Indoor Volatile Organic Compounds: Concentration Characteristics and Health Risk Analysis on a University Campus
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Sample Analysis
2.3. Health Risk Calculation
3. Results
3.1. VOCs Concentration Characteristics at Different Locations
3.2. Temporal Variation of VOCs
3.3. Health Risk Analysis
3.3.1. Non-Carcinogenic Risk Analysis of VOCs
3.3.2. Carcinogenic Risk Analysis of VOCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, J.; Liu, J.; Pei, J. The indoor volatile organic compound (VOC) characteristics and source identification in a new university campus in Tianjin, China. J. Air Waste Manag. Assoc. 2017, 67, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Mundackal, A.; Ngole-Jeme, V.M. Evaluation of indoor and outdoor air quality in university academic buildings and associated health risk. Int. J. Environ. Health Res. 2022, 32, 1076–1094. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, S.; Mandin, C.; Derbez, M.; Ramalho, O. Quality of indoor air, quality of life, a decade of research to breathe better, breathe easier. In French Indoor Air Quality Observatory; CSTB Edition 2011: Champs-sur-Marne, France, 2013. [Google Scholar]
- Asikainen, A.; Carrer, P.; Kephalopoulos, S.; Fernandes, E.D.O.; Wargocki, P.; Hänninen, O. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project). Environ. Health 2016, 15, S35. [Google Scholar] [CrossRef]
- Kovats, S.; Brisley, R. Health, Communities and the Built Environment. In The Third UK Climate Change Risk Assessment Technical Report; Betts, R.A., Haward, A.B., Pearson, K.V., Eds.; Climate Change Committee (CCC): London, UK, 2021. [Google Scholar]
- ATSDR. Toxicological Profile for Toluene; Agency for Toxic Substance and Disease Registry; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2017.
- Bari, M.A.; Kindzierski, W.B.; Wheeler, A.J.; Héroux, M.È.; Wallace, L.A. Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build. Environ. 2015, 90, 114–124. [Google Scholar] [CrossRef]
- Colman Lerner, J.E.; Gutierrez, M.L.A.; Mellado, D.; Giuliani, D.; Massolo, L.; Sanchez, E.Y.; Porta, A. Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata, Argentina. Environ. Sci. Pollut. Res. Int. 2018, 25, 10039–10048. [Google Scholar] [CrossRef] [PubMed]
- Akal, D.; Yurdakul, S.; Civan, M.Y.; Tuncel, G.; Ersan, H.Y. Sources of Volatile Organic Compounds in a University Building. Environ. Forensics 2015, 16, 173–185. [Google Scholar] [CrossRef]
- Shin, S.-H.; Jo, W.-K. Longitudinal variations in indoor VOC concentrations after moving into new apartments and indoor source characterization. Environ. Sci. Pollut. Res. Int. 2013, 20, 3696–3707. [Google Scholar] [CrossRef]
- Liu, S.; Li, R.; Wild, R.J.; Warneke, C.; de Gouw, J.A.; Brown, S.S.; Miller, S.L.; Luongo, J.C.; Jimenez, J.L.; Ziemann, P.J. Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air 2016, 26, 925–938. [Google Scholar] [CrossRef]
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef]
- Ditto, J.C.; Abbatt, J.P.D.; Chan, A.W.H. Gas- and Particle-Phase Amide Emissions from Cooking: Mechanisms and Air Quality Impacts. Environ. Sci. Technol. 2022, 56, 7741–7750. [Google Scholar] [CrossRef]
