Aerobic Capacity in Relation to Selected Elements of Body Posture
Abstract
:1. Introduction
- Does the level of physical capacity exhibit a relationship with selected body build and posture indicators?
- Is there any dimorphism in the above relationships?
- Is the occurrence of the analyzed body posture defects the same in subjects with high and low aerobic capacity?
- What practical applications can the investigated relationships have?
2. Materials and Methods
2.1. Study Group
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markiewicz-Górka, I.; Korneluk, J.; Pirogowicz, I. Aktywnośćfizycznaoraz wiedza studentów Akademii Medycznej we Wrocławiu na temat jej woli w profilaktyce chorób—Badania ankietowe. Fam. Med. Primari Care Rev. 2011, 13, 436–439. [Google Scholar]
- Cempla, J. Aspekty rozwojowe w fizjologii wysiłku. Med. Sport. 2004, 8, 19–31. [Google Scholar]
- Ridgers, N.D.; Salmon, J.; Parrish, A.-M.; Stanley, R.M.; Okely, A.D. Physical activity during school recess: A systematic review. Am. J. Prev. Med. 2012, 43, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Wasilewska, M.; Bergier, J. Physical activity level of the youth in selected countries of the world. Health Probl. Civiliz. 2015, 9, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Byrne, N.M.; Kenardy, J.A.; Hills, A.P. Influences of ethnicity and socioeconomic status on the body dissatisfaction and eating behaviour of Australian children and adolescents. Eat. Behav. 2005, 6, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Currie, C.; Zanotti, C.; Morgan, A.; Currie, D.; de Looze, M.; Roberts, C.; Samdal, O.; Smith, O.R.F.; Barnekow, V. (Eds.) Social Determinants of Health and Well-Being among Young People: Health Behaviour in School-Aged Children (HBSC) Study: International Report from the 2009/2010 Survey; WHO Regional Office for Europe: Copenhagen, Denmark, 2012. [Google Scholar]
- Klarin, M.; Pororoković, A.; Šašić, S.Š.; Arnaudova, V. Some characteristics of social interactions among adolescents in Croatia, Bosnia and Herzegovina, and Macedonia. Psychol. Res. Behav. Manag. 2012, 5, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Rothon, C.; Goodwin, L.; Stansfeld, S. Family social support, community “social capital” and adolescents’ mental health and educational outcomes: A longitudinal study in England. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Novak, D.; Doubova, S.V.; Kawachi, I. Social capital and physical activity among Croatian high school students. Public Health 2016, 135, 48–55. [Google Scholar] [CrossRef]
- Rudzik, J. Zdrowotne znaczenie aktywności ruchowej. In Prozdrowotny Tryb Życia: Uwarunkowania Społeczne; Lisicki, T., Wilk, B., Walentukiewicz, A., Eds.; AWFiS: Gdańsk, Poland, 2005; pp. 115–118. [Google Scholar]
- Bajerska, I.; Rżany, M.; Sołtysiak-Gibała, Z.; Suszyński, K.; Górka, D. Podejście do bólu związanego ze zmęczeniem wśród osób aktywnych fizycznie. In Problemy Kultury Fizycznej—Aspekty Ekonomiczne, Prawne, Pedagogiczne; Tomanek, M., Raniszewski, S., Eds.; Fundacja Akademia Sportu i Nauki: Bydgoszcz, Poland, 2015; pp. 172–179. [Google Scholar]
- Hattori, K.; Tatsumi, N.; Tanaka, S. Assessment of body composition by using a new chart method. Am. J. Hum. Biol. 1997, 9, 573–578. [Google Scholar] [CrossRef]
- Dehghan, M.; Merchant, A.T. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 2008, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Lizis, P. Sklepienie Stóp Oraz ich Związki z Wybranymi Cechami Morfologicznymi i Funkcjonalnymi Studentów; AWF: Kraków, Poland, 2012. [Google Scholar]
- World Health Organization. Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 16 August 2018).
