Evaluation of Skinfold Techniques in People with Down Syndrome: Development of a New Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Skinfolds
%Fat SFTBROZEK = (4.57/Db) × 100
%Fat SFTSIRI = (4.95/DB) × 100
Sex: 0 = Female; 1 = Male
2.4. Dual Energy X-ray Absorptiometry
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rimmer, J.H.; Wang, E. Obesity prevalence among a group of Chicago residents with disabilities. Arch. Phys. Med. Rehabil. 2005, 86, 1461–1464. [Google Scholar] [CrossRef]
- Rowland, M.; Peterson-Besse, J.; Dobbertin, K.; Walsh, E.S.; Horner-Johnson, W.; Andresen, E.; Drum, C.; Fujiura, G.; Iezzoni, L.; Krahn, G. Health outcome disparities among subgroups of people with disabilities: A scoping review. Disabil. Health J. 2014, 7, 136–150. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef]
- Nickerson, B.S.; Cicone, Z.S.; Park, K.-S.; Snarr, R.L.; Fedewa, M.V.; Esco, M.R. Dual energy X-ray absorptiometry produces larger measurement error in non-Hispanic Caucasians than Hispanics. Clin. Nutr. ESPEN 2023, 53, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Blue, M.N.M.; Tinsley, G.M.; Ryan, E.D.; Smith-Ryan, A.E. Validity of Body-Composition Methods across Racial and Ethnic Populations. Adv. Nutr. Int. Rev. J. 2021, 12, 1854–1862. [Google Scholar] [CrossRef]
- Nickerson, B.S.; Tinsley, G.M.; Esco, M.R. Validity of field and laboratory three-compartment models in healthy adults. Med. Sci. Sport. Exerc. 2019, 51, 1032–1039. [Google Scholar] [CrossRef]
- Reinhardt, M.; Piaggi, P.; DeMers, B.; Trinidad, C.; Krakoff, J. Cross calibration of two dual-energy X-ray densitometers and comparison of visceral adipose tissue measurements by iDXA and MRI. Obesity 2016, 25, 332–337. [Google Scholar] [CrossRef]
- Nickerson, B.S. Agreement between single-frequency bioimpedance analysis and dual energy X-ray absorptiometry varies based on sex and segmental mass. Nutr. Res. 2018, 54, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Snarr, R.L.; Leatherwood, M.D.; Chamberlain, N.A.; Redding, M.L.; Flatt, A.A.; Moon, J.R.; Williford, H.N. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J. Strength Cond. Res. 2015, 29, 918–925. [Google Scholar] [CrossRef]
- González-Agüero, A.; Vicente-Rodríguez, G.; Moreno, L.A.; Guerra-Balic, M.; Ara, I.; Casajús, J.A. Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand. J. Med. Sci. Sport. 2010, 20, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Chumlea, W.C.; Cronk, C.E. Overweight among children with trisomy. J. Ment. Defic. Res. 1981, 25 Pt 4, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage—A cross-sectional study in American adult individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef]
- Cicone, Z.S.; Nickerson, B.S.; Choi, Y.-J.; Holmes, C.J.; Hornikel, B.; Fedewa, M.V.; Esco, M.R. Generalized Equations for Predicting Percent Body Fat from Anthropometric Measures Using a Criterion Five-Compartment Model. Med. Sci. Sport. Exerc. 2021, 53, 2675–2682. [Google Scholar] [CrossRef]
- Nickerson, B.S.; Esco, M.R.; Fedewa, M.V.; Park, K.-S. Development of a BMI-based body fat equation: Effect of handgrip strength. Med. Sci. Sport. Exerc. 2020, 52, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Chumlea, W.C.; Guo, S.S.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Heymsfield, S.B.; Lukaski, H.C.; Friedl, K.; Hubbard, V.S. Body composition estimates from NHANES III bioelectrical impedance data. Int. J. Obes. 2002, 26, 1596–1609. [Google Scholar] [CrossRef]
- Jackson, A.S.; Stanforth, P.R.; Gagnon, J.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Skinner, J.; Bouchard, C.; Wilmore, J.H. The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study. Int. J. Obes. 2002, 26, 789–796. [Google Scholar] [CrossRef]
- Deurenberg, P.; Deurenberg-Yap, M. Validity of body composition methods across ethnic population groups. Acta Diabetol. 2003, 40 (Suppl. 1), s246–s249. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, B.S.; Fedewa, M.V.; Cicone, Z.; Esco, M.R. The relative accuracy of skinfolds compared to four-compartment estimates of body composition. Clin. Nutr. 2020, 39, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Nickerson, B.S.; Fedewa, M.V.; Moon, J.R.; Snarr, R.L. A novel method of utilizing skinfolds and bioimpedance for determining body fat percentage via a field-based three-compartment model. Eur. J. Clin. Nutr. 2018, 72, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, B.S.; Esco, M.R.; Bishop, P.A.; Fedewa, M.V.; Snarr, R.L.; Kliszczewicz, B.M.; Park, K.-S. Validity of BMI-based body fat equations in men and women: A 4-compartment model comparison. J. Strength Cond. Res. 2018, 32, 121–129. [Google Scholar] [CrossRef]
- Shakeryan, S.; Nikbakht, M.; Kashkoli, H.B. Validation of percent body fat using skinfold-thickness, bioelectrical impedance analysis and standard hydrostatic method in male wrestlers. J. Public Health Epidemiol. 2013, 5, 15–19. Available online: https://academicjournals.org/journal/JPHE/article-abstract/A2A93F14920 (accessed on 2 January 2023).