- Finewax, Z.; Pagonis, D.; Claflin, M.S.; Handschy, A.V.; Brown, W.L.; Jenks, O.; Nault, B.A.; Day, D.A.; Lerner, B.M.; Jimenez, J.L.; et al. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. Indoor Air 2021, 31, 1323–1339. [Google Scholar] [CrossRef]
- Tang, X.; Misztal, P.K.; Nazaroff, W.W.; Goldstein, A.H. Volatile Organic Compound Emissions from Humans Indoors. Environ. Sci. Technol. 2016, 50, 12686–12694. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Chen, H.; Wu, Z.; Hu, M.; Yao, M. Haze Air Pollution Health Impacts of Breath-Borne VOCs. Environ. Sci. Technol. 2022, 56, 8541–8551. [Google Scholar] [CrossRef]
- Stinson, B.; Laguerre, A.; Gall, E.T. Per-Person and Whole-Building VOC Emission Factors in an Occupied School with Gas-Phase Air Cleaning. Environ. Sci. Technol. 2022, 56, 3354–3364. [Google Scholar] [CrossRef]
- Paciência, I.; Madureira, J.; Rufo, J.; Moreira, A.; Fernandes, E.D.O. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. Health B Crit. Rev. 2016, 19, 47–64. [Google Scholar] [CrossRef]
- Suzuki, M.; Akitsu, H.; Miyamoto, K.; Tohmura, S.-I.; Inoue, A. Effects of time, temperature, and humidity on acetaldehyde emission from wood-based materials. J. Wood Sci. 2014, 60, 207–214. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Cai, Y.; Liu, K.; Liu, C.; Zhang, J. Probabilistic health risk assessment and monetization based on benzene series exposure in newly renovated teaching buildings. Environ. Int. 2022, 163, 107194. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V.K. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ. Sci. Pollut. Res. Int. 2014, 21, 2240–2248. [Google Scholar] [CrossRef]
- Goodman, N.B.; Wheeler, A.J.; Paevere, P.J.; Selleck, P.W.; Cheng, M.; Steinemann, A. Indoor volatile organic compounds at an Australian university. Build. Environ. 2018, 135, 344–351. [Google Scholar] [CrossRef]
- Li, B.; Ho, S.S.H.; Li, X.; Guo, L.; Feng, R.; Fang, X. Pioneering observation of atmospheric volatile organic compounds in Hangzhou in eastern China and implications for upcoming 2022 Asian Games. J. Environ. Sci. 2023, 124, 723–734. [Google Scholar] [CrossRef]
- Zhang, Z. Pollution Characteristics and Health Risks of Volatile Organic Compounds in the Northern Suburbs of Nanjing. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2022. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Exposure Factors Handbook (Final Report); Office of Research and Development, National Center for Environmental Assessment: Washington, DC, USA, 1997.
- Majumdar, D.; Dutta, C.; Mukherjee, A.K.; Sen, S. Source apportionment of VOCs at the petrol pumps in Kolkata, India; exposure of workers and assessment of associated health risk. Transp. Res. Part D Transp. Environ. 2008, 13, 524–530. [Google Scholar] [CrossRef]
- Liu, Y. Released the Report on Nutrition and Chronic Diseases of Chinese Residents. Food Nutr. China 2020, 26, 2. [Google Scholar]
- Chen, H.; Chen, D. The Changing Mechanism of the Sex Difference in Life Expectancy in China. Popul. Res. 2022, 46, 117–128. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Integrated Risk Information System; US Environmental Protection Agency: Washington, DC, USA, 1998. Available online: http://www.epa.gov/iris/ (accessed on 13 February 2023).