- Demczuk-Włodarczyk, E. Budowa Stopy w Okresie Rozwoju Progresywnego Człowieka; AWF: Wrocław, Poland, 2003. [Google Scholar]
- Borkowski, J. Bioenergetyka i Biochemia Tlenowego Wysiłku Fizycznego; AWF: Wrocław, Poland, 2003. [Google Scholar]
- Tyka, A. Wybrane zagadnienia z fizjologii sportu: Fizjologiczne aspekty piłkarstwa. Med. Sport. 2004, 8 (Suppl. 1), 5–17. [Google Scholar]
- Bompa, T.O.; Petryński, W.; Haff, G. Periodyzacja—Teoria i Metodyka Treningu; Centralny Ośrodek Sportu: Warszawa, Poland, 2010. [Google Scholar]
- Lech, G.; Pałka, T.; Sterkowicz, S.; Tyka, A.; Krawczyk, R. Effect of physical capacity on the course of fight and level of sports performance in cadet judokas. Arch. Budo 2010, 6, 123–128. [Google Scholar]
- Sterkowicz, S.; Lech, G.; Pałka, T.; Tyka, A.; Sterkowicz-Przybycień, K.L.; Szyguła, Z.; Kłys, A. Body build and body composition vs. physical capacity in young judo contestants compared to untrained subjects. Biol. Sport 2011, 28, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Pałka, T.; Lech, G.; Tyka, A.; Tyka, A.; Sterkowicz-Przybycień, K.; Sterkowicz, S.; Cebula, A.; Stawiarska, A. Differences in the level of anaerobic and aerobic components of physical capacity in judoists at different age. Arch. Budo 2013, 9, 195–203. [Google Scholar]
- Górski, J. Fizjologia Wysiłku i Treningu Fizycznego; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2019. [Google Scholar]
- Zadarko, E.; Barabasz, Z.; Nizoł, E. Ocena poziomu aktywności fizycznej studentek wybranych kierunków medycznych na tle badań populacyjnych. Med. J. Rzesz. Univ. Natl. Med. Inst. 2011, 2, 188–194. [Google Scholar]
- Puszczałowska-Lizis, E. Związki wysklepienia podłużnego z architekturą poprzeczną i przednią strefą podparcia stopy u młodzieży akademickiej. Fizjoterapia 2011, 19, 3–8. [Google Scholar] [CrossRef]
- Kaźmierczak, A.; Bolesławska, I.; Główka, A.; Dzięcioł, M.; Przysławski, J. Ocena wybranych parametrów antropometrycznych wśród młodzieży akademickiej Poznania. Bromatol. Chem. Toksykol. 2012, 45, 1099–1104. [Google Scholar]
- Pujszo, R.; Błach, W.; Smaruj, M.; Adam, M. Wydolność fizyczna beztlenowa a kontrola postawy ciała kobiet. In Sport vs. Wellness; Rutkowska, E., Ed.; NeuroCentrum: Lublin, Poland, 2008; pp. 161–168. [Google Scholar]
- Chrzanowska, M.; Gołąb, S.; Żarów, R.; Sobiecki, J.; Brudecki, J. Dziecko Krakowskie 2000. In Poziom Rozwoju Biologicznego Dzieci i Młodzieży Miasta Krakowa; AWF: Kraków, Poland, 2002. [Google Scholar]
- Lavie, C.J.; Kuruvanka, T.; Milani, R.V.; Prasad, A.; Ventura, H.O. Exercise capacity in adult African-Americans referred for exercise stress testing: Is fitness affected by race? Chest 2004, 126, 1962–1968. [Google Scholar] [CrossRef] [Green Version]
- Hulens, M.; Vansant, G.; Lysens, R.; Claessens, A.L.; Muls, E. Exercise capacity in lean versus obese women. Scand. J. Med. Sci. Sport. 2001, 11, 305–309. [Google Scholar] [CrossRef]
- Górski, J. (Ed.) Fizjologiczne Podstawy Wysiłku Fizycznego; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2008. [Google Scholar]
- Shete, A.N.; Bute, S.S.; Deshmukh, P.R. A study of VO2max and body fat percentage in female athletes. J. Clin. Diagn. Res. 2014, 8, BC01–BC03. [Google Scholar] [CrossRef]
- Pałka, T. Wpływ Ośmiotygodniowego Treningu Fizycznego Mężczyzn W Dwóch Odmiennych Temperaturach Otoczenia na Poziom Wybranych Reakcji Fizjologicznych Ustroju. Ph.D. Thesis, AWF, Kraków, Poland, 2004. [Google Scholar]
