The Effect of Kosher Determinants of Beef on Its Color, Texture Profile and Sensory Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Analytical Methods
- 0 < ΔE < 1—does not notice the difference;
- 1 < ΔE < 2—only an experienced observer notices the difference;
- 2 < ΔE < 3.5—an inexperienced observer also notices the difference;
- 3.5 < ΔE < 5—notices a distinct color difference;
- 5 < ΔE—an observer gets the impression of two different colors.
- -
- aroma intensity (1 = very negative, very poorly perceptible; 5 = very strong),
- -
- taste intensity (1 = very negative, very poorly perceptible; 5 = very desirable),
- -
- aroma desirability (1 = not desirable, 5 = highly desirable),
- -
- taste desirability (1 = not desirable, 5 = highly desirable),
- -
- juiciness (1 = very dry, 5 = very juicy),
- -
- tenderness (1 = very hard, 5 = very tender).
2.3. Statistical Analysis
3. Results
4. Discussion
- It acts as a pro-oxidant in the oxidation of heme pigment, causing browning of meat.
- It has a denaturing effect.
- It increases the water-binding capacity of meat proteins, making tissues darker.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Önenç, A.; Kaya, A. The effects of electrical stunning and percussive captive bolt stunning on meat quality of cattle processed by Turkish slaughter procedures. Meat Sci. 2004, 66, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Anil, M.H. Religious slaughter: A current controversial animal welfare issue. Anim. Front. 2012, 2, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Angel, S. Aspects of quality assurance and ritualistic practices. In Muscle Foods; Kinsman, D.M., Kotula, A.W., Breidenstein, B.C., Eds.; Chapman & Hall: New York, NY, USA, 1994; pp. 361–377. [Google Scholar]
- Regenstein, J.M.; Regenstein, C.E. The kosher dietary laws and their implementation in the food industry. Food Technol. 1988, 42, 86–94. [Google Scholar]
- Domaradzki, P.; Florek, M.; Litwińczuk, A. Czynniki kształtujące jakość mięsa wołowego. Wiadomości Zootech. 2016, 2, 160–170. [Google Scholar]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Bartoň, L.; Kudrna, V.; Bureš, D.; Zahrádková, R.; Teslík, V. Performance and carcass quality of Czech Fleckvieh, Charolais and Charolais × Czech Fleckvieh bulls fed diets based on different types of silages. Czech J. Anim. Sci. 2007, 52, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Pipek, P.; Haberl, A.; Jeleniková, J. Influence of slaughterhouse handling on the quality of beef carcasses. Czech J. Anim. Sci. 2003, 39, 371–378. [Google Scholar]
- Žgur, S.; Čepon, M.; Čepin, S. Influence of growth rate in two growth periods on intramuscular connective tissue and palatability traits of beef. Czech J. Anim. Sci. 2003, 48, 113–119. [Google Scholar]
- Mandell, I.B.; Gullett, E.A.; Wilton, J.W.; Kemp, R.A.; Allen, O.B. Effects of gender and breed on carcass traits, chemical composition, and palatability attributes in Hereford and Simmental bulls and steers. Livest. Prod. Sci. 1997, 49, 235–248. [Google Scholar] [CrossRef]
- Scollan, N.D.; Choi, N.J.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Gagaoua, M.; Durand, D.; Micol, D.; Santé-Lhoutellier, V.; Terlouw, C.; Ellies-Oury, M.P.; Boudjellal, A.; Hocquette, J.F.; Picard, B. Biomarkers of meat sensory qualities of Angus beef breed: Towards the development of prediction equations. In 15èmes JSMTV; Viandes & Produits Carnés: Clermont-Ferrand, France, 2014; pp. 137–138. [Google Scholar]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Wu, G.; Farouk, M.M.; Clerens, S.; Rosenvold, K. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 2014, 98, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, E.; Martin, J.F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Taylor, A.; Down, N.; Shaw, B.A. Comparison of modified atmosphere and vacuum skin packing for the storage of red meats. Int. J. Food Sci. Technol. 1990, 25, 98–109. [Google Scholar] [CrossRef]
