0.455 (0.734) |
Age at menarche | ||
Mean (SD) | 12.3 (1.76) | 12.6 (1.78) |
Had period in the past 7 days (y/n) | ||
Percent indicating “yes” | 46.7% | 45.2% |
Baseline Only (n = 715) | Baseline + Follow-Up (n = 223) | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(intercept) | 5.39 | 3.90–6.88 | <0.001 | 3.80 | 0.67–6.93 | 0.017 |
Age | −0.02 | −0.04–−0.0 | 0.021 | −0.01 | −0.05–0.03 | 0.526 |
Black or African American race * | −0.05 | −0.60–0.50 | 0.854 | −0.98 | −2.41–0.44 | 0.176 |
Asian race * | −0.68 | −1.21–−0.15 | 0.011 | −1.13 | −2.18–−0.08 | 0.036 |
American Indian/Native Hawaiian/Multi-Racial * | 0.45 | −0.35–1.24 | 0.270 | 2.65 | 0.65–4.64 | 0.009 |
Education level | −0.12 | −0.24–−0.0 | 0.06 | 0.09 | −0.16–0.34 | 0.481 |
Number of Hormones using | −0.34 | −0.60–−0.09 | 0.008 | −0.51 | −1.01–−0.02 | 0.043 |
Age at menarche | −0.03 | −0.12–0.06 | 0.511 | −0.03 | −0.20–0.15 | 0.760 |
Period in last 7 days | −0.12 | −0.42–0.17 | 0.417 | −0.08 | −0.60–0.44 | 0.755 |
CSS_dc | 0.01 | −0.00–0.03 | 0.130 | 0.06 | 0.02–0.10 | 0.001 |
CSS_s | −0.01 | −0.04–0.02 | 0.620 | −0.01 | −0.07–0.06 | 0.842 |
CSS_x | 0.00 | −0.03–0.05 | 0.899 | −0.02 | −0.08–0.05 | 0.613 |
CSS_t | 0.01 | −0.03–0.05 | 0.677 | −0.01 | −0.08–0.06 | 0.829 |
CSS_ch | −0.02 | −0.05–0.02 | 0.443 | 0.02 | −0.06–0.10 | 0.579 |
CEFIS (part 1; exposure) | 0.01 | −0.03–0.05 | 0.645 | −0.01 | −0.07–0.06 | 0.806 |
CEFIS (part 2; impact) | −0.24 | −0.43–−0.05 | 0.014 | −0.26 | −0.51–−0.01 | 0.045 |
CEFIS (part 2; distress) | 0.20 | 0.12–0.28 | <0.001 | 0.20 | 0.06–0.35 | 0.006 |
Body pain in the past month | 0.28 | 0.22–0.34 | <0.001 | 0.20 | 0.10–0.31 | <0.001 |
Body map # of locations | 0.00 | −0.02–0.03 | 0.701 | −0.00 | −0.05–0.04 | 0.865 |
PCS | 0.01 | −0.01–0.02 | 0.340 | −0.01 | −0.04–0.02 | 0.524 |
Baseline Only (n = 715) | Baseline + Follow-Up (n = 223) | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(intercept) | 26.78 | 10.91–42.65 | <0.001 | 16.35 | −17.51–50.20 | 0.344 |
Age | −0.12 | −0.31–0.07 | 0.222 | −0.37 | −0.80–0.07 | 0.101 |
Black or African American race * | 3.88 | −1.97–9.73 | 0.194 | 8.39 | −7.02–23.80 | 0.286 |
Asian race * | −7.81 | −13.44–−2.17 | 0.007 | −5.84 | −17.24–5.56 | 0.315 |
American Indian/Native Hawaiian/Multi-Racial * | −0.31 | −8.80–8.18 | 0.943 | 15.99 | −5.66–37.65 | 0.148 |
Education level | −0.29 | −1.57–0.99 | 0.659 | 2.03 | −0.66–4.72 | 0.138 |
Number of Hormones using | 1.16 | −1.54–3.87 | 0.399 | 2.23 | −3.14–7.59 | 0.416 |
Age at menarche | −0.36 | −1.32–0.59 | 0.457 | −0.96 | −2.84–0.93 | 0.321 |
Period in last 7 days | 1.10 | −2.07–4.26 | 0.497 | 2.02 | −3.47–7.52 | 0.471 |
