A Systematic Review of Location Data for Depression Prediction
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection of Relevant Studies
2.3. Data Extraction and Synthesis
3. Results
3.1. Study Characteristics
3.2. Technological and Methodological Characteristics
3.3. Association with Depression
3.3.1. Prediction of Depressive Symptoms
3.3.2. Correlations with Depressive Symptoms
4. Discussion
4.1. Summary of the Main Findings
4.2. Implications and Limitations
4.3. Future Directions and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. COVID-19 Pandemic Triggers 25% Increase in Prevalence of Anxiety and Depression Worldwide. World Health Organization. 2022. Available online: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (accessed on 13 April 2023).
- Chisholm, D.; Sweeny, K.; Sheehan, P.; Rasmussen, B.; Smit, F.; Cuijpers, P.; Saxena, S. Scaling-up treatment of depression and anxiety: A global return on investment analysis. Lancet Psychiatry 2016, 3, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Thomson, W. Lifting the shroud on depression and premature mortality: A 49-year follow-up study. J. Affect. Disord. 2011, 130, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Üstün, T.B.; Ayuso-Mateos, J.L.; Chatterji, S.; Mathers, C.; Murray, C.J.L. Global burden of depressive disorders in the year 2000. Br. J. Psychiatry 2004, 184, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Hardeveld, F.; Spijker, J.; De Graaf, R.; Nolen, W.A.; Beekman, A.T.F. Recurrence of major depressive disorder and its predictors in the general population: Results from The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Psychol. Med. 2013, 43, 39–48. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Dogan, E.; Sander, C.; Wagner, X.; Hegerl, U.; Kohls, E. Smartphone-Based Monitoring of Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We Going? Systematic Review. J. Med. Internet Res. 2017, 19, e262. [Google Scholar] [CrossRef] [PubMed]
- Kamath, J.; Barriera, R.L.; Jain, N.; Keisari, E.; Wang, B. Digital phenotyping in depression diagnostics: Integrating psychiatric and engineering perspectives. World J. Psychiatry 2022, 12, 393–409. [Google Scholar] [CrossRef]
- Zarate, D.; Stavropoulos, V.; Ball, M.; de Sena Collier, G.; Jacobson, N.C. Exploring the digital footprint of depression: A PRISMA systematic literature review of the empirical evidence. BMC Psychiatry 2002, 22, 421. [Google Scholar] [CrossRef]
- Ben-Zeev, D.; Scherer, E.A.; Wang, R.; Xie, H.; Campbell, A.T. Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health. Psychiatr. Rehabil. J. 2015, 38, 218–226. [Google Scholar] [CrossRef]
- Di Matteo, D.; Fotinos, K.; Lokuge, S.; Yu, J.; Sternat, T.; A Katzman, M.; Rose, J. The relationship between smartphone-recorded environmental audio and symptomatology of anxiety and depression: Exploratory study. JMIR Form. Res. 2020, 4, e18751. [Google Scholar] [CrossRef]
- Difrancesco, S.; Lamers, F.; Riese, H.; Merikangas, K.R.; Beekman, A.T.F.; van Hemert, A.M.; Schoevers, R.A.; Penninx, B.W.J.H. Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: A 2-week ambulatory assessment study. Depress. Anxiety 2019, 36, 975–986. [Google Scholar] [CrossRef]
- Elovainio, M.; Kuula, L.; Halonen, R.; Pesonen, A.-K. Dynamic fluctuations of emotional states in adolescents with delayed sleep phase—A longitudinal network modeling approach. J. Affect. Disord. 2020, 276, 467–475. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Lee, Y.; Rong, C.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Park, C.; Subramaniapillai, M.; Ragguett, R.-M.; Mansur, R.B.; et al. Ecological momentary assessment of depressive symptoms using the mind.me application: Convergence with the Patient Health Questionnaire-9 (PHQ-9). J. Psychiatr. Res. 2021, 135, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Rohani, D.A.; Faurholt-Jepsen, M.; Kessing, L.V.; E Bardram, J. Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: Systematic review. JMIR Mhealth Uhealth 2018, 6, e9691. [Google Scholar] [CrossRef] [PubMed]
