Investigating Ecological Momentary Assessed Physical Activity and Core Executive Functions in 18- to 24-Year-Old Undergraduate Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Settings
2.2. Measures and Procedures
2.2.1. Physical Activity
2.2.2. Executive Functioning
2.2.3. Cognitive Flexibility
2.2.4. Inhibition
2.2.5. Visuospatial Working Memory
2.3. Data Analysis and Statistical Analyses
3. Results
4. Discussion
4.1. Associations between Physical Activity and Executive Function
4.2. Exploring the Factors That May Influence Executive Function
4.3. Strengths
4.4. Limitations and Future Directions
Technical Issues Surrounding the Pathverse App
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research Synopsis. Public Health Rep. 1985, 100, 126. [Google Scholar]
- Piggin, J. What Is Physical Activity? A Holistic Definition for Teachers, Researchers and Policy Makers. Front. Sports Act. Living 2020, 2, 72. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 11 July 2023).
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The Age of Adolescence. Lancet Child Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Ploughman, M. Exercise Is Brain Food: The Effects of Physical Activity on Cognitive Function. Dev. Neurorehabil. 2008, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Social Care UK Chief Medical Officers. Physical Activity Guidelines; University of Bristol: Bristol, UK, 2019.
- Biddle, S.J.H.; Ciaccioni, S.; Thomas, G.; Vergeer, I. Physical Activity and Mental Health in Children and Adolescents: An Updated Review of Reviews and an Analysis of Causality. Psychol. Sport Exerc. 2019, 42, 146–155. [Google Scholar] [CrossRef]
- Rathore, A.; Lom, B. The Effects of Chronic and Acute Physical Activity on Working Memory Performance in Healthy Participants: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Syst. Rev. 2017, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- De Vries, L.P.; Baselmans, B.M.L.; Bartels, M. Smartphone-Based Ecological Momentary Assessment of Well-Being: A Systematic Review and Recommendations for Future Studies. J. Happiness Stud. 2021, 22, 2361–2408. [Google Scholar] [CrossRef] [PubMed]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological Momentary Assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef]
- Tourangeau, R. Remembering What Happened: Memory Errors and Survey Reports. In The Science of Self-Report: Implications for Research and Practice; Stone, A.A., Turkkhan, J.S., Bachrach, C.A., Jobe, J.B., Kurtzman, H.S., Cain, V.S., Eds.; Lawrence Erlbaum Associates Publishers: Hillsdale, MI, USA, 2000; pp. 29–47. [Google Scholar]
- Dunton, G.F. Ecological Momentary Assessment in Physical Activity Research. Exerc. Sport Sci. Rev. 2017, 45, 48–54. [Google Scholar] [CrossRef]
- Cooper-Khan, J.; Foster, M. Boosting Executive Skills in the Classroom: A Practical Guide for Educators; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Friedman, N.P.; Miyake, A.; Corley, R.P.; Young, S.E.; Defries, J.C.; Hewitt, J.K. Not All Executive Functions Are Related to Intelligence. Psychol. Sci. 2006, 17, 172–179. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Vestberg, T.; Reinebo, G.; Maurex, L.; Ingvar, M.; Petrovic, P. Core Executive Functions Are Associated with Success in Young Elite Soccer Players. PLoS ONE 2017, 12, e0170845. [Google Scholar] [CrossRef] [PubMed]
- Shields, G.S.; Sazma, M.A.; Yonelinas, A.P. The Effects of Acute Stress on Core Executive Functions: A Meta-Analysis and Comparison with Cortisol. Neurosci. Biobehav. Rev. 2016, 68, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N. Working Memory Underpins Cognitive Development, Learning, and Education. Educ. Psychol. Rev. 2014, 26, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.; Jones, D.M. Memory Updating in Working Memory: The Role of the Central Executive. Br. J. Psychol. 1990, 81, 111–121. [Google Scholar] [CrossRef]
- Armbruster, D.J.N.; Ueltzhöffer, K.; Basten, U.; Fiebach, C.J. Prefrontal Cortical Mechanisms Underlying Individual Differences in Cognitive Flexibility and Stability. J. Cogn. Neurosci. 2012, 24, 2385–2399. [Google Scholar] [CrossRef] [PubMed]