- Smith, G.C.; Belk, K.E.; Sofos, J.N.; Tatum, J.D.; Williams, S.N. Economic implications of improved coior stability in beef. In Antioxidants in Muscle foods: Nutritional Strategies to Improve Quality; Wiley: New York, NY, USA, 2000; pp. 397–426. [Google Scholar]
- Dell’Orto, V.; Savoini, G.; Sgoifo Rossi, C.A.; Vandoni, S.; Compiani, R.; Agazzi, A.; Ferroni, M. Valutazione Oggettiva Strumentale del Colore delle Carcasse di Vitello al Macello; Quaderni della Ricerca n. 122; Università Degli Studi di Milano: Milan, Italy, 2010. (In Italian) [Google Scholar]
- Prokopiuk, G. Produkcja dobrej jakości mięsa wołowego. Mięso Wędliny 2006, 8, 8–12. [Google Scholar]
- Kołczak, T. Barwa mięsa. Gospod. Mięsna 2007, 9, 12–16. [Google Scholar]
- Cierach, M.; Niedźwiedź, J.; Borzyszkowski, M. Wołowina kulinarna—Czynniki poubojowe a jakość mięsa. Przemysł Spożywczy 2009, 63, 34–39. [Google Scholar]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of ultimate pH on bovine meat tenderness during ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Holzer, Z.; Berry, B.W.; Campbell, A.M.; Spanier, A.M.; Solomon, M.B. Effect of koshering and hydrodynamic pressure on beef colour, odor, and microbial loads. J. Muscle Foods 2004, 15, 69–82. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Mortimer, S.I. Effect of genotype, gender and age on sheep meat quality and a case study illustrating integration of knowledge. Meat Sci. 2014, 98, 544–555. [Google Scholar] [CrossRef]
- Lowe, T.E.; Devine, C.E.; Wells, R.W.; Lynch, L.L. The relationship between post mortem urinaty catecholamines, meat ultimate pH, and shear force in bulls and cows. Meat Sci. 2004, 67, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Florek, M. Surowce pozyskiwane od zwierząt rzeźnych. In Towaroznawstwo Surowców i Produktów Zwierzęcych z Podstawami Przetwórstwa; Litwińczuk, Z., Ed.; PWRiL: Warsaw, Poland, 2012; pp. 231–286. [Google Scholar]
- Pisula, A.; Tyburcy, A.; Dasiewicz, K. Czynniki decydujące o jakości mięsa wołowego. Gospod. Mięsna 2007, 1, 4–11. [Google Scholar]
- Bonneau, M.; Enright, W.J. Immunocastration in cattle and pigs. Livest. Prod. Sci. 1995, 42, 193–200. [Google Scholar] [CrossRef]
- Aberle, E.D.; Forrest, J.C.; Gerrard, D.E.; Mills, E.W.; Hedrick, H.B.; Judge, M.D.; Merkel, R.A. Principles of Meat Science; Kendall Hunt Publishing Company: Dubuqe, IA, USA, 2001; pp. 1–376. [Google Scholar]
- Żurek, J.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Gil, M. Impact of Kosher Slaughter Methods of Heifers and Young Bulls on Physical and Chemical Properties of Their Meat. Foods 2022, 11, 622. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Testing of Food. Basics—Methods—Application; Polish Society of Food Technologists: Wrocław, Poland, 2009. (In Polish) [Google Scholar]
- ISO 8586-2:2008; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors. ISO: Geneva, Switzerland, 2008.
- ISO 8587:2006; Sensory Analysis—Methodology. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- PN-EN ISO 8589:2010; General Guidelines for the Design of a Sensory Analysis Laboratory. ISO: Geneva, Switzerland, 2010.