- Asselbergs, J.; Ruwaard, J.; Ejdys, M.; Schrader, N.; Sijbrandij, M.; Riper, H. Mobile phone-based unobtrusive ecological momentary assessment of day-to-day mood: An explorative study. J. Med. Internet Res. 2016, 18, e5505. [Google Scholar] [CrossRef]
- Beiwinkel, T.; Kindermann, S.; Maier, A.; Kerl, C.; Moock, J.; Barbian, G.; Rössler, W. Using smartphones to monitor bipolar disorder symptoms: A pilot study. JMIR Ment. Health 2016, 3, e4560. [Google Scholar] [CrossRef]
- Faurholt-Jepsen, M.; Busk, J.; Frost, M.; Vinberg, M.; Christensen, E.M.; Winther, O.; Bardram, J.E.; Kessing, L.V. Voice analysis as an objective state marker in bipolar disorder. Transl. Psychiatry 2016, 6, e856. [Google Scholar] [CrossRef]
- Saeb, S.; Zhang, M.; Karr, C.J.; Schueller, S.M.; E Corden, M.; Kording, K.P.; Mohr, D.C. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. J. Med. Internet Res. 2015, 17, e175. [Google Scholar] [CrossRef]
- Saeb, S.; Lattie, E.G.; Schueller, S.M.; Kording, K.P.; Mohr, D.C. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 2016, 4, e2537. [Google Scholar] [CrossRef]
- Hernández, N.; Yavuz, G.; Eşrefoğlu, R.; Kepez, T.; Özdemir, A.; Demiray, B.; Alan, H.; Ersoy, C.; Untersander, S.; Arnrich, B. Thought and Life Logging: A Pilot Study. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Cham, Switzerland, 2015; pp. 26–36. [Google Scholar] [CrossRef]
- Chow, P.I.; Fua, K.; Huang, Y.; Bonelli, W.; Xiong, H.; E Barnes, L.; Teachman, B.A. Using mobile sensing to test clinical models of depression, social anxiety, state affect, and social isolation among college students. J. Med. Internet Res. 2017, 19, e62. [Google Scholar] [CrossRef]
- Doryab, A.; Min, J.K.; Wiese, J.; Zimmerman, J.; Hong, J. Detection of Behavior Change in People with Depression. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI 2014), Quebec City, QC, Canada, 27–31 July 2014; pp. 14–16. [Google Scholar]
- Farhan, A.A.; Yue, C.; Morillo, R.; Ware, S.; Lu, J.; Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. Behavior vs. introspection: Refining prediction of clinical depression via smartphone sensing data. In Proceedings of the 2016 IEEE Wireless Health (WH), Bethesda, MD, USA, 25–27 October 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Abdullah, S.; Matthews, M.; Frank, E.; Doherty, G.; Gay, G.; Choudhury, T. Automatic detection of social rhythms in bipolar disorder. J. Am. Med. Inform. Assoc. 2016, 23, 538–543. [Google Scholar] [CrossRef]
- Canzian, L.; Musolesi, M. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 1293–1304. [Google Scholar]
- Müller, S.R.; Peters, H.; Matz, S.C.; Wang, W.; Harari, G.M. Investigating the Relationships between Mobility Behaviours and Indicators of Subjective Well–Being Using Smartphone–Based Experience Sampling and GPS Tracking. Eur. J. Pers. 2020, 34, 714–732. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Wahle, F.; Kowatsch, T.; Fleisch, E.; Rufer, M.; Weidt, S. Mobile sensing and support for people with depression: A pilot trial in the wild. JMIR Mhealth Uhealth 2016, 4, e5960. [Google Scholar] [CrossRef] [PubMed]
- Saeb, S.; Lattie, E.G.; Kording, K.P.; Mohr, D.C. mobile phone detection of semantic location and its relationship to depression and anxiety. JMIR Mhealth Uhealth 2017, 5, e7297. [Google Scholar] [CrossRef] [PubMed]
- Boukhechba, M.; Daros, A.R.; Fua, K.; Chow, P.I.; Teachman, B.A.; Barnes, L.E. DemonicSalmon: Monitoring mental health and social interactions of college students using smartphones. Smart Health 2018, 9, 192–203. [Google Scholar] [CrossRef]