CSS_dc | −0.12 | −0.31–0.08 | 0.250 | 0.22 | −0.16–0.60 | 0.258 |
CSS_s | 0.12 | −0.23–0.48 | 0.497 | 0.15 | −0.55–0.84 | 0.678 |
CSS_x | 0.18 | −0.16–0.53 | 0.289 | 0.09 | −0.58–0.75 | 0.801 |
CSS_t | 0.30 | −0.11–0.70 | 0.148 | −0.17 | −0.95–0.60 | 0.664 |
CSS_ch | 0.47 | 0.06–0.89 | 0.024 | 1.04 | 0.20–1.88 | 0.015 |
CEFIS (part 1; exposure) | 0.41 | 0.01–0.81 | 0.042 | 0.94 | 0.24–1.64 | 0.009 |
CEFIS (part 2; impact) | −1.72 | −3.73–0.28 | 0.092 | 0.66 | −2.01–3.32 | 0.630 |
CEFIS (part 2; distress) | 1.23 | 0.37–2.09 | 0.005 | 1.66 | 0.11–3.22 | 0.036 |
Body pain in the past month | 4.20 | 3.57–4.82 | <0.001 | 3.73 | 2.61–4.85 | <0.001 |
Body map # of locations | 0.15 | −0.10–0.41 | 0.230 | 0.07 | −0.39–0.53 | 0.767 |
PCS | 0.21 | 0.05–0.37 | 0.011 | −0.10 | −0.43–0.23 | 0.539 |
Baseline Only (n = 715) | Baseline + Follow-Up (n = 223) | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(intercept) | 8.93 | 6.84–11.02 | <0.001 | 9.17 | 4.85–13.48 | <0.001 |
Age | −0.03 | −0.06–−0.01 | 0.008 | −0.07 | −0.13–−0.02 | 0.010 |
Black or African American race * | 0.10 | −0.68–0.87 | 0.808 | 1.26 | −0.071–3.22 | 0.210 |
Asian race * | −0.49 | −1.24–0.26 | 0.199 | −0.44 | −1.90–1.02 | 0.553 |
American Indian/Native Hawaiian/Multi-Racial * | 0.19 | −0.93–1.32 | 0.734 | 1.36 | −1.41–4.13 | 0.337 |
Education level | 0.10 | −0.07–0.27 | 0.232 | 0.44 | 0.10–0.79 | 0.011 |
Number of Hormones using | 0.23 | −0.13–0.59 | 0.210 | 0.02 | −0.66–0.70 | 0.953 |
Age at menarche | −0.03 | −0.16–0.09 | 0.617 | −0.12 | −0.36–0.12 | 0.327 |
Period in last 7 days | 0.12 | −0.29–0.53 | 0.552 | 0.33 | −0.35–1.02 | 0.340 |
CSS_dc | −0.03 | −0.05–0.00 | 0.047 | 0.00 | −0.05–0.05 | 0.960 |
CSS_s | 0.03 | −0.02–0.07 | 0.274 | 0.00 | −0.08–0.09 | 0.947 |
CSS_x | 0.03 | −0.02–0.07 | 0.265 | 0.04 | −0.04–0.13 | 0.327 |
CSS_t | 0.07 | 0.02–0.12 | 0.007 | 0.06 | −0.03–0.16 | 0.199 |
CSS_ch | 0.05 | −0.00–0.11 | 0.051 | 0.11 | 0.00–0.21 | 0.044 |
CEFIS (part 1; exposure) | −0.00 | −0.05–0.05 | 0.977 | 0.05 | −0.04–0.13 | 0.311 |
CEFIS (part 2; impact) | −0.18 | −0.44–0.07 | 0.157 | −0.06 | −0.38–0.27 | 0.736 |
CEFIS (part 2; distress) | −0.01 | −0.13–0.10 | 0.798 | −0.07 | −0.26–0.13 | 0.507 |
Body pain in the past month | 0.33 | 0.25–0.41 | <0.001 | 0.24 | 0.10–0.38 | 0.001 |
Body map # of locations | 0.02 | −0.02–0.05 | 0.287 | 0.03 | −0.03–0.08 | 0.368 |
PCS | 0.01 | −0.01–0.03 | 0.225 | −0.02 | −0.06–0.03 | 0.453 |
Baseline Only (n = 715) | Baseline + Follow-Up (n = 223) | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(intercept) | 3.75 | 2.13–5.38 | <0.001 | 2.67 | −0.58–5.92 | 0.107 |