- Węglarz, A. Meat quality defined based on pH and colour depending on cattle category and slaughter season. Czech J. Anim. Sci. 2010, 55, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Jaffe, R. Lipid peroxidation of muscle foods as affected by NaCl. J. Agric. Food Chem. 1991, 32, 370–376. [Google Scholar]
- McMillin, K.W. Initiationof oxidativeprocesses in muscle foods. Recip. Meat Conf. Proc. 1996, 49, 53–64. [Google Scholar]
- Lindahl, G.; Lundström, K.; Tornberg, E. Contribution of pigment content, mioglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef]
- Wittenberg, J.B.; Wittenberg, B.A. Myoglobin-enhanced oxygen delivery to isolated cardiac mitochondria. J. Exp. Biol. 2007, 210, 2082–2090. [Google Scholar] [CrossRef]
- McKenna, D.R.; Mies, P.D.; Baird, B.E.; Pfeiffer, K.D.; Ellebracht, J.W.; Savell, J.W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Kołczak, T. Jakość wołowiny. Żywność. Nauka. Technologia. Jakość 2008, 56, 5–22. [Google Scholar]
- England, E.M.; Matarneh, S.K.; Oliver, E.M.; Apaoblaza, A.; Scheffler, T.L.; Shi, H.; Gerrard, D.E. Excess glycogen does not resolve high ultimate pH of oxidative muscle. Meat Sci. 2016, 114, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wicks, J.; Beline, M.; Gomez, J.F.M.; Luzardo, S.; Silva, S.L.; Gerrard, D. Muscle Energy Metabolism, Growth, and Meat Quality in Beef Cattle. Agriculture 2019, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Bodwell, C.E.; McClain, P.E. Chemistry of Animal Tissues. Proteins. In The Science of Meat and Meat Products; Price, J.F., Schweigert, B.S., Eds.; Freeman: San Francisco, CA, USA, 1971; pp. 78–132. [Google Scholar]
- Cierach, M.; Borzyszkowski, M.; Niedźwiedź, J. Wołowina kulinarna czynniki przyżyciowe a jakość. Przemysł Spożywczy 2009, 63, 58–63. [Google Scholar]
- Insausti, K.; Beriain, M.J.; Purroy, A.; Alberti, P.; Lizaso, L.; Hernandez, B. Colour stability of beef from different Spanish native cattle breeds stored under vacuum and modified atmosphere. Meat Sci. 1999, 53, 241–249. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Hur, S.J.; Yang, H.S.; Moon, S.H.; Hwang, Y.H.; Park, G.B.; Joo, S.T. Discoloration characteristics of 3 major muscles from cattle during cold storage. J. Food Sci. 2009, 74, C1–C5. [Google Scholar] [CrossRef]
- Lee, S.K.; Mei, L.; Decker, E.A. Influence of sodium chloride on antioxidant enzyme activity and lipid oxidation in frozen ground pork. Meat Sci. 1997, 46, 349–355. [Google Scholar] [CrossRef]
- Park, J.W.; Lanier, T.C.; Keeton, J.T.; Hamann, D.D. Use of cryoprotectants to stabilize functional properties of pre-rigor salted beef during frozen storage. J. Food Sci. 1987, 52, 537–542. [Google Scholar] [CrossRef]
- Price, J.F.; Schweigert, B.S. The Science of Meat and Meat Products, 3rd ed.; Food & Nutrition Press: Westport, CT, USA, 1987. [Google Scholar]
- Hajmeer, M.N.; Marsden, J.L.; Crozier-Dodson, B.A.; Basheer, L.A.; Higgins, J.J. Reduction of microbial counts at a commercial beef koshering facility. J. Food Sci. 1999, 64, 719–723. [Google Scholar] [CrossRef]
- Zuckerman, H.; Mannheim, C.H. Color improvement of kosher beef using sodium ascorbate and erythorbate. J. Muscle Foods 2001, 12, 137–151. [Google Scholar] [CrossRef]
- Węglarz, A. Quality of beef from semi-intensively fattened heifers and bulls. Anim. Sci. Paper. Rep. 2010, 28, 207–218. [Google Scholar]
- Rudy, M.; Gil, M.; Żurek, J.; Angrys, P. Zmiany wybranych właściwości fizykochemicznych mięśnia najdłuższego grzbietu podczas przechowywania chłodniczego w zależności od płci. Postępy Nauk. Technol. Przemysłu Rolno-Spożywczego 2018, 73, 17–30. [Google Scholar]