- Gong, Q.; Niu, Z.; Chen, Y.; Zhang, Y. Research advances review on the health-hazard assessment of volatile organic compounds inambient atmosphere. J. Saf. Environ. 2012, 12, 84–88. [Google Scholar]
- Loh, M.M.; Houseman, E.A.; Gray, G.M.; Levy, J.I.; Spengler, J.D.; Bennett, D.H. Measured Concentrations of VOCs in Several Non-Residential Microenvironments in the United States. Environ. Sci. Technol. 2006, 40, 6903–6911. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 3. C1−C29 Organic Compounds from Fireplace Combustion of Wood. Environ. Sci. Technol. 2001, 35, 1716–1728. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.L.; Corsi, R.L.; Kemp, J. Chloroform in Indoor Air and Wastewater: The Role of Residential Washing Machines. J. Air Waste Manag. Assoc. 1996, 46, 631–642. [Google Scholar] [CrossRef]
- Mishra, N.; Bartsch, J.; Ayoko, G.A.; Salthammer, T.; Morawska, L. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools. Atmos. Environ. 2015, 106, 485–491. [Google Scholar] [CrossRef]
- You, B.; Zhou, W.; Li, J.; Li, Z.; Sun, Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. Environ. Int. 2022, 170, 107611. [Google Scholar] [CrossRef]
- Ho, S.S.; Ip, H.S.; Ho, K.F.; Ng, L.P.; Dai, W.T.; Cao, J.; Chan, C.S.; Ho, L.B. Evaluation of hazardous airborne carbonyls on a university campus in southern China. J. Air Waste Manag. Assoc. 2014, 64, 903–916. [Google Scholar] [CrossRef]
- Stönner, C.; Edtbauer, A.; Williams, J. Real-world volatile organic compound emission rates from seated adults and children for use in indoor air studies. Indoor Air 2018, 28, 164–172. [Google Scholar] [CrossRef]
- Derwent, R.G.; Field, R.A.; Dumitrean, P.; Murrells, T.P.; Telling, S.P. Origins and trends in ethane and propane in the United Kingdom from 1993 to 2012. Atmos. Environ. 2017, 156, 15–23. [Google Scholar] [CrossRef]
- Duan, H.; Liu, X.; Yan, M.; Wu, Y.; Liu, Z. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China. Front. Environ. Sci. Eng. 2014, 10, 73–84. [Google Scholar] [CrossRef]
- Li, B.; Ho, S.S.H.; Xue, Y.; Huang, Y.; Wang, L.; Cheng, Y.; Dai, W.; Zhong, H.; Cao, J.; Lee, S. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmos. Environ. 2017, 161, 1–12. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Baiz, N.; Banerjee, S.; Rudnai, P.; Rive, S.; Group, S. Indoor Air Quality and Sources in Schools and Related Health Effects. J. Toxicol. Environ. Health Part B Crit. Rev. 2013, 16, 491–550. [Google Scholar] [CrossRef]
- Chen, R.; Li, T.; Huang, C.; Yu, Y.; Zhou, L.; Hu, G.; Yang, F.; Zhang, L. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park. Environ. Pollut. 2021, 289, 117893. [Google Scholar] [CrossRef]
- Dai, H.; Jing, S.; Wang, H.; Ma, Y.; Li, L.; Song, W.; Kan, H. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total. Environ. 2017, 577, 73–83. [Google Scholar] [CrossRef]
- Cheng, C.-A.; Ching, T.-C.; Tsai, S.-W.; Chuang, K.-J.; Chuang, H.-C.; Chang, T.-Y. Exposure and health risk assessment of indoor volatile organic compounds in a medical university. Environ. Res. 2022, 213, 113644. [Google Scholar] [CrossRef]