Age | −0.03 | −0.05–−0.01 | 0.004 | −0.02 | −0.06–−0.02 | 0.372 |
Black or African American race * | 0.49 | −0.11–1.09 | 0.107 | 0.20 | −1.27–1.68 | 0.788 |
Asian race * | −0.30 | −0.88–0.28 | 0.308 | −0.69 | −1.78–0.39 | 0.209 |
American Indian/Native Hawaiian/Multi-Racial * | 0.40 | −0.47–1.27 | 0.364 | 2.22 | 0.16–4.27 | 0.034 |
Education level | 0.01 | −0.13–0.14 | 0.939 | 0.20 | −0.06–0.46 | 0.130 |
Number of Hormones using | −0.12 | −0.40–0.15 | 0.381 | −0.20 | −0.71–0.32 | 0.456 |
Age at menarche | −0.03 | −0.13–0.07 | 0.552 | −0.10 | −0.28–0.08 | 0.289 |
Period in last 7 days | −0.13 | −0.45–0.20 | 0.450 | 0.08 | −0.47–0.64 | 0.771 |
CSS_dc | 0.01 | −0.01–0.03 | 0.249 | 0.08 | 0.04–0.11 | <0.001 |
CSS_s | 0.01 | −0.03–0.04 | 0.671 | −0.01 | −0.08–0.05 | 0.688 |
CSS_x | −0.02 | −0.06–0.01 | 0.258 | −0.06 | −0.12–0.01 | 0.077 |
CSS_t | 0.02 | −0.02–0.06 | 0.262 | −0.03 | −0.11–0.05 | 0.425 |
CSS_ch | 0.02 | −0.02–0.06 | 0.357 | 0.10 | 0.01–0.18 | 0.027 |
CEFIS (part 1; exposure) | 0.05 | 0.00–0.09 | 0.030 | 0.03 | −0.04–0.10 | 0.362 |
CEFIS (part 2; impact) | −0.30 | −0.51–−0.09 | 0.005 | −0.29 | −0.56–−0.01 | 0.041 |
CEFIS (part 2; distress) | 0.19 | 0.10–0.27 | <0.001 | 0.20 | 0.04–0.35 | 0.013 |
Body pain in the past month | 0.30 | 0.24–0.36 | <0.001 | 0.25 | 0.14–0.36 | <0.001 |
Body map # of locations | 0.00 | −0.02–0.03 | 0.716 | −0.00 | −0.05–0.04 | 0.897 |
PCS | 0.01 | −0.00–0.03 | 0.153 | −0.00 | −0.03–0.03 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payne, L.A.; Seidman, L.C.; Ren, B.; Greenfield, S.F. COVID-Related Distress Is Associated with Increased Menstrual Pain and Symptoms in Adult Women. Int. J. Environ. Res. Public Health 2023, 20, 774. https://doi.org/10.3390/ijerph20010774
Payne LA, Seidman LC, Ren B, Greenfield SF. COVID-Related Distress Is Associated with Increased Menstrual Pain and Symptoms in Adult Women. International Journal of Environmental Research and Public Health. 2023; 20(1):774. https://doi.org/10.3390/ijerph20010774
Chicago/Turabian StylePayne, Laura A., Laura C. Seidman, Boyu Ren, and Shelly F. Greenfield. 2023. "COVID-Related Distress Is Associated with Increased Menstrual Pain and Symptoms in Adult Women" International Journal of Environmental Research and Public Health 20, no. 1: 774. https://doi.org/10.3390/ijerph20010774
APA StylePayne, L. A., Seidman, L. C., Ren, B., & Greenfield, S. F. (2023). COVID-Related Distress Is Associated with Increased Menstrual Pain and Symptoms in Adult Women. International Journal of Environmental Research and Public Health, 20(1), 774. https://doi.org/10.3390/ijerph20010774