- Li, T.M.H.; Li, C.T.; Wong, P.W.C.; Cao, J. Withdrawal behaviors and mental health among college students. Psicol. Conductual. 2017, 25, 99–109. [Google Scholar]
- Place, S.; Blanch-Hartigan, D.; Rubin, C.; Gorrostieta, C.; Mead, C.; Kane, J.; Marx, B.P.; Feast, J.; Deckersbach, T.; Pentland, A.; et al. Behavioral indicators on a mobile sensing platform predict clinically validated psychiatric symptoms of mood and anxiety disorders. J. Med. Internet Res. 2017, 19, e75. [Google Scholar] [CrossRef]
- Pratap, A.; Atkins, D.C.; Renn, B.N.; Tanana, M.J.; Mooney, S.D.; Anguera, J.A.; Areán, P.A. The accuracy of passive phone sensors in predicting daily mood. Depress. Anxiety 2018, 36, 72–81. [Google Scholar] [CrossRef]
- Yue, C.; Ware, S.; Morillo, R.; Lu, J.; Shang, C.; Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. Fusing location data for depression prediction. IEEE Trans. Big Data 2018, 7, 355–370. [Google Scholar] [CrossRef]
- Asare, K.O.; Moshe, I.; Terhorst, Y.; Vega, J.; Hosio, S.; Baumeister, H.; Pulkki-Råback, L.; Ferreira, D. Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. Pervasive Mob. Comput. 2021, 83, 101621. [Google Scholar] [CrossRef]
- Ayranci, P.; Bandera, C.; Phan, N.; Jin, R.; Li, D.; Kenne, D. Distinguishing the Effect of Time Spent at Home during COVID-19 Pandemic on the Mental Health of Urban and Suburban College Students Using Cell Phone Geolocation. Int. J. Environ. Res. Public Health 2022, 19, 7513. [Google Scholar] [CrossRef] [PubMed]
- Braund, T.A.; Zin, M.T.; Boonstra, T.W.; Wong, Q.J.J.; Larsen, M.E.; Christensen, H.; Tillman, G.; O’dea, B. Smartphone sensor data for identifying and monitoring symptoms of mood disorders: A longitudinal observational study. JMIR Ment. Health 2022, 9, e35549. [Google Scholar] [CrossRef] [PubMed]
- Chikersal, P.; Doryab, A.; Tumminia, M.; Villalba, D.K.; Dutcher, J.M.; Liu, X.; Cohen, S.; Creswell, K.G.; Mankoff, J.; Creswell, J.D.; et al. Detecting depression and predicting its onset using longitudinal symptoms captured by passive sensing: A machine learning approach with robust feature selection. ACM Trans. Comput. Interact. 2021, 28, 1–41. [Google Scholar] [CrossRef]
- Hong, J.; Kim, J.; Kim, S.; Oh, J.; Lee, D.; Lee, S.; Uh, J.; Yoon, J.; Choi, Y. Depressive symptoms feature-based machine learning approach to predicting depression using smartphone. Healthcare 2022, 10, 1189. [Google Scholar] [CrossRef]
- Jacobson, N.C.; Chung, Y.J. passive sensing of prediction of moment-to-moment depressed mood among undergraduates with clinical levels of depression sample using smartphones. Sensors 2020, 20, 3572. [Google Scholar] [CrossRef]
- Laiou, P.; A Kaliukhovich, D.; A Folarin, A.; Ranjan, Y.; Rashid, Z.; Conde, P.; Stewart, C.; Sun, S.; Zhang, Y.; Matcham, F.; et al. The association between home stay and symptom severity in major depressive disorder: Preliminary findings from a multicenter observational study using geolocation data from smartphones. JMIR Mhealth Uhealth 2022, 10, e28095. [Google Scholar] [CrossRef]
- Masud, M.T.; Mamun, M.A.; Thapa, K.; Lee, D.; Griffiths, M.D.; Yang, S.-H. Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone. J. Biomed. Inform. 2020, 103, 103371. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Liu, T.; Kording, K.P.; Ungar, L.H.; Kaiser, S.M.; Karr, C.J.; Mohr, D.C. Evaluation of Changes in Depression, Anxiety, and Social Anxiety Using Smartphone Sensor Features: Longitudinal Cohort Study. J. Med. Internet Res. 2021, 23, e22844. [Google Scholar] [CrossRef]
- Moshe, I.; Terhorst, Y.; Asare, K.O.; Sander, L.B.; Ferreira, D.; Baumeister, H.; Mohr, D.C.; Pulkki-Råback, L. Predicting symptoms of depression and anxiety using smartphone and wearable data. Front. Psychiatry 2021, 12, 625247. [Google Scholar] [CrossRef]