- Kowalska, J.; Gierczak, T. Qualitative and Quantitative Analyses of the Halogenated Volatile Organic Compounds Emitted from the Office Equipment Items. Indoor Built Environ. 2012, 22, 920–931. [Google Scholar] [CrossRef]
- Helmig, D.; Rossabi, S.; Hueber, J.; Tans, P.; Montzka, S.A.; Masarie, K.; Thoning, K.; Plass-Duelmer, C.; Claude, A.; Carpenter, L.J.; et al. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nat. Geosci. 2016, 9, 490–495. [Google Scholar] [CrossRef]
- Zeinali, N.; Altarawneh, M.; Li, D.; Al-Nu’airat, J.; Dlugogorski, B.Z. New Mechanistic Insights: Why Do Plants Produce Isoprene? ACS Omega 2016, 1, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Seco, R.; Holst, T.; Davie-Martin, C.L.; Simin, T.; Guenther, A.; Pirk, N.; Rinne, J.; Rinnan, R. Strong isoprene emission response to temperature in tundra vegetation. Proc. Natl. Acad. Sci. USA 2022, 119, e2118014119. [Google Scholar] [CrossRef] [PubMed]
- Van den Broek, J.; Mochalski, P.; Königstein, K.; Ting, W.C.; Unterkofler, K.; Schmidt-Trucksäss, A.; Mayhew, C.A.; Güntner, A.T.; Pratsinis, S.E. Selective monitoring of breath isoprene by a portable detector during exercise and at rest. Sens. Actuators B Chem. 2022, 357. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Gao, M.; Teng, W.; Du, Z.; Nie, L.; An, X.; Liu, W.; Sun, X.; Shen, Z.; Shi, A. Source profiles and emission factors of VOCs from solvent-based architectural coatings and their contributions to ozone and secondary organic aerosol formation in China. Chemosphere 2021, 275, 129815. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Duan, M.; Zhou, J.; Zhou, Z.; Tan, Q.; Song, D.; Lu, C.; Deng, Y. Sources Profiles of Anthropogenic Volatile Organic Compounds from Typical Solvent Used in Chengdu, China. J. Environ. Eng. 2020, 146, 05020006. [Google Scholar] [CrossRef]
- Li, B.; Yu, S.; Shao, M.; Li, X.; Ho, S.S.H.; Hu, X.; Wang, H.; Feng, R.; Fang, X. New insights into photochemical initial concentrations of VOCs and their source implications. Atmos. Environ. 2023, 298. [Google Scholar] [CrossRef]
- Seaman, V.Y.; Bennett, D.H.; Cahill, T.M. Origin, Occurrence, and Source Emission Rate of Acrolein in Residential Indoor Air. Environ. Sci. Technol. 2007, 41, 6940–6946. [Google Scholar] [CrossRef]
- Lunderberg, D.M.; Misztal, P.K.; Liu, Y.; Arata, C.; Tian, Y.; Kristensen, K.; Weber, R.J.; Nazaroff, W.W.; Goldstein, A.H. High-Resolution Exposure Assessment for Volatile Organic Compounds in Two California Residences. Environ. Sci. Technol. 2021, 55, 6740–6751. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Cerqueira, M.; Nunes, T.; Duarte, M.; Vicente, E. Volatile organic compounds emitted by the stacks of restaurants. Air Qual. Atmos. Health 2014, 8, 401–412. [Google Scholar] [CrossRef]
- Pinthong, N.; Thepanondh, S.; Kondo, A. Source Identification of VOCs and their Environmental Health Risk in a Petrochemical Industrial Area. Aerosol Air Qual. Res. 2022, 22, 210064. [Google Scholar] [CrossRef]
- Irwin, R.J.; VanMouwerik, M.; Stevens, L.; Seese, M.D.; Basham, W. Environmental Contaminants Encyclopedia; Water Resources Division; National Park Service: Fort Collins, CO, USA, 1997.