- Vergara, H.; Gallego, L. Effect of electrical stunning on meat quality of lamb. Meat Sci. 2000, 55, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Velarde, A.; Gispert, M.; Diestre, A.; Manteca, X. Effect of electrical stunning on meat and carcass quality in lambs. Meat Sci. 2003, 63, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Anil, M.H.; Yesildere, T.; Aksu, H.; Mckinstry, J.L.; Weaver, H.R.; Erdogan, O.; Hughes, S.; Mason, C. Comparison of Halal slaughter with captive bolt stunning and neck cutting in cattle: Exsanguination and quality parameters. Anim. Welf. 2006, 15, 325–330. [Google Scholar] [CrossRef]
- Anil, M.H.; Yesildere, T.; Aksu, H.; Matur, E.; McKinstry, J.L.; Erdogan, O.; Hughes, S.; Mason, C. Comparison of religious slaughter of sheep with methods that include pre-slaughter stunning, and lack of exsanguinations, packed cell volume and meat quality parameters. Anim. Welf. 2004, 13, 387–392. [Google Scholar] [CrossRef]
- Vestergaard, M.; Oksbjerg, N.; Henckel, P. Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat Sci. 2000, 54, 177–185. [Google Scholar] [CrossRef]
- Lynch, A.; Buckley, D.J.; Galvin, K.; Mullen, A.M.; Troy, D.J.; Kerry, J.P. Evaluation of rib steak colour from Fresian, Hereford & Charolais heifers pastured or overwintered prior to slaughter. Meat Sci. 2002, 61, 227–232. [Google Scholar]
- Galbraith, J.K.; Aalhus, J.L.; Juárez, M.; Dugan, M.E.R.; Larsen, I.L.; Aldai, N.; Goonewardene, L.A.; Okine, E.K. Meat Colour Stability and Fatty Acid Profile in Commercial Bison and Beef. J. Food Res. 2016, 5, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Farouk, M.M.; Lovatt, S.J. Initial chilling rate of pre-rigor beef muscles as an indicator of colour of thawed meat. Meat Sci. 2000, 56, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ostoja, H.; Cierach, M. Kształtowanie tekstury mięsa wołowego. Inżynieria Rol. 2001, 10, 261–268. [Google Scholar]
- Caine, W.R.; Aalhus, J.L.; Best, D.R.; Dugan, M.E.R.; Jeremiah, L.E. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 2003, 64, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.J.; Wang, Q.; Zhou, G.H.; Xu, X.L.; Li, C.B. Influence of weak organic acids and sodium chloride marination on characteristics of connective tissue collagen and textural properties of beef semitendinosus muscle. J. Texture Stud. 2010, 41, 279–301. [Google Scholar] [CrossRef]
- Hyldig, G.; Nielsen, D. A review of sensory and instrumental methods used to evaluate the texture of fish muscle. J. Texture Stud. 2001, 32, 219–242. [Google Scholar] [CrossRef]
- Stolowski, G.D.; Baird, B.E.; Miller, R.K.; Savell, J.W.; Sams, A.R.; Taylor, J.F.; Sanders, J.O.; Smith, S.B. Factors influencing the variation in tenderness of seven major beef muscles from three Angus and Brahman breed crosses. Meat Sci. 2006, 73, 475–483. [Google Scholar] [CrossRef]
- Niedźwiedź, J.; Żmijewski, T.; Ostoja, H.; Cierach, M. Porównanie wartości maksymalnej siły cięcia wybranych mięśni z tylnej ćwierćtuszy wołowej. Inżynieria Apar. Chem. 2011, 50, 57–58. [Google Scholar]
- Jeremiah, L.E.; Dugan, M.E.R.; Aalhus, J.L.; Gibson, L.L. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Sci. 2003, 65, 1013–1019. [Google Scholar] [CrossRef]
- Jeremiah, L.E.; Dugan, M.E.R.; Aalhus, J.L.; Gibson, L.L. Assessment of the chemical and cooking properties of the major beef muscles and muscle groups. Meat Sci. 2003, 65, 985–992. [Google Scholar] [CrossRef]
- Jeremiah, L.E.; Dugan, M.E.R.; Aalhus, J.L.; Gibson, L.L. Assessment of palatability attributes of the major beef muscles. Meat Sci. 2003, 65, 949–958. [Google Scholar] [CrossRef]