- Dajani, D.R.; Uddin, L.Q. Demystifying Cognitive Flexibility: Implications for Clinical and Developmental Neuroscience. Trends Neurosci. 2015, 38, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Blair, C. Educating Executive Function. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1403. [Google Scholar] [CrossRef]
- Scharfen, H.; Memmert, D. Measurement of Cognitive Functions in Experts and Elite Athletes: A Meta-analytic Review. Appl. Cogn. Psychol. 2019, 33, 843–860. [Google Scholar] [CrossRef]
- Roca, A.; Ford, P.R.; McRobert, A.P.; Williams, A.M. Perceptual-Cognitive Skills and Their Interaction as a Function of Task Constraints in Soccer. J. Sport Exerc. Psychol. 2013, 35, 144–155. [Google Scholar] [CrossRef]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are Expert Athletes ‘Expert’ in the Cognitive Laboratory? A Meta-Analytic Review of Cognition and Sport Expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Cona, G.; Cavazzana, A.; Paoli, A.; Marcolin, G.; Grainer, A.; Bisiacchi, P.S. It’s a Matter of Mind! Cognitive Functioning Predicts the Athletic Performance in Ultra-Marathon Runners. PLoS ONE 2015, 10, e0132943. [Google Scholar] [CrossRef]
- Salas-Gomez, D.; Fernandez-Gorgojo, M.; Pozueta, A.; Diaz-Ceballos, I.; Lamarain, M.; Perez, C.; Kazimierczak, M.; Sanchez-Juan, P. Physical Activity Is Associated with Better Executive Function in University Students. Front. Hum. Neurosci. 2020, 14, 11. [Google Scholar] [CrossRef]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef]
- Wilke, J. Functional High-Intensity Exercise Is More Effective in Acutely Increasing Working Memory than Aerobic Walking: An Exploratory Randomized, Controlled Trial. Sci. Rep. 2020, 10, 12335. [Google Scholar] [CrossRef]
- Zach, S.; Shalom, E. The Influence of Acute Physical Activity on Working Memory. Percept. Mot. Ski. 2016, 122, 365–374. [Google Scholar] [CrossRef]
- Lambourne, K. The Relationship between Working Memory Capacity and Physical Activity Rates in Young Adults. J. Sports Sci. Med. 2006, 5, 149. [Google Scholar]
- Diamond, A. Effects of Physical Exercise on Executive Functions: Going beyond Simply Moving to Moving with Thought. Ann. Sports Med. Res. 2015, 2, 1011. [Google Scholar] [PubMed]
- Lin, J.; Wang, K.; Chen, Z.; Fan, X.; Shen, L.; Wang, Y.; Yang, Y.; Huang, T. Associations Between Objectively Measured Physical Activity and Executive Functioning in Young Adults. Percept. Mot. Ski. 2018, 125, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Dustman, R.E.; Ruhling, R.O.; Russell, E.M.; Shearer, D.E.; Bonekat, H.W.; Shigeoka, J.W.; Wood, J.S.; Bradford, D.C.; Dustman, R.E.; Ruhling, R.O.; et al. Aerobic Exercise Training and Improved Neuropsychological Function of Older Individuals I. Neurobiol. Aging 1984, 5, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Stratton, S.J. Population Research: Convenience Sampling Strategies. Prehospital Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef] [PubMed]
- BORG, G.A.V. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) Scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
- Borg, G.A. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Okechukwu, C.; Deb, A.; Emara, S.; Abbas, S. Physical Activity as Preventive Therapy for Older Adults: A Narrative Review. Niger. J. Exp. Clin. Biosci. 2019, 7, 82. [Google Scholar] [CrossRef]
- Grant, S.; Aitchison, T.; Henderson, E.; Christie, J.; Zare, S.; Mcmurray, J.; Dargie, H. A Comparison of the Reproducibility and the Sensitivity to Change of Visual Analogue Scales, Borg Scales, and Likert Scales in Normal Subjects during Submaximal Exercise. Chest 1997, 116, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Stoet, G. PsyToolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments. Teach. Psychol. 2017, 44, 24–31. [Google Scholar] [CrossRef]
- Stoet, G. PsyToolkit: A Software Package for Programming Psychological Experiments Using Linux. Behav. Res. Methods 2010, 42, 1096–1104. [Google Scholar] [CrossRef]
- Ministry of Housing, Communities and Local Government. English Indices of Deprivation. 2019. Available online: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 (accessed on 7 July 2023).