- Müller, S.R.; Chen, X.; Peters, H.; Chaintreau, A.; Matz, S.C. Depression Predictions from Gps-Based Mobility Do Not Generalize Well to Large Demographically Heterogeneous Samples. Sci. Rep. 2021, 11, 14007. [Google Scholar] [CrossRef]
- Mullick, T.; Radovic, A.; Shaaban, S.; Doryab, A. Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning–Based Exploratory Study. JMIR Form. Res. 2022, 6, e35807. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, A.M.; Huang, E.J.; Staples, P.C.; Hart, K.L.; Lorme, J.M.; Brown, H.E.; Perlis, R.H.; Onnela, J.-P.J. Estimating longitudinal depressive symptoms from smartphone data in a transdiagnostic cohort. Brain Behav. 2022, 12, e02077. [Google Scholar] [CrossRef] [PubMed]
- Sverdlov, O.; Curcic, J.; Hannesdottir, K.; Gou, L.; De Luca, V.; Ambrosetti, F.; Zhang, B.; Praestgaard, J.; Vallejo, V.; Dolman, A.; et al. a study of novel exploratory tools, digital technologies, and central nervous system biomarkers to characterize unipolar depression. Front. Psychiatry 2021, 12, 640741. [Google Scholar] [CrossRef]
- Thakur, S.S.; Roy, R.B. Predicting mental health using smart-phone usage and sensor data. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 9145–9161. [Google Scholar] [CrossRef]
- Ware, S.; Yue, C.; Morillo, R.; Lu, J.; Shang, C.; Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. Predicting depressive symptoms using smartphone data. Smart Health 2019, 15, 100093. [Google Scholar] [CrossRef]
- Zhang, Y.; Folarin, A.A.; Sun, S.; Cummins, N.; Ranjan, Y.; Rashid, Z.; Conde, P.; Stewart, C.; Laiou, P.; Matcham, F.; et al. Predicting depressive symptom severity through individuals’ nearby bluetooth device count data collected by mobile phones: Preliminary longitudinal study. JMIR Mhealth Uhealth 2021, 9, e29840. [Google Scholar] [CrossRef]
- Zhang, Y.; Folarin, A.A.; Sun, S.; Cummins, N.; Vairavan, S.; Bendayan, R.; Ranjan, Y.; Rashid, Z.; Conde, P.; Stewart, C.; et al. Longitudinal relationships between depressive symptom severity and phone-measured mobility: Dynamic structural equation modeling study. JMIR Ment. Health 2022, 9, e34898. [Google Scholar] [CrossRef]
- Beck, A.T.; Robert, A.S.; Gregory, B. Beck depression inventory–II. Psychol. Assess. 1996, 78, 490–498. [Google Scholar]
- Andresen, E.M.; Malmgren, J.A.; Carter, W.B.; Patrick, D.L. Screening for depression in well older adults: Evaluation of a short form of the CES-D. Am. J. Prev. Med. 1994, 10, 77–84. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Åsberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Löwe, B.; Kroenke, K.; Gräfe, K. Detecting and monitoring depression with a two-item questionnaire (PHQ-2). J. Psychosom. Res. 2005, 58, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- First, M.; Spitzer, R.; Gibbon, M.; Williams, J. User’s Guide for the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II); American Psychiatric Association: Washington, DC, USA, 1996. [Google Scholar]
- Highland, D.; Zhou, G. A review of detection techniques for depression and bipolar disorder. Smart Health 2022, 24, 100282. [Google Scholar] [CrossRef]
- Fraccaro, P.; Beukenhorst, A.; Sperrin, M.; Harper, S.; Palmier-Claus, J.; Lewis, S.; Van der Veer, S.N.; Peek, N. Digital biomarkers from geolocation data in bipolar disorder and schizophrenia: A systematic review. J. Am. Med. Inform. Assoc. 2019, 26, 1412–1420. [Google Scholar] [CrossRef]
- Cvrkel, T. The ethics of mHealth: Moving forward. J. Dent. 2018, 74, S15–S20. [Google Scholar] [CrossRef]
- Yim, S.J.; Lui, L.M.; Lee, Y.; Rosenblat, J.D.; Ragguett, R.-M.; Park, C.; Subramaniapillai, M.; Cao, B.; Zhou, A.; Rong, C.; et al. The utility of smartphone-based, ecological momentary assessment for depressive symptoms. J. Affect. Disord. 2020, 274, 602–609. [Google Scholar] [CrossRef]