- Nabi, T.; Rafiq, N.; Qayoom, O. Assessment of cardiovascular fitness [VO2max] among medical students by Queens College step test. Int. J. Biomed. Adv. Res. 2015, 6, 418–421. [Google Scholar]
- Tyka, A.; Pałka, T. Zastrzeżone Ekspertyzy z Badań Kadry Polskich Hokeistów; Raport dla PZH; Archiwum AWF: Kraków, Poland, 2000. [Google Scholar]
- Tyka, A.; Pałka, T. Zastrzeżone Ekspertyzy z Badań Siatkarzy II Ligi; Raport dla AZS; Archiwum AWF: Kraków, Poland, 2002. [Google Scholar]
- Tyka, A.; Żuchowicz, A.; Kubica, R.; Pałka, T. The relationship between electromyographic (IEMG AT) and ventilatory (V AT) thresholds in men during graded exercise in different ambient temperatures. In Sport Science ’99 in Europe, Proceedings of the 4th Annual Congress of the European College of Sport Science, Rome, Italy, 14–17 July 1999; Rome Institute of Motor Sciences: Rome, Italy, 1999; p. 635. [Google Scholar]
- Lewandowski, J. Kształtowanie się Krzywizn Fizjologicznych i Zakresów Ruchomości Odcinkowej Kręgosłupa Człowieka w Wieku 3–25 Lat w Obrazie Elektrogoniometrycznym; AWF: Poznań, Poland, 2006. [Google Scholar]
Variable | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Standard Deviation | Minimum | Maximum | Mean | Standard Deviation | |
BH (cm) | 154.00 | 180.00 | 166.60 | 5.70 | 170.00 | 192.00 | 179.0 | 5.50 |
BM (kg) | 44.50 | 78.70 | 61.70 | 8.60 | 53.70 | 116.20 | 80.50 | 10.90 |
BMI (kg m−2) | 16.00 | 25.00 | 18.80 | 2.70 | 15.52 | 29.58 | 22.60 | 2.80 |
LBM (kg) | 38.70 | 51.20 | 44.60 | 4.27 | 55.60 | 70.08 | 62.75 | 6.28 |
BFM (kg) | 10.25 | 21.50 | 16.72 | 4.72 | 11.45 | 24.35 | 17.09 | 6.22 |
BFP (%) | 8.70 | 23.80 | 26.97 | 5.27 | 5.90 | 29.92 | 20.89 | 5.44 |
Variable | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Standard Deviation | Minimum | Maximum | Mean | Standard Deviation | |
VO2max (mL∙kg−1 min−1) | 23.80 | 42.50 | 30.80 | 4.70 | 21.40 | 52.40 | 35.60 | 7.80 |
Variable | Female (n = 45) | Male (n = 46) | |
---|---|---|---|
VO2max | VO2max | ||
BH | r | −0.103 | −0.112 |
p | 0.499 | 0.460 | |
BM | r | −0.346 * | −0.321 * |
p | 0.020 | 0.030 | |
BMI | r | −0.271 | −0.246 |
p | 0.072 | 0.100 | |
LBM | r | −0.428 ** | −0.166 |
p | 0.003 | 0.269 | |
BFM | r | −0.228 | −0.461 ** |
p | 0.133 | 0.001 | |
BFP | r | −0.054 | −0.443 ** |
p | 0.725 | 0.002 |
Variable | Female (n = 45) | Male (n = 46) | |
---|---|---|---|
VO2max | VO2max | ||
Left foot length | r | 0.127 | 0.135 |
p | 0.406 | 0.371 | |
Right foot length | r | 0.137 | 0.128 |
p | 0.371 | 0.395 | |
Left foot width | r | 0.178 | 0.244 |
p | 0.243 | 0.102 | |
Right foot width | r | 0.107 | 0.201 |
p | 0.485 | 0.182 | |
Left foot Wejsflog indicator | r | −0.040 | −0.154 |
p | 0.793 | 0.308 | |
Right foot Wejsflog indicator | r | 0.054 | −0.079 |
p | 0.723 | 0.600 | |
Right foot Clarke’s angle | r | −0.276 | 0.231 |
p | 0.066 | 0.122 | |
Left foot Clarke’s angle | r | −0.192 | 0.218 |
p | 0.206 | 0.146 |
Variable | Female (n = 45) | Male (n = 46) | |
---|---|---|---|
VO2max | VO2max | ||
Left foot surface | r | 0.165 | −0.232 |
p | 0.278 | 0.121 | |
Right foot surface | r | 0.099 | −0.132 |
p | 0.519 | 0.383 | |
Left foot percentage load | r | −0.136 | −0.247 |
p | 0.373 | 0.098 | |
Right foot percentage load | r | 0.136 | 0.247 |
p | 0.373 | 0.098 |
Variable | Female (n = 45) | Male (n = 46) | |
---|---|---|---|
VO2max | VO2max | ||
Pelvic tilt to the right a | rs | 0.169 | −0.155 |
p | 0.600 | 0.597 | |
Pelvic tilt to the left a | rs | 0.360 | −0.310 |
p | 0.065 | 0.150 | |
Pelvic torsion to the right a | rs | −0.047 | 0.257 |