- Stuss, D.T.; Levine, B.; Alexander, M.P.; Hong, J.; Palumbo, C.; Hamer, L.; Murphy, K.J.; Izukawa, D. Wisconsin Card Sorting Test Performance in Patients with Focal Frontal and Posterior Brain Damage: Effects of Lesion Location and Test Structure on Separable Cognitive Processes. Neuropsychologia 2000, 38, 388–402. [Google Scholar] [CrossRef]
- Meiran, N. Reconfiguration of Processing Mode Prior to Task Performance. J. Exp. Psychol. Learn. Mem. Cogn. 1996, 22, 1423. [Google Scholar] [CrossRef]
- Eckart, C.; Kraft, D.; Fiebach, C.J. Internal Consistency and Test–Retest Reliability of an Affective Task-Switching Paradigm. Emotion 2021, 21, 921–931. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of Interference in Serial Verbal Reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Siddi, S.; Preti, A.; Lara, E.; Brébion, G.; Vila, R.; Iglesias, M.; Cuevas-Esteban, J.; López-Carrilero, R.; Butjosa, A.; Haro, J.M. Comparison of the Touch-Screen and Traditional Versions of the Corsi Block-Tapping Test in Patients with Psychosis and Healthy Controls. BMC Psychiatry 2020, 20, 329. [Google Scholar] [CrossRef]
- Lawson, G.M.; Hook, C.J.; Farah, M.J. A Meta-Analysis of the Relationship between Socioeconomic Status and Executive Function Performance among Children. Dev. Sci. 2018, 21, e12529. [Google Scholar] [CrossRef] [PubMed]
- Mulder, H.; Pitchford, N.J.; Marlow, N. Processing Speed and Working Memory Underlie Academic Attainment in Very Preterm Children. Arch. Dis. Child Fetal Neonatal. Ed. 2010, 95, F267–F272. [Google Scholar] [CrossRef] [PubMed]
- Buck, S.M.; Hillman, C.H.; Castelli, D.M. The Relation of Aerobic Fitness to Stroop Task Performance in Preadolescent Children. Med. Sci. Sports Exerc. 2008, 40, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, R.G.; Calvo, D.; Meister, J.; Spitznagel, M.B. Self-Reported Physical Activity Is Associated with Cognitive Function in Lean, but Not Obese Individuals. Clin. Obes. 2014, 4, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Krafft, C.E.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Schaeffer, D.J.; Pierce, J.E.; Rodrigue, A.L.; Yanasak, N.E.; Miller, P.H.; Tomporowski, P.D.; et al. An 8-month Randomized Controlled Exercise Trial Alters Brain Activation during Cognitive Tasks in Overweight Children. Obesity 2014, 22, 232–242. [Google Scholar] [CrossRef]
- Eggermont, L.H.P.; Milberg, W.P.; Lipsitz, L.A.; Scherder, E.J.A.; Leveille, S.G. Physical Activity and Executive Function in Aging: The MOBILIZE Boston Study. J. Am. Geriatr. Soc. 2009, 57, 1750–1756. [Google Scholar] [CrossRef]
- Ho, S.; Gooderham, G.K.; Handy, T.C. Self-Reported Free-Living Physical Activity and Executive Control in Young Adults. PLoS ONE 2018, 13, e0209616. [Google Scholar] [CrossRef]
- Fan, J.; Flombaum, J.I.; McCandliss, B.D.; Thomas, K.M.; Posner, M.I. Cognitive and Brain Consequences of Conflict. Neuroimage 2003, 18, 42–57. [Google Scholar] [CrossRef]
- Helmerhorst, H.J.F.; Brage, S.; Warren, J.; Besson, H.; Ekelund, U. A Systematic Review of Reliability and Objective Criterion-Related Validity of Physical Activity Questionnaires. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.; Kramer, A.F. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Barha, C.K.; Davis, J.C.; Falck, R.S.; Nagamatsu, L.S.; Liu-Ambrose, T. Sex Differences in Exercise Efficacy to Improve Cognition: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Older Humans. Front. Neuroendocrinol. 2017, 46, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.J.; Trost, S.G. Life Transitions and Changing Physical Activity Patterns in Young Women. Am. J. Prev. Med. 2003, 25, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Corder, K.; Ogilvie, D.; van Sluijs, E.M.F. Invited Commentary: Physical Activity Over the Life Course—Whose Behavior Changes, When, and Why? Am. J. Epidemiol. 2009, 170, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Varma, V.R.; Dey, D.; Leroux, A.; Di, J.; Urbanek, J.; Xiao, L.; Zipunnikov, V. Re-Evaluating the Effect of Age on Physical Activity over the Lifespan. Prev. Med. 2017, 101, 102–108. [Google Scholar] [CrossRef]