- Hwang, I.H.; Park, B.Y.; Cho, S.H.; Lee, J.M. Effects of muscle shortening and proteolysis on Warner–Bratzler shear force in beef longissimus and semitendinosus. Meat Sci. 2004, 68, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Bratcher, C.L.; Johnson, D.D.; Littell, R.C.; Gwartney, B.L. The effects of quality grade, aging, and location within muscle on Warner-Bratzler shear force in beef muscles of locomotion. Meat Sci. 2005, 70, 279–284. [Google Scholar] [CrossRef] [PubMed]
- White, A.; O’Sullivan, A.; Troy, D.J.; O’Neill, E.E. Effects of electrical stimulation, chilling temperature and hot-boning on the tenderness of bovine muscles. Meat Sci. 2006, 73, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiedź, J.; Ostoja, H.; Cierach, M. Tekstura mięśnia longissimus thoracis et lumborum mieszańców bydła ras mięsnych, poddawanego dojrzewaniu metodą mokrą. Acta Agrophysica 2012, 19, 631–640. [Google Scholar]
- Oporządek, J.; Urtnowski, P. Czynniki determinujące jakość mięsa wołowego. Hod. Bydła 2012, 4, 82–87. [Google Scholar]
- Zhang, S.X.; Farouk, M.M.; Young, O.A.; Wieliczko, K.J.; Podmore, C. Functional stability of frozen normal and high pH beef. Meat Sci. 2005, 69, 765–772. [Google Scholar] [CrossRef]
- Olivera, D.F.; Bambicha, R.; Laporte, G.; Cárdenas, F.C.; Mestorino, N. Kinetics of colour and texture changes of beef during storage. J. Food Sci. Technol. 2013, 50, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Bulgaru, V.; Popescu, L.; Netreba, N.; Ghendov-Mosanu, A.; Sturza, R. Assessment of Quality Indices and Their Influence on the Texture Profile in the Dry-Aging Process of Beef. Foods 2022, 11, 1526. [Google Scholar] [CrossRef]
- Church, P.N.; Wood, J.M. The Manual of Manufacturing Meat Quality, 3rd ed.; Elsevier Applied Science: London, UK, 1992. [Google Scholar]
- Taylor, R.G. Connective tissue structure, function and influence on meat quality. In Encyclopedia of Meat Science; Jensen, W.K., Devine, C., Dikeman, M., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2004; pp. 306–313. [Google Scholar]
- Huff-Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Cafferky, J.; Hamill, R.M.; Allen, P.; O’Doherty, J.V.; Cromie, A.; Sweeney, T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Miciński, J.; Klupczyński, J.; Ostoja, H.; Cierach, M.; Dymnicka, M.; Łozicki, A.; Daszkiewicz, T. Wpływ rasy i żywienia buhajków na wyniki klasyfikacji ich tusz w systemie EUROP oraz na ocenę tekstury mięsa. Żywność Nauka Technol. Jakość Supl. 2005, 3, 149–156. [Google Scholar]
- Wajda, S.; Daszkiewicz, T. Kulinarne mięso wołowe i ocena jego właściwości organoleptycznych. Gospod. Mięsna 2001, 9, 18–22. [Google Scholar]
- Oliete, B.; Moreno, T.; Carballo, J.A.; Varela, A.; Monserrat, L.; Sánchez, L. Influence of ageing time on the quality of yearling calf meat under vacuum. Eur. Food Res. Technol. 2005, 220, 489–493. [Google Scholar] [CrossRef]
- Brewer, S.; Novakofski, J. Consumer sensory evaluations of aging effects on beef quality. J. Food Sci. 2008, 73, 78–82. [Google Scholar] [CrossRef]
- Kahraman, H.A.; Gurbuz, U. Aging Applications on Beef Meat. MANAS J. Eng. 2018, 6, 7–13. [Google Scholar]
- Belcher, J.N. Industrial Packaging developments for the global meat market. Meat Sci. 2006, 9, 143–148. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, M.; Kerry, J. Sensory and Quality Properties of Packaged Meat; University College Cork: Cork, Ireland, 2009; pp. 585–604. [Google Scholar]