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.A. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sport. Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.J.; Czerwinski, S.A.; Siervogel, R.M. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am. J. Clin. Nutr. 2003, 77, 1186–1191. [Google Scholar] [CrossRef]
- Brožek, J.; Grande, F.; Anderson, J.T.; Keys, A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann. N. Y. Acad. Sci. 1963, 110, 113–140. [Google Scholar] [CrossRef]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods. Techniques for Measuring Body Composition; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1961; pp. 223–244. Available online: https://escholarship.org/uc/item/6mh9f4nf (accessed on 2 January 2023).
- González-Agüero, A.; Vicente-Rodríguez, G.; Ara, I.; Moreno, L.A.; Casajús, J.A. Accuracy of prediction equations to assess percentage of body fat in children and adolescents with Down syndrome compared to air displacement plethysmography. Res. Dev. Disabil. 2011, 32, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- González-Agüero, A.; Matute-Llorente, Á.; Gómez-Cabello, A.; Vicente-Rodríguez, G.; Casajús, J.A. Percentage of body fat in adolescents with Down syndrome: Estimation from skinfolds. Disabil. Health J. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- González-Agüero, A.; Ara, I.; Moreno, L.A.; Vicente-Rodríguez, G.; Casajús, J.A. Fat and lean masses in youths with Down syndrome: Gender differences. Res. Dev. Disabil. 2011, 32, 1685–1693. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Practical assessment of body composition. Phys. Sportsmed. 1985, 13, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Nickerson, B.S.; Esco, M.R.; Bicard, S.C.; Russell, A.R.; Williford, H.N.; Schaefer, G. Validity of the body adiposity index in adults with Down syndrome. Res. Dev. Disabil. 2015, 38, 92–96. [Google Scholar] [CrossRef]
- Esco, M.R.; Nickerson, B.S.; Bicard, S.C.; Russell, A.R.; Bishop, P.A. Agreement of BMI-based equations and DXA in determining body-fat percentage in adults with Down syndrome. Adapt. Phys. Act. Q. 2016, 33, 89–96. [Google Scholar] [CrossRef]
- Fedewa, M.V.; Russell, A.R.; Nickerson, B.S.; Fedewa, M.P.; Myrick, J.W.; Esco, M.R. Relative accuracy of body adiposity index and relative fat mass in participants with and without down syndrome. Eur. J. Clin. Nutr. 2019, 73, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, B.S.; Tinsley, G.M.; Fedewa, M.V.; Esco, M.R. Fat-free mass characteristics of Hispanic adults: Comparisons with non-Hispanic caucasians and cadaver reference values. Clin. Nutr. 2020, 39, 3080–3085. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Graybeal, A.J.; Moore, M.L.; Nickerson, B.S. Fat-free mass characteristics of muscular physique athletes. Med. Sci. Sport. Exerc. 2019, 51, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, B.S.; Tinsley, G.M. Utilization of BIA-derived bone mineral estimates exerts minimal impact on body fat estimates via multicompartment models in physically active adults. J. Clin. Densitom. 2018, 21, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Smith-Ryan, A.E.; Kim, Y.; Blue, M.N.; Nickerson, B.S.; Stratton, M.T.; Harty, P.S. Fat-free mass characteristics vary based on sex, race, and weight status in US adults. Nutr. Res. 2020, 81, 58–70. [Google Scholar] [CrossRef]