- Azevedo, M.R.; Araújo, C.L.P.; Reichert, F.F.; Siqueira, F.V.; da Silva, M.C.; Hallal, P.C. Gender Differences in Leisure-Time Physical Activity. Int. J. Public Health 2007, 52, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Deaner, R.O.; Geary, D.C.; Puts, D.A.; Ham, S.A.; Kruger, J.; Fles, E.; Winegard, B.; Grandis, T. A Sex Difference in the Predisposition for Physical Competition: Males Play Sports Much More than Females Even in the Contemporary, U.S. PLoS ONE 2012, 7, e49168. [Google Scholar] [CrossRef]
- Loprinzi, P.; Frith, E. The Role of Sex in Memory Function: Considerations and Recommendations in the Context of Exercise. J. Clin. Med. 2018, 7, 132. [Google Scholar] [CrossRef]
- Johnson, L.; Loprinzi, P.D. The Effects of Acute Exercise on Episodic Memory Function among Young University Students: Moderation Considerations by Biological Sex. Health Promot. Perspect. 2019, 9, 99–104. [Google Scholar] [CrossRef]
- Hughes, M.M.; Linck, J.A.; Bowles, A.R.; Koeth, J.T.; Bunting, M.F. Alternatives to Switch-Cost Scoring in the Task-Switching Paradigm: Their Reliability and Increased Validity. Behav. Res. Methods 2014, 46, 702–721. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.M.; Rubin, R.B. A New Measure of Cognitive Flexibility. Psychol. Rep. 1995, 76, 623–626. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Alves, H.; Voss, M.W.; Boot, W.R.; Deslandes, A.; Cossich, V.; Salles, J.I.; Kramer, A.F. Perceptual-Cognitive Expertise in Elite Volleyball Players. Front. Psychol. 2013, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Di Russo, F.; Perri, R.L.; Berchicci, M. Different Proactive and Reactive Action Control in Fencers’ and Boxers’ Brain. Neuroscience 2017, 343, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, T.; Högman, L.; Näslund, M.; Parling, T. Preliminary Investigation of Executive Functions in Elite Ice Hockey Players. J. Clin. Sport Psychol. 2016, 10, 324–335. [Google Scholar] [CrossRef]
- Huijgen, B.C.H.; Leemhuis, S.; Kok, N.M.; Verburgh, L.; Oosterlaan, J.; Elferink-Gemser, M.T.; Visscher, C. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years. PLoS ONE 2015, 10, e0144580. [Google Scholar] [CrossRef]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive Functions Predict the Success of Top-Soccer Players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef]
- Nougier, V.; Stein, J.-F.; Bonnel, A.-M. Information Processing in Sport and “Orienting of Attention”. Int. J. Sport Psychol. 1991, 22, 307–327. [Google Scholar]
- Furley, P.; Memmert, D. Differences in Spatial Working Memory as a Function of Team Sports Expertise: The Corsi Block-Tapping Task in Sport Psychological Assessment. Percept. Mot. Ski. 2010, 110, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Heppe, H.; Kohler, A.; Fleddermann, M.-T.; Zentgraf, K. The Relationship between Expertise in Sports, Visuospatial, and Basic Cognitive Skills. Front. Psychol. 2016, 7, 904. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Rao, H.; Durmer, J.; Dinges, D. Neurocognitive Consequences of Sleep Deprivation. Semin. Neurol. 2009, 29, 320–339. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Gray, C.E.; Poitras, V.J.; Carson, V.; Gruber, R.; Olds, T.; Weiss, S.K.; Gorber, S.C.; Kho, M.E.; Sampson, M.; et al. Systematic Review of the Relationships between Sleep Duration and Health Indicators in School-Aged Children and Youth. Appl. Physiol. Nutr. Metab. 2016, 41, S266–S282. [Google Scholar] [CrossRef] [PubMed]