- D’Agata, M.; Nuvoloni, R.; Pedonese, F.; Russo, C.; D’Ascenzi, C.; Preziuso, G. Effect of packaging and storage time on beef qualitative and microbial traits. J. Food Qual. 2010, 33, 352–356. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Gorraiz, C.; Beriain, M.J.; Chasco, J.; Insausti, K. Effect of aging time on volatile compounds, odor, and flavor of cooked beef from Pirenaica and Friesian bulls and heifers. J. Food Sci. 2002, 67, 916–922. [Google Scholar] [CrossRef]
- Insausti, K.; Beriain, M.J.; Gorraiz, C.; Purroy, A. Volatile compounds of raw beef from 5 local Spanish cattle breeds stored under modified atmosphere. J. Food Sci. 2002, 67, 1580–1589. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Barłowska, J.; Florek, M.; Tabała, K. Slaughter value of heifers, cows and young bulls from commercial beef production in the central-eastern region of Poland. Anim. Sci. Pap. Rep. 2006, 24, 187–194. [Google Scholar]
- Maughan, C.; Tansawat, R.; Cornforth, D.; Ward, R.; Martini, S. Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass- or grain-fed cattle. Meat Sci. 2012, 90, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Zakrys, P.I.; Hogan, S.A.; O’Sullivan, M.G.; Allen, P.; Kerry, J.P. Effects of oxygen concentration on the sensory evaluation and quality indicators of beef muscle packed under modified atmosphere. Meat Sci. 2008, 79, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Kukowski, A.C.; Maddock, R.J.; Wulf, D.M. Evaluating consumer acceptability of various muscles from the beef chuck and rib. J. Anim. Sci. 2004, 82, 521–525. [Google Scholar] [CrossRef]
- Zymon, M. Czym jest smakowitość wołowiny i co ją kształtuje? Wiadomości Zootech. 2014, 1, 54–60. [Google Scholar]
- Purslow, P.P. New developments on the role of intramuscular connective tissue in meat toughness. Annu. Rev. Food Sci. Technol. 2014, 5, 133–153. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L. Growth performance, carcass traits and meat quality of bulls and heifers slaughtered at different ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Hocquette, J.-F.; Gondret, F.; Baeza, E.; Medale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Heaton, K.; Zobell, D.R.; Cornforth, D. A successful collaborative research project: Determining the effects of delayed castration on beef cattle production and carcass traits and consumer acceptability. J. Ext. 2006, 44, 1–6. [Google Scholar]
- Dasiewicz, K.; Chmiel, M. Charakterystyka tłuszczów zwierzęcych i aspekty zdrowotne związane z ich spożywaniem. Postępy Tech. Przetwórstwa Spożywczego 2016, 1, 100–104. [Google Scholar]
- Marenčić, D.; Ivanković, A.; Kozačinski, L.; Popović, M.; Cvrtila, Ž. The effect of sex and age at slaughter on the physicochemical properties of baby-beef meat. Vet. Arh. 2018, 88, 101–110. [Google Scholar] [CrossRef]
- Choroszy, Z.; Bilik, K.; Choroszy, B.; Łopuszańska-Rusek, M. Effect of breed of fattened bulls on the composition and functional properties of beef. Anim. Sci. Pap. Rep. 2006, 24, 61–69. [Google Scholar]
- Blanco, M.; Ripoll, G.; Delavaud, C.; Casasús, I. Performance, carcass and meat quality of young bulls, steers and heifers slaughtered at a common body weight. Livestock Sci. 2020, 240, 104156. [Google Scholar] [CrossRef]
- Pogorzelska-Przybyłek, P.; Nogalski, Z.; Sobczuk-Szul, M.; Purwin, C.; Kubiak, D. Carcass characteristics and meat quality of Holstein-Friesian × Hereford cattle of different sex categories and slaughter ages. Arch. Anim. Breed. 2018, 61, 253–261. [Google Scholar] [CrossRef]