- Burns, M.N.; Begale, M.; Duffecy, J.; Gergle, D.; Karr, C.J.; Giangrande, E.; Mohr, D.C. Harnessing context sensing to develop a mobile intervention for depression. J. Med. Internet Res. 2011, 13, e55. [Google Scholar] [CrossRef]
General Project Characteristic | Data N (%) | Reference(s) |
---|---|---|
Year of publication | ||
2014–2016 | 4 (13) | [10,19,20,29] |
2017–2019 | 6 (20) | [22,30,31,32,33,34] |
After 2019 | 21 (68) | [14,27,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Geographical locations | ||
Europe | 6 (19) | [29,36,45,49,52,53] |
United States | 20 (65) | [10,19,20,22,27,30,31,32,33,34,35,37,39,41,44,46,47,48,50,51] |
Other | 5 (16) | [14,38,40,42,43] |
Target Population | ||
Depressive disorder | 8 (26) | [14,38,40,41,42,47,52,53] |
Depressive disorder +Normal Group | 3 (10) | [36,49,50] |
Normal Group | 7 (23) | [19,29,30,37,43,45,46] |
University Students | 10 (32) | [10,20,22,27,31,32,35,37,39,51] |
other | 3 (10) | [33,44,48] |
Sample Size | ||
<30 | 1 (3) | [19] |
30~100 | 15 (48) | [10,20,22,31,32,33,35,36,41,43,45,47,48,49,50] |
100~200 | 7 (23) | [14,29,37,38,39,40,51] |
More than 200 | 8 (26) | [27,30,34,42,44,46,52,53] |
Study length | ||
<4 weeks | 7 (23) | [19,22,27,31,41,46,49] |
4–8 weeks | 5 (16) | [29,30,36,40,45] |
8–12 weeks | 11 (35) | [10,14,20,32,33,34,37,38,43,48,50] |
>12 weeks | 8 (26) | [35,39,42,44,47,51,52,53] |
Evaluation Characteristics | Data | Reference(s) |
---|---|---|
Technology to measure geolocation | ||
GPS | 19 (61) | [14,19,20,22,27,31,34,36,37,38,40,42,43,44,45,46,47,49,50] |
GPS + WiFi | 5 (16) | [10,29,32,41,51] |
GPS + WiFi + Accelerometer | 2 (7) | [30,35] |
GPS + GSM cellular network | 1 (3) | [53] |
GPS + Accelerometer | 1 (3) | [48] |
GPS + WiFi + Cell tower | 1 (3) | [39] |
GPS + mobile phone tower Triangulation + WiFi network locations | 1 (3) | [33] |
Bluetooth | 1 (3) | [52] |
Sample Frequency | ||
<5 min | 2 (6) | [22,31] |
5 min | 6 (19) | [19,20,30,36,44,50] |
10 min | 5 (16) | [10,32,39,47,53] |
15 min | 3 (10) | [29,37,45] |
>15 min | 3 (10) | [41,43,52] |
Others | 8 (26) | [14,27,35,38,42,46,48,51] |
Not reported | 4 (13) | [33,34,40,49] |
Additional sensor data collected? | ||
Yes | 22 (71) | [10,14,19,29,30,31,32,33,34,36,39,40,41,42,43,44,45,46,47,48,49,50] |
No | 9 (29) | [20,22,27,35,37,38,51,52,53] |
Reference | Included Features | Measure (F1, AUC, Accuracy etc.) | Results | Number of People | Time | Depression Symptoms Measurement |
---|---|---|---|---|---|---|
[36] Asare, K.O., et al. (2022) | Sleep Physical activity Phone usage GPS mobility | AUC | 80.71 | 54 | 4 weeks | DASS Depression scale |
[33] Place, S., et al. (2017) | sms.address.count travel.distance.sum | 56 | 73 | 12 weeks | SCID (Depression A2—diminished interest or pleasure in all or most activities) | |
[36] Asare, K.O., et al. (2022) | Sleep Physical activity Phone usage GPS mobility | Accuracy | 79.31 | 54 | 4 weeks | DASS Depression scale |
[39] Chikersal, et al. (2021) | Location | 69.5 | 105 | 16 weeks | BDI-II | |
[40] Hong, J., et al. (2022) | Location (location variance, entropy) Physical activity per day | 59.26 | 106 | 4 weeks | PHQ-9 | |
[43] Masud, M.T., et al. (2020) | Physical activity Movement (location) patterns | 87.2 | 33 | 11 weeks | PHQ-9 | |
[49] Sverdlov, O., et al. (2021) | Phone usage logs Geographic location data Wi-Fi sensor data | 64 | 40 | 2 weeks | MADRS | |
[29] Wahle, F., et al. (2016) | Accelerometer Wi-Fi Global positioning systems | 61.5 | 126 | 4 weeks | PHQ-9 | |
[39] Chikersal, et al. (2021) | Location | F1 | 0.62 | 105 | 16 weeks | BDI-II |
[14] McIntyre, R.S., et al. (2021) | Location (location variance, normalized entropy, number of clusters, total distance, and mean absolute deviation in distance) Daily call and SMS count | 0.91 | 200 | 12 weeks | PHQ-9 | |