p | 0.815 | 0.188 | |
Pelvic torsion to the left a | rs | −0.432 | −0.367 |
p | 0.083 | 0.162 | |
Kyphosis angle | r | 0.016 | 0.028 |
p | 0.916 | 0.856 | |
Lordosis angle | r | −0.109 | −0.094 |
p | 0.477 | 0.536 | |
Back surface rotation | r | 0.275 | 0.019 |
p | 0.067 | 0.902 | |
Lateral deviation VPDM | r | 0.352 * | −0.156 |
p | 0.018 | 0.299 |
Variable | Female (n = 45) | Male (n = 46) | |
---|---|---|---|
VO2max | VO2max | ||
Frontal plane: left | r | 0.062 | 0.292 * |
p | 0.687 | 0.049 | |
Frontal plane: extension | r | −0.059 | 0.187 |
p | 0.701 | 0.212 | |
Frontal plane: right | r | 0.231 | 0.213 |
p | 0.126 | 0.156 | |
Mobility: left extension | r | 0.080 | 0.259 |
p | 0.603 | 0.082 | |
Mobility: right extension | r | 0.207 | 0.249 |
p | 0.173 | 0.095 | |
Mobility: left–right | r | 0.055 | 0.265 |
p | 0.721 | 0.075 | |
Spinal position in the sagittal plane | r | −0.009 | −0.107 |
p | 0.956 | 0.477 | |
Sagittal plane: bend | r | 0.116 | 0.047 |
p | 0.447 | 0.755 | |
Sagittal plane: hyperextension (−) | r | 0.181 | 0.280 |
p | 0.233 | 0.059 | |
Mobility: extension-bend | r | 0.113 | 0.078 |
p | 0.459 | 0.605 | |
Mobility: extension-hyperextension (−) | r | 0.186 | 0.247 |
p | 0.220 | 0.098 | |
Mobility: bend-hyperextension | r | 0.172 | 0.175 |
p | 0.259 | 0.245 |
Model | Variable | B * | Standard Error | β | t | p |
---|---|---|---|---|---|---|
1 | Constant | 52.042 | 6.855 | 7.592 | 0.000 | |
Lean body mass | −0.476 | 0.153 | −0.428 | −3.108 | 0.003 | |
Multiple correlation coefficient: R = 0.438 Multiple determination coefficient: R2 = 0.164 Equation significance: F = 9.558; p = 0.003 | ||||||
2 | Constant | 47.610 | 6.909 | 6.891 | 0.000 | |
Lean body mass | −0.420 | 0.149 | −0.379 | −2.816 | 0.007 | |
Lateral deviation VPDM | 0.378 | 0.177 | 0.287 | 2.133 | 0.039 | |
Multiple correlation coefficient: R = 0.513 Multiple determination coefficient: R2 = 0.228 Equation significance: F = 7.502; p = 0.002 |
Model | Variable | B * | Standard error | β | t | p |
---|---|---|---|---|---|---|
1 | Constant | 48.835 | 4.154 | 11.755 | >0.001 | |
Body fat percentage | −0.632 | 0.193 | −0.443 | −3.281 | 0.002 | |
Multiple correlation coefficient: R = 0.443 Multiple determination coefficient: R2 = 0.178 Equation significance: F = 10.783; p = 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucha, D.K.; Pałka, T.; Skalska-Izdebska, R.; Teległów, A.; Mucha, T.; Makuch, R.; Mucha, D. Aerobic Capacity in Relation to Selected Elements of Body Posture. Int. J. Environ. Res. Public Health 2023, 20, 903. https://doi.org/10.3390/ijerph20020903
Mucha DK, Pałka T, Skalska-Izdebska R, Teległów A, Mucha T, Makuch R, Mucha D. Aerobic Capacity in Relation to Selected Elements of Body Posture. International Journal of Environmental Research and Public Health. 2023; 20(2):903. https://doi.org/10.3390/ijerph20020903
Chicago/Turabian StyleMucha, Dawid Konrad, Tomasz Pałka, Renata Skalska-Izdebska, Aneta Teległów, Teresa Mucha, Robert Makuch, and Dariusz Mucha. 2023. "Aerobic Capacity in Relation to Selected Elements of Body Posture" International Journal of Environmental Research and Public Health 20, no. 2: 903. https://doi.org/10.3390/ijerph20020903
APA StyleMucha, D. K., Pałka, T., Skalska-Izdebska, R., Teległów, A., Mucha, T., Makuch, R., & Mucha, D. (2023). Aerobic Capacity in Relation to Selected Elements of Body Posture. International Journal of Environmental Research and Public Health, 20(2), 903. https://doi.org/10.3390/ijerph20020903