- Kurtz, J.P.; Wolfe, E.M.; Woodland, A.K.; Foster, S.J. Evidence for Increasing Indoor Sources of 1,2-Dichloroethane Since 2004 at Two Colorado Residential Vapor Intrusion Sites. Ground Water Monit. Remediat. 2010, 30, 107–112. [Google Scholar] [CrossRef]
- Sahu, V.; Gurjar, B.R. Spatio-temporal variations of indoor air quality in a university library. Int. J. Environ. Health Res. 2019, 31, 475–490. [Google Scholar] [CrossRef]
- Hori, H.; Ishimatsu, S.; Fueta, Y.; Ishidao, T. Evaluation of a real-time method for monitoring volatile organic compounds in indoor air in a Japanese university. Environ. Health Prev. Med. 2013, 18, 285–292. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kim, J.-D. Personal exposure of graduate students attending the college of natural sciences or social sciences to volatile organic compounds on campus. Chemosphere 2010, 81, 1272–1279. [Google Scholar] [CrossRef]
- Halios, C.H.; Landeg-Cox, C.; Lowther, S.D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European residences–Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total. Environ. 2022, 839, 156201. [Google Scholar] [CrossRef]
- Can, E.; Özden Üzmez, Ö.; Döğeroğlu, T.; Gaga, E.O. Indoor air quality assessment in painting and printmaking department of a fine arts faculty building. Atmos. Pollut. Res. 2015, 6, 1035–1045. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, A.; Kumar, K.; Singh, B.; Mina, U.; Singh, B.B.; Jain, V.K. Statistical modeling of O(3), NOx, CO, PM2.5, VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution. Sci. Total. Environ. 2016, 572, 586–594. [Google Scholar] [CrossRef]
- Kozielska, B.; Kaleta, D. Assessment of Indoor Benzene and Its Alkyl Derivatives Concentrations in Offices Belonging to University of Technology (Poland). Atmosphere 2020, 12, 51. [Google Scholar] [CrossRef]
- Sofuoglu, S.C.; Aslan, G.; Inal, F.; Sofuoglu, A. An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int. J. Hyg. Environ. Health 2011, 214, 36–46. [Google Scholar] [CrossRef]
- de Gennaro, G.; Farella, G.; Marzocca, A.; Mazzone, A.; Tutino, M. Indoor and Outdoor Monitoring of Volatile Organic Compounds in School Buildings: Indicators Based on Health Risk Assessment to Single out Critical Issues. Int. J. Environ. Res. Public Health 2013, 10, 6273–6291. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.H.; Vu, D.C.; Nguyen, Q.T.; Vo, X.T. Volatile Organic Compounds in Primary Schools in Ho Chi Minh City, Vietnam: Characterization and Health Risk Assessment. Atmosphere 2021, 12, 1421. [Google Scholar] [CrossRef]
- Godwin, C.; Batterman, S. Indoor air quality in Michigan schools. Indoor Air 2007, 17, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Mainka, A.; Kozielska, B. Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland. AIMS Environ. Sci. 2016, 3, 858–870. [Google Scholar] [CrossRef]
- Tran, T.D.; Nguyen, T.X.; Nguyen, H.T.T.; Vo, H.T.L.; Nghiem, D.T.; Le, T.H.; Dao, D.S.; Van Nguyen, N. Seasonal Variation, Sources, and Health Risk Assessment of Indoor/Outdoor BTEX at Nursery Schools in Hanoi, Vietnam. Water Air Soil Pollut. 2020, 231, 1–18. [Google Scholar] [CrossRef]