- Wilckens, K.A.; Woo, S.G.; Kirk, A.R.; Erickson, K.I.; Wheeler, M.E. Role of Sleep Continuity and Total Sleep Time in Executive Function across the Adult Lifespan. Psychol. Aging 2014, 29, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Storfer-Isser, A.; Taylor, H.G.; Rosen, C.L.; Redline, S. Associations of Executive Function with Sleepiness and Sleep Duration in Adolescents. Pediatrics 2009, 123, e701–e707. [Google Scholar] [CrossRef]
- Scullin, M.K.; Bliwise, D.L. Sleep, Cognition, and Normal Aging: Integrating a Half Century of Multidisciplinary Research. Perspect. Psychol. Sci. 2015, 10, 97–137. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Parkinson, J. The Potential for School-Based Interventions That Target Executive Function to Improve Academic Achievement. Rev. Educ. Res. 2015, 85, 512–552. [Google Scholar] [CrossRef]
- Gathercole, S.E.; Pickering, S.J. Assessment of Working Memory in Six- and Seven-Year-Old Children. J. Educ. Psychol. 2000, 92, 377–390. [Google Scholar] [CrossRef]
- Swanson, H.L.; Beebe-Frankenberger, M. The Relationship Between Working Memory and Mathematical Problem Solving in Children at Risk and Not at Risk for Serious Math Difficulties. J. Educ. Psychol. 2004, 96, 471–491. [Google Scholar] [CrossRef]
- Alloway, T.P.; Banner, G.E.; Smith, P. Working Memory and Cognitive Styles in Adolescents’ Attainment. Br. J. Educ. Psychol. 2010, 80, 567–581. [Google Scholar] [CrossRef]
- Clark, C.A.C.; Pritchard, V.E.; Woodward, L.J. Preschool Executive Functioning Abilities Predict Early Mathematics Achievement. Dev. Psychol. 2010, 46, 1176–1191. [Google Scholar] [CrossRef] [PubMed]
- Latzman, R.D.; Elkovitch, N.; Young, J.; Clark, L.A. The Contribution of Executive Functioning to Academic Achievement among Male Adolescents. J. Clin. Exp. Neuropsychol. 2010, 32, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.L.; Petros, T.V.; Johnson, M.; Ferraro, F.R. Individual Differences in the Influence of Time of Day on Executive Functions. Am. J. Psychol. 2008, 121, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Folkard, S.; Monk, T.H. Time of Day and Processing Strategy in Free Recall. Q. J. Exp. Psychol. 1979, 31, 461–475. [Google Scholar] [CrossRef]
- Anderson, M.J.; Petros, T.V.; Beckwith, B.E.; Mitchell, W.W.; Fritz, S. Individual Differences in the Effect of Time of Day on Long-Term Memory Access. Am. J. Psychol. 1991, 104, 241–255. [Google Scholar] [CrossRef]
- West, R.; Murphy, K.J.; Armilio, M.L.; Craik, F.I.M.; Stuss, D.T. Effects of Time of Day on Age Differences in Working Memory. J. Gerontol. B Psychol. Sci. Soc. Sci. 2002, 57, P3–P10. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Terrera, G.M.; Demakakos, P. Physical Activity and Trajectories in Cognitive Function: English Longitudinal Study of Ageing. J. Epidemiol. Community Health 2018, 72, 477–483. [Google Scholar] [CrossRef]
- Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L. Does Physical Activity Prevent Cognitive Decline and Dementia?: A Systematic Review and Meta-Analysis of Longitudinal Studies. BMC Public Health 2014, 14, 510. [Google Scholar] [CrossRef]
- Greene, C.M.; Braet, W.; Johnson, K.A.; Bellgrove, M.A. Imaging the Genetics of Executive Function. Biol. Psychol. 2008, 79, 30–42. [Google Scholar] [CrossRef]