- Millard-Stafford, M.L.; Collins, M.A.; Modlesky, C.M.; Snow, T.K.; Rosskopf, L.B. Effect of race and resistance training status on the density of fat-free mass and percent fat estimates. J. Appl. Physiol. 2001, 91, 1259–1268. [Google Scholar] [CrossRef]
- Morrow, J., Jr.; Jackson, A.S.; Bradley, P.W.; Hartung, G.H. Accuracy of measured and predicted residual lung volume on body density measurement. Med. Sci. Sport. Exerc. 1986, 18, 647–652. [Google Scholar] [CrossRef]
Mean | SD | Minimum | Maximum | |
---|---|---|---|---|
Height (cm) | 148.49 | 8.77 | 134.62 | 162.56 |
Weight (kg) | 64.65 | 18.00 | 37.64 | 101.00 |
Age (yrs.) | 22 | 10 | 10 | 43 |
BMI (kg/m2) | 43.38 | 11.10 | 25.76 | 62.62 |
SS (mm) | 154.28 | 60.87 | 45.00 | 273.20 |
SFTG-A | 29.55 | 12.07 | 13.13 | 52.46 |
SFTSIRI | 24.24 | 10.26 | 4.34 | 42.56 |
SFTBROZEK | 23.63 | 9.47 | 5.26 | 40.55 |
DXA (%Fat) | 37.14 | 13.22 | 8.90 | 56.40 |
Pearson’s Correlation | Bland-Altman Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | (Mean ± SD) | p-Value | ES | SEE | r | p-Value | CE ± 1.96 SD | Trend | Upper | Lower |
SFTG-A | 29.55 ± 12.07 | <0.001 | 0.60 | 8.60 | 0.72 | <0.001 | −7.59 ± 18.65 | −0.13 | 11.06 | −26.23 |
SFTSIRI | 24.24 ± 10.26 | <0.001 | 1.09 | 3.75 | 0.93 | <0.001 | −12.90 ± 10.10 | −0.58 | −2.80 | −23.01 |
SFTBROZEK | 23.63 ± 9.47 | <0.001 | 1.17 | 3.47 | 0.93 | <0.001 | −13.51 ± 10.82 | −0.69 | −2.69 | −24.33 |
DXA | 37.14 ± 13.22 | --- | --- | --- | --- | --- | --- | --- | --- | --- |
r | p-Value | |
---|---|---|
Chest | 0.52 | 0.019 |
Triceps | 0.67 | 0.001 |
Subscapular | 0.73 | <0.001 |
Mid-axilla | 0.82 | <0.001 |
Abdomen | 0.79 | <0.001 |
Suprailium | 0.79 | <0.001 |
Thigh | 0.75 | <0.001 |
Model and Variables | Equation | r | R2 | SEE | p-Value |
---|---|---|---|---|---|
Mid-Axilla | %Fat = 17.747 + (0.982 × mid-axilla) | 0.81 | 0.66 | 7.94 | <0.001 |
Mid-Axilla + Suprailium | %Fat = 10.323 + (0.661 × mid-axilla) + (0.712 × suprailium) | 0.91 | 0.83 | 5.76 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nickerson, B.S.; Esco, M.R.; Schaefer, G. Evaluation of Skinfold Techniques in People with Down Syndrome: Development of a New Equation. Int. J. Environ. Res. Public Health 2023, 20, 5831. https://doi.org/10.3390/ijerph20105831
Nickerson BS, Esco MR, Schaefer G. Evaluation of Skinfold Techniques in People with Down Syndrome: Development of a New Equation. International Journal of Environmental Research and Public Health. 2023; 20(10):5831. https://doi.org/10.3390/ijerph20105831
Chicago/Turabian StyleNickerson, Brett S., Michael R. Esco, and George Schaefer. 2023. "Evaluation of Skinfold Techniques in People with Down Syndrome: Development of a New Equation" International Journal of Environmental Research and Public Health 20, no. 10: 5831. https://doi.org/10.3390/ijerph20105831
APA StyleNickerson, B. S., Esco, M. R., & Schaefer, G. (2023). Evaluation of Skinfold Techniques in People with Down Syndrome: Development of a New Equation. International Journal of Environmental Research and Public Health, 20(10), 5831. https://doi.org/10.3390/ijerph20105831