- Colman Lerner, J.E.; Sanchez, E.Y.; Sambeth, J.E.; Porta, A.A. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos. Environ. 2012, 55, 440–447. [Google Scholar] [CrossRef]
- Heeley-Hill, A.C.; Grange, S.K.; Ward, M.W.; Lewis, A.C.; Owen, N.; Jordan, C.; Hodgson, G.; Adamson, G. Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. Environ. Sci. Process. Impacts 2021, 23, 699–713. [Google Scholar] [CrossRef]
- Wickliffe, J.K.; Stock, T.H.; Howard, J.L.; Frahm, E.; Simon-Friedt, B.R.; Montgomery, K.; Wilson, M.J.; Lichtveld, M.Y.; Harville, E. Increased long-term health risks attributable to select volatile organic compounds in residential indoor air in southeast Louisiana. Sci. Rep. 2020, 10, 21649. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Liu, C.-L.; Huang, K.-H.; Kuo, H.-W. Indoor and Outdoor Exposure to Volatile Organic Compounds and Health Risk Assessment in Residents Living near an Optoelectronics Industrial Park. Atmosphere 2019, 10, 380. [Google Scholar] [CrossRef]
- Lin, N.; Rosemberg, M.A.; Li, W.; Meza-Wilson, E.; Godwin, C.; Batterman, S. Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks. Indoor Air 2021, 31, 26–39. [Google Scholar] [CrossRef]
- Zannoni, N.; Li, M.; Wang, N.; Ernle, L.; Bekö, G.; Wargocki, P.; Langer, S.; Weschler, C.J.; Morrison, G.; Williams, J. Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans. Environ. Sci. Technol. 2021, 55, 13614–13624. [Google Scholar] [CrossRef]
- Markowicz, P.; Larsson, L. Influence of relative humidity on VOC concentrations in indoor air. Environ. Sci. Pollut. Res. Int. 2015, 22, 5772–5779. [Google Scholar] [CrossRef]
- Huang, Y.; Su, T.; Wang, L.; Wang, N.; Xue, Y.; Dai, W.; Lee, S.C.; Cao, J.; Ho, S.S.H. Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. Sci. Total. Environ. 2019, 662, 470–480. [Google Scholar] [CrossRef]
Parameter | Species | Classroom | Species | Dormitory | Species | Canteen | Species | Library |
---|---|---|---|---|---|---|---|---|
HQ | Acrolein | 0.07 | Acrolein | 0.11 | Acrolein | 0.10 | Acrolein | 0.05 |
Trichloroethylene | 0.02 | Trichloroethylene | 0.03 | Trichloroethylene | 0.03 | Trichloroethylene | 0.03 | |
Benzene | 0.02 | Benzene | 0.02 | Benzene | 0.02 | Benzene | 0.02 | |
Chloroform | 0.006 | Chloroform | 0.01 | Chloroform | 0.007 | Toluene | 0.004 | |
Toluene | 0.002 | 1,2,4-Trimethylbenzene | 0.005 | Bromomethane | 0.004 | Chloroform | 0.004 | |
LCR (×10−6) | 1,2-Dichloroethane | 0.22 | 1,2-Dichloroethane | 1.95 | 1,2-Dichloroethane | 0.23 | 1,2-Dichloroethane | 0.21 |
Chloroform | 0.08 | Chloroform | 0.18 | 1,2-Dibromoethane | 0.20 | 1,2-Dichloropropane | 0.06 | |
1,2-Dichloropropane | 0.04 | 1,2-Dichloropropane | 0.13 | Chloroform | 0.09 | Chloroform | 0.05 | |
1,2-Dibromoethane | 0.04 | 1,2-Dibromoethane | 0.06 | 1,2-Dichloropropane | 0.08 | Benzene | 0.03 | |