- Zorlak, A.; Ganić, A.; Dacić, M.; Hadžić, V.; Kurtić, E.; Bačić, A. The effect of salt reduction on chemical and microbiological characteristics and implications on sensory quality of traditional smoked meat “VISOČKA PEČENICA”. J. Hyg. Eng. Des. 2018, 25, 21–26. [Google Scholar]
- Pogorzelska-Przybyłek, P.; Nogalski, Z.; Sobczuk-Szul, M.; Momot, M. The effect of gender status on the growth performance, carcass and meat quality traits of young crossbred Holstein-Friesian × Limousin cattle. Anim. Biosci. 2021, 34, 914–921. [Google Scholar] [CrossRef]
- Mueller, L.F.; Balieiro, J.C.C.; Ferrinho, A.M.; Martins, T.S.; Corte, R.R.P.S.; Amorim, T.R.; Furlan, J.J.M.; Baldi, F.; Pereira, A.S.C. Gender status effect on carcass and meat quality traits of feedlot Angus × Nellore cattle. Anim. Sci. J. 2019, 90, 1078–1089. [Google Scholar] [CrossRef]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Rudy, M.; Żurek, J.; Stanisławczyk, R.; Duma-Kocan, P.; Zaguła, G.; Rudy, S. Analysis of the impact of determinants of kosherness on the content of macro- and microelements in beef. Food Sci. Nutr. 2019, 7, 3463–3470. [Google Scholar] [CrossRef]
- Mast, M.; Macneil, J. Effect of kosher vs conventional processing on yield quality, and acceptability of broiler chickens. J. Food Sci. 1983, 48, 1013–1015. [Google Scholar] [CrossRef]
Specification | Muscle Type | Standard Slaughter | Kosher Slaughter | ANOVA | ||
---|---|---|---|---|---|---|
Young Bulls | Heifers | Young Bulls | Heifers | |||
L*48 | MLT | 42.34 a ± 3.21 | 39.06 a ± 3.47 | 33.55 b ± 4.57 | 34.58 b ± 4.94 | S * |
MS | 41.32 a ± 2.86 | 40.47 a ± 3.79 | 36.20 b ± 2.99 | 35.17 b ± 4.48 | ||
a*48 | MLT | 21.31 A ± 2.05 | 22.06 Aa ± 2.38 | 19.90 ± 5.13 | 18.76 b ± 4.01 | M *; S * |
MS | 24.46 Ba ± 1.56 | 24.59 Ba ± 3.04 | 19.28 b ± 6.68 | 20.32 b ± 3.19 | ||
b*48 | MLT | 8.38 ± 1.64 | 8.74 ± 1.86 | 7.14 ± 5.04 | 7.57 ± 2.33 | S * |
MS | 9.50 a ± 1.50 | 10.06 a ± 2.18 | 6.23 b ± 5.15 | 7.88 ± 1.68 | ||
L*72 | MLT | 41.44 a ± 3.83 | 39.11 ± 4.57 | 36.49 b ± 3.73 | 37.90 b ± 3.97 | S *; G × S * |
MS | 40.09 a ± 3.04 | 39.83 a ± 3.82 | 35.57 b ± 4.41 | 36.71 b ± 2.76 | ||
a*72 | MLT | 26.23 Aa ± 1.99 | 26.81 Aa ± 2.03 | 20.91 b ± 2.78 | 22.22 b ± 1.85 | M *; S *; M × S * |
MS | 28.33 Ba ± 2.19 | 28.37 Ba ± 2.54 | 21.35 b ± 3.26 | 21.02 b ± 3.24 | ||
b*72 | MLT | 11.67 a ± 1.14 | 12.10 a ± 1.08 | 7.59 b ± 1.65 | 8.75 c ± 1.43 | S *; M × S * |
MS | 12.18 a ± 1.00 | 12.79 a ± 1.30 | 7.25 b ± 2.46 | 7.26 b ± 1.71 | ||
ΔL | MLT | −0.90 | 0.05 | 2.94 | 3.32 | – |
MS | −1.23 | −0.64 | −0.63 | 1.54 | ||
Δa | MLT | 4.92 | 4.75 | 1.01 | 3.46 | – |
MS | 3.87 | 3.78 | 2.07 | 0.70 | ||
Δb | MLT | 3.29 | 3.36 | 0.45 | 1.18 | – |
MS | 2.68 | 2.73 | 1.02 | −0.62 | ||
ΔE | MLT | 5.99 | 5.82 | 3.14 | 4.94 | – |
MS | 4.87 | 4.71 | 2.39 | 1.80 |
Specification | Muscle Type | Standard Slaughter | Kosher Slaughter | ANOVA | ||
---|---|---|---|---|---|---|
Young Bulls | Heifers | Young Bulls | Heifers | |||
Hardness 1 (N) | MLT | 84.71 Aa ± 20.15 | 121.19 A ± 21.42 | 140.16 b ± 27.93 | 107.16 ± 28.21 | G × M *; G × M × S * |
MS | 93.34 Ba ± 20.89 | 136.77 B ± 26.50 | 102.58 ± 20.04 | 173.34 b ± 23.35 | ||
Hardness 2 (N) | MLT | 58.65 a ± 17.50 | 74.29 ± 13.64 | 93.15 b ± 20.50 | 73.26 ± 17.50 | G × M × S * |
MS | 54.72 a ± 11.78 | 76.59 ± 13.65 | 67.90 ± 10.15 | 106.80 b ± 18.66 | ||
Rigidity 1 (N) | MLT | 9.14 ± 1.98 | 16.27 A ± 3.59 | 14.78 ± 2.60 | 12.85 ± 2.63 | G × M * |
MS | 10.76 ± 2.60 | 23.77 Ba ± 3.82 | 5.98 b ± 0.89 | 20.78 ± 3.68 | ||
Rigidity 2 (N) | MLT | 40.24 A ± 7.94 | 71.86 A ± 14.69 | 66.63 ± 16.21 | 59.87 ± 11.43 | G × M *; G × M × S * |