[51] Ware, S., et al. (2020) | GPS data (Location variance, Time spent moving, Total distance, Average moving speed, Number of unique locations, Entropy, Normalized entropy, Time spent at home, Circadian Movement, Routine index) | MAX 0.83 | 79 (PHASE1) | 8 months | PHQ-9 | |
Wi-Fi Data (Number of significant locations visited, Number of Entertainment, Sports, and Class Buildings visited, Average duration spent in Entertainment, Sports, Library, and Class buildings, Number of days visiting Entertainment, Sports, Library, and Class buildings) | MAX 0.86 | |||||
[35] Yue, C.Q., et al. (2018) | GPS + WIFI data fusion | 0.76 | 79 | 8 months | PHQ-9 | |
[41] Jacobson, et al. (2020) | (1) Direct location-based information: GPS coordinates (latitude, longitude), Location accuracy, Location speed, and Whether the location-based information was based on GPS or WiFi; (2) Location type based on the Google Places location type (e.g., University, gym, bar, church); (3) Local weather information: Temperature, Humidity, Precipitation, Light level, (4) Heart rate information: Average heart rate and Heart rate variability; (5) Outgoing phone calls. | Correlation with the observed scores from the models | r = 0.587, 95% CI [0.552, 0.621] | 31 | 1 week | DASS Depression scale |
[44] Meyerhoff, J., et al. (2021) | Locations (location cluster and location variance; represents the number and variability in locations visited) | Repeated measures correlation coefficient: Repeated measure correlations sensor and symptoms changes | −0.17 (p < 0.001) | 223 | 16 weeks | PHQ-8 |
Time (total entropy, normalized entropy, and circadian movement; represents the variability in time spent across locations) | −0.12 (p < 0.001) | |||||
Transitions (distance traveled and velocity; represents travel between locations) | −0.12 (p < 0.001) | |||||
Semantic location (Exercise location duration) | 0.18 (p = 0.001) |
Dimension | Specific Feature | Direction of Relationship | Reference(s) |
---|---|---|---|
Entropy | Entropy | − | [20,35,36,45,53] |
Normalized Entropy | − | [19,20,35,43] | |
Homestay | + | [20,22,32,35,37,42,43,53] | |
Distance | Total Distance | − | [10,34,50] |
Location Variance | − | [19,20,35,43,45,50] | |
Mobility Radius | − | [34] | |
Location | Number of significant places | − | [36] |
Mean length stay at clusters | − | [36] | |
Number of Clusters | − | [20,50] | |
Location Count | − | [53] | |
Irregularity | Circadian Movement | − | [19,20] |
Irregularity features (Tiles sequence edit distance, Location sequence edit distance, Circadian movement, Routine index) | − | [27] | |
Semantic Location | Home | + | [31] |
Leisure | − | ||
Service Location | + | ||
Other’s home | − | ||
Bluetooth derived features | Second Order statistics | − | [52] |
Multiscale entropy (MSE) | − | ||
Frequency domain | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Bae, S.M. A Systematic Review of Location Data for Depression Prediction. Int. J. Environ. Res. Public Health 2023, 20, 5984. https://doi.org/10.3390/ijerph20115984
Shin J, Bae SM. A Systematic Review of Location Data for Depression Prediction. International Journal of Environmental Research and Public Health. 2023; 20(11):5984. https://doi.org/10.3390/ijerph20115984
Chicago/Turabian StyleShin, Jaeeun, and Sung Man Bae. 2023. "A Systematic Review of Location Data for Depression Prediction" International Journal of Environmental Research and Public Health 20, no. 11: 5984. https://doi.org/10.3390/ijerph20115984
APA StyleShin, J., & Bae, S. M. (2023). A Systematic Review of Location Data for Depression Prediction. International Journal of Environmental Research and Public Health, 20(11), 5984. https://doi.org/10.3390/ijerph20115984