Benzene | 0.03 | Bromodichloromethane | 0.06 | Benzene | 0.03 | Ethylbenzene | 0.01 |
Environment Type | Region | Sample Place | Benzene | Toluene | Ethylbenzene | m,p-xylene | o-xylene | Reference |
---|---|---|---|---|---|---|---|---|
University | Hangzhou, China | Dormitory | 1.66 ± 0.81 | 7.25 ± 4.09 | 1.71 ± 0.76 | 3.50 ± 1.86 | 1.45 ± 0.72 | This study |
Classroom | 1.40 ± 0.90 | 4.08 ± 3.13 | 1.16 ± 0.81 | 2.33 ± 1.87 | 1.01 ± 0.66 | |||
Wuhan, China | Classroom a | 97.5 | 11.4 | 13.7 | 3.5 | 3.0 | [20] | |
New Delhi, India | Library b | 7.2 ± 4.2 | 94.0 ± 70.1 | 10.1 ± 6.6 | 28.7 ± 31.7 | 13.1 ± 12.6 | [21] | |
Library c | 12.2 ± 7.9 | 66.7 ± 54.4 | 13.9 ± 8.6 | 22.2 ± 25.8 | 9.4 ± 11.8 | |||
Ankara, Turkey | Laboratories | 15.5 ± 28.9 | 265 ± 591 | 5.63 ± 9.87 | 9.43 ± 13.3 | 1.6 ± 0.82 | [9] | |
Offices | 6.42 ± 6.18 | 73.6 ± 57.4 | 5.31 ± 4.04 | 6.83 ± 3.98 | 1.72 ± 0.96 | |||
Classrooms | 16.2 ± 16.5 | 44.1 ± 35.1 | 3.16 ± 2.86 | 5.25 ± 2.82 | 3.83 ± 6.64 | |||
Upper Silesia, Poland | Offices b | 1.13 ± 0.66 | 19.37 ± 26.63 | 2.32 ± 1.39 | 3.55 ± 2.35 | 0.87 ± 0.52 | [66] | |
Offices c | 0.46 ± 0.44 | 25.24 ± 27.77 | 3.96 ± 4.88 | 4.24 ± 4.25 | 1.43 ± 1.16 | |||
Bairrada, Portugal | Canteen | 0.6–9.87 | 0.059–1.91 | 0.002–1.73 | 0.002–5.89 | 0.001–1.87 | [56] | |
Eskişehir, Turkey | Offices, demonstration room, conference hall | 2.50 ± 1.0 | 149.93 ± 84.2 | 5.90 ± 4.1 | 10.13 ± 7.3 | 4.49 ± 2.6 | [64] | |
New Delhi, India | Commercial Shopping Complex | 13.8 ± 8.9 | 67.1 ± 35.8 | 7.4 ± 4.1 | 40.6 ± 29.4 | 24.1 ± 21.1 | [65] | |
School | Izmir, Turkey | Classroom | 10.4 | 20.3 | 1.18 | 1 | [67] | |
Bari, Italy | Classroom | 0.11–5.93 | 0.73–6.81 | 0.11–2.34 | 0.25–21.03 | [68] | ||
Ho ChiMinh, Vietnam | Classroom | 0.94 ± 1.6 | 7.7 ± 5.1 | 1.5 ± 0.77 | 3.1 ± 1.1 | [69] | ||
Michigan, USA | Classroom | 0.09 | 2.81 | 0.24 | 2.3 | [70] | ||
Gran La Plata, Argentina | Classroom d | 2.26 | 12.05 | 1.44 | 5.24 | 1.71 | [8] | |
Classroom e | 2.51 | 8.70 | 1.63 | 7.13 | 2.45 | |||
Classroom f | 5.313 | 9.97 | 1.82 | 7.65 | 2.67 | |||
Gliwice, Poland | Classroom g | 1.37 ± 1.06 | 1.19 ± 0.95 | 2.11 ± 4.26 | 0.72 ± 0.66 | 3.31 ± 7.49 | [71] | |
Classroom h | 1.67 ± 1.25 | 1.63 ± 1.29 | 1.83 ± 3.23 | 0.87 ± 0.71 | 2.82 ± 5.99 | |||
Hanoi, Vietnam | Classroom | 1.2–6.9 | 1.2–125 | 0.6–25.1 | 1.3–15.1 | 0.5–4.7 | [72] | |
Small enterprise | Buenos Aires, Argentina | Chemical analysis laboratories | 6.9 | 7.7 | [73] | |||
Sewing workrooms | 6.3 | |||||||
Electromechanical repair and car painting centers | 59.2 | 243.1 | ||||||
Takeaway food shops | 1.9 | |||||||
Photocopy center | 3.3 | |||||||
Residential home | Ashford, United Kingdom | 0.5 (0.2–1.8) | 1.5 (0.2–10.4) | 0.8 (0.07–6.7) | 1.5 (0.2–28.1) | [74] | ||
Louisiana, US | 1.14 (0.04–13.57) | 4.91 (0.84–66.22) | 0.74 (0.29–8.65) | 2.09 (0.63–35.36) | [75] | |||
Taiwan, China | 7.0 ± 4.1 | 67.0 ± 36.7 | 17.1 ± 22.4 | 50.8 ± 66.1 | [76] | |||
Hotel | Michigan, USA | Guest room | 0.9 | 2.4 | 0.3 | 0.2 | [77] |