MS | 44.43 Ba ± 8.73 | 78.42 B ± 15.35 | 30.70 a ± 5.49 | 96.42 b ± 15.58 | ||
Adhesiveness (mJ) | MLT | 2.82 ± 0.65 | 4.14 A ± 0.60 | 3.86 ± 0.67 | 4.28 A ± 0.95 | M *; S *; G × M *; G × S * |
MS | 2.30 a ± 0.51 | 2.63 B ± 0.61 | 4.37 b ± 1.21 | 2.96 B ± 0.40 | ||
Resilience | MLT | 0.20 a ± 0.04 | 0.13 b ± 0.02 | 0.17 ± 0.03 | 0.18 ± 0.03 | – |
MS | 0.14 ± 0.01 | 0.15 ± 0.03 | 0.18 ± 0.03 | 0.17 ± 0.01 | ||
Cohesiveness | MLT | 0.31 a ± 0.06 | 0.21 b ± 0.02 | 0.26 ± 0.03 | 0.29 ± 0.04 | – |
MS | 0.24 ± 0.06 | 0.41 ± 0.08 | 0.25 ± 0.05 | 0.28 ± 0.05 | ||
Springiness (mm) | MLT | 3.37 ± 0.78 | 3.60 ± 0.33 | 4.43 ± 1.03 | 3.85 ± 0.30 | – |
MS | 3.25 ± 0.87 | 5.72 ± 1.04 | 2.66 ± 0.53 | 4.85 ± 0.69 | ||
Gumminess (N) | MLT | 24.86 ± 5.03 | 23.63 Aa ± 3.92 | 36.56 b ± 7.42 | 28.73 A ± 6.99 | S *; G × M * |
MS | 22.51 a ± 4.96 | 38.81 B ± 6.10 | 31.81 ± 6.11 | 49.62 Bb ± 8.49 | ||
Chewiness (mJ) | MLT | 107.14 ± 26.04 | 86.75 A ± 19.14 | 141.46 ± 33.23 | 113.58 A ± 30.23 | S *; G × M * |
MS | 102.08 a ± 22.56 | 127.32 Ba ± 24.29 | 119.13 a ± 27.29 | 254.91 Bb ± 31.84 |
Specification | Muscle Type | Standard Slaughter | Kosher Slaughter | |||
---|---|---|---|---|---|---|
Young Bulls | Heifers | Young Bulls | Heifers | ANOVA | ||
Aroma: Intensity | MLT | 3.90 a ± 0.29 | 3.67 b ± 0.76 | 3.93 a ± 0.29 | 3.50 b ± 0.001 | G * |
MS | 3.93 a ± 0.29 | 3.60 b ± 0.50 | 3.90 a ± 0.87 | 3.56 b ± 0.90 | ||
Aroma: Desirability | MLT | 3.83 ± 0.76 | 3.65 ± 0.58 | 3.70 ± 1.53 | 3.58 ± 0.001 | – |
MS | 3.90 ± 0.29 | 3.60 ± 0.76 | 3.83 ± 0.76 | 3.60 ± 0.29 | ||
Tenderness | MLT | 3.21 Aa ± 1.00 | 4.15 Ab ± 0.58 | 4.10 Ab ± 1.00 | 4.61 Ac ± 1.04 | S *; G *; M *; S × G *; G × M * |
MS | 2.80 Ba ± 0.50 | 3.70 Bb ± 0.29 | 3.63 Bb ± 1.23 | 4.25 Bc ± 0.29 | ||
Juiciness | MLT | 3.33 a ± 0.58 | 3.90 Ab ± 0.10 | 4.40 Ac ± 0.58 | 4.76 Ac ± 0.76 | S *; M *; S × G *; G × M * |
MS | 3.00 a ± 0.90 | 3.47 Bb ± 0.29 | 3.90 Bc ± 1.04 | 4.30 Bc ± 0.58 | ||
Taste: Intensity | MLT | 3.77 a ± 0.58 | 3.80 a ± 0.50 | 4.60 b ± 1.73 | 4.73 b ± 0.58 | S * |
MS | 3.66 a ± 0.29 | 3.70 a ± 0.00 | 4.34 b ± 1.00 | 4.67 b ± 0.29 | ||
Taste: Desirability | MLT | 3.67 a± 0.58 | 3.70 a ± 0.50 | 4.47 b ± 1.00 | 4.53 b ± 0.58 | S * |
MS | 3.41 a ± 0.29 | 3.57 a ± 0.29 | 4.10 b ± 1.00 | 4.43 b ± 0.29 | ||
General Acceptability | MLT | 3.62 ± 0.57 | 3.81 ± 0.13 | 4.20 ± 0.89 | 4.29 ± 0.48 | – |
MS | 3.45 ± 0.14 | 3.61 ± 0.27 | 3.95 ± 0.97 | 4.14 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, J.; Rudy, M.; Stanisławczyk, R.; Duma-Kocan, P. The Effect of Kosher Determinants of Beef on Its Color, Texture Profile and Sensory Evaluation. Int. J. Environ. Res. Public Health 2023, 20, 1378. https://doi.org/10.3390/ijerph20021378
Żurek J, Rudy M, Stanisławczyk R, Duma-Kocan P. The Effect of Kosher Determinants of Beef on Its Color, Texture Profile and Sensory Evaluation. International Journal of Environmental Research and Public Health. 2023; 20(2):1378. https://doi.org/10.3390/ijerph20021378
Chicago/Turabian StyleŻurek, Jagoda, Mariusz Rudy, Renata Stanisławczyk, and Paulina Duma-Kocan. 2023. "The Effect of Kosher Determinants of Beef on Its Color, Texture Profile and Sensory Evaluation" International Journal of Environmental Research and Public Health 20, no. 2: 1378. https://doi.org/10.3390/ijerph20021378
APA StyleŻurek, J., Rudy, M., Stanisławczyk, R., & Duma-Kocan, P. (2023). The Effect of Kosher Determinants of Beef on Its Color, Texture Profile and Sensory Evaluation. International Journal of Environmental Research and Public Health, 20(2), 1378. https://doi.org/10.3390/ijerph20021378