Environment Type | Region | Sample Place | Benzene | Toluene | Ethylbenzene | Reference | ||
---|---|---|---|---|---|---|---|---|
HQ | LCR | HQ | HQ | LCR | ||||
University | Hangzhou, China | Dormitory | 0.019 | 1.16 × 10−5 | 0.004 | 7.89 × 10−4 | 3.85 × 10−6 | This study |
Classroom | 0.016 | 9.83 × 10−6 | 0.002 ± 0.002 | 5.33 × 10−4 | 2.6 × 10−6 | |||
New Delhi, India | Commercial Shopping Complex | 0.0841 (0.0981) | 1.97 × 10−5 (2.22 × 10−5) | 0.0024 (0.0029) | 0.0014 (0.0016) | 1.50 × 10−6 (1.63 × 10−6) | [65] | |
Eskişehir, Turkey | Stained Glass Workshop (for students) | 2.06 × 10−7 | [64] | |||||
New Delhi, India | Library a | 0.248 (0.657) | 5.27 × 10−6 (1.40 × 10−5) | 0.0039 (0.0046) | 0.0028 (0.0024) | [21] | ||
Library b | 0.42 (0.49) | 8.93 × 10−6 (1.04 × 10−5) | 0.0028 (0.0033) | 0.0028 (0.0032) | ||||
School | Izmir, Turkey | Classroom | 0.31 ± 0.29 | 1.0 × 10−6 ± 1.2 × 10−6 | [67] | |||
Ho Chi Minh, Vietnam | Classroom | 0–4.53 × 10−5 | 0.08 × 10−6–0.32 × 10−6 | [69] | ||||
Gran La Plata, Argentina | Classroom c | 1.04 × 10−6 | [8] | |||||
Classroom d | 6.62 × 10−7 | |||||||
Classroom e | 1.10 × 10−6 | |||||||
Gliwice, Poland | Classroom | 8.4 × 10−6–1.2 × 10−5 | [71] | |||||
Hanoi, Vietnam | Classroom | 0.018–0.116 | 2.3 × 10−5–4.1 × 10−5 | 0.001–0.003 | 0.003–0.004 | [72] | ||
Residential home | Louisiana, US | 0.145 | 1.4 × 10−5–4.9 × 10−5 | 0.003 | 0.002 | [75] | ||
Taiwan, China | 1.8 × 10−4 | [76] | ||||||
Small enterprise | La Plata city, Argentina | Chemical analysis laboratories | 8.71 × 10−5 | 0.023 | [73] | |||
Sewing workrooms | <2.43 × 10−6 | 0.004 | ||||||
Electromechanical repair and car painting centers | 1.44 × 10−4 | 1.504 | ||||||
Takeaway food shops | <2.37 × 10−6 | 0.004 | ||||||
Photocopy center | <1.29 × 10−6 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Zhong, L.; Zhang, X.; Li, X.; Li, B.; Fang, X. Indoor Volatile Organic Compounds: Concentration Characteristics and Health Risk Analysis on a University Campus. Int. J. Environ. Res. Public Health 2023, 20, 5829. https://doi.org/10.3390/ijerph20105829
Jin S, Zhong L, Zhang X, Li X, Li B, Fang X. Indoor Volatile Organic Compounds: Concentration Characteristics and Health Risk Analysis on a University Campus. International Journal of Environmental Research and Public Health. 2023; 20(10):5829. https://doi.org/10.3390/ijerph20105829
Chicago/Turabian StyleJin, Shengjia, Lu Zhong, Xueyi Zhang, Xinhe Li, Bowei Li, and Xuekun Fang. 2023. "Indoor Volatile Organic Compounds: Concentration Characteristics and Health Risk Analysis on a University Campus" International Journal of Environmental Research and Public Health 20, no. 10: 5829. https://doi.org/10.3390/ijerph20105829
APA StyleJin, S., Zhong, L., Zhang, X., Li, X., Li, B., & Fang, X. (2023). Indoor Volatile Organic Compounds: Concentration Characteristics and Health Risk Analysis on a University Campus. International Journal of Environmental Research and Public Health, 20(10), 5829. https://doi.org/10.3390/ijerph20105829