- Goldberg, T.E.; Weinberger, D.R. Genes and the Parsing of Cognitive Processes. Trends Cogn. Sci. 2004, 8, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Ando, J.; Ono, Y.; Wright, M.J. Genetic Structure of Spatial and Verbal Working Memory. Behav. Genet. 2001, 31, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.; De Geus, E.; Ando, J.; Luciano, M.; Posthuma, D.; Ono, Y.; Hansell, N.; Van Baal, C.; Hiraishi, K.; Hasegawa, T.; et al. Genetics of Cognition: Outline of a Collaborative Twin Study. Twin Res. 2001, 4, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Vijayraghavan, S.; Wang, M.; Birnbaum, S.G.; Williams, G.V.; Arnsten, A.F.T. Inverted-U Dopamine D1 Receptor Actions on Prefrontal Neurons Engaged in Working Memory. Nat. Neurosci. 2007, 10, 376–384. [Google Scholar] [CrossRef]
- Lucki, I. The Spectrum of Behaviors Influenced by Serotonin. Biol. Psychiatry 1998, 44, 151–162. [Google Scholar] [CrossRef]
- Lesch, K.-P.; Bengel, D.; Heils, A.; Sabol, S.Z.; Greenberg, B.D.; Petri, S.; Benjamin, J.; Müller, C.R.; Hamer, D.H.; Murphy, D.L. Association of Anxiety-Related Traits with a Polymorphism in the Serotonin Transporter Gene Regulatory Region. Science 1996, 274, 1527–1531. [Google Scholar] [CrossRef]
- Clark, L.; Roiser, J.P.; Cools, R.; Rubinsztein, D.C.; Sahakian, B.J.; Robbins, T.W. Stop Signal Response Inhibition Is Not Modulated by Tryptophan Depletion or the Serotonin Transporter Polymorphism in Healthy Volunteers: Implications for the 5-HT Theory of Impulsivity. Psychopharmacology 2005, 182, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Fallgatter, A.J.; Jatzke, S.; Bartsch, A.J.; Hamelbeck, B.; Lesch, K.P. Serotonin Transporter Promoter Polymorphism Influences Topography of Inhibitory Motor Control. Int. J. Neuropsychopharmacol. 1999, 2, S1461145799001455. [Google Scholar] [CrossRef]
- Pate, R.R.; O’Neill, J.R.; Lobelo, F. The Evolving Definition of “Sedentary”. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef]
- Zeng, X.; Cai, L.; Wong, S.H.; Lai, L.; Lv, Y.; Tan, W.; Jing, J.; Chen, Y. Association of Sedentary Time and Physical Activity with Executive Function Among Children. Acad. Pediatr. 2021, 21, 63–69. [Google Scholar] [CrossRef]
- Spartano, N.L.; Demissie, S.; Himali, J.J.; Dukes, K.A.; Murabito, J.M.; Vasan, R.S.; Beiser, A.S.; Seshadri, S. Accelerometer-determined Physical Activity and Cognitive Function in Middle-aged and Older Adults from Two Generations of the Framingham Heart Study. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 618–626. [Google Scholar] [CrossRef]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR mHealth uHealth 2020, 8, e18694. [Google Scholar] [CrossRef] [PubMed]
- Case, M.A.; Burwick, H.A.; Volpp, K.G.; Patel, M.S. Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data. JAMA 2015, 313, 625. [Google Scholar] [CrossRef] [PubMed]
- Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D. Current State of Commercial Wearable Technology in Physical Activity. Int. J. Exerc. Sci. 2015, 11, 503. [Google Scholar]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.A.; Shiffman, S. Capturing Momentary, Self-Report Data: A Proposal for Reporting Guidelines. Ann. Behav. Med. 2002, 24, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; McClelland, A.; Furnham, A. An Investigation of Cognitive Test Performance across Conditions of Silence, Background Noise and Music as a Function of Neuroticism. Anxiety Stress Coping 2014, 27, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Edwin, T.; Hundley, V. The Importance of Pilot Studies. Social. Res. Update 2001, 35, 1–4. [Google Scholar]
- Solem, R.C. Limitation of a Cross-Sectional Study. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 205. [Google Scholar] [CrossRef]
- Ding, E.L. Sex Differences in Perceived Risks, Distrust, and Willingness to Participate in Clinical Trials. Arch. Intern. Med. 2007, 167, 905. [Google Scholar] [CrossRef]
- Striley, C.W.; Lloyd, S.; Varma, D.; Vaddiparti, K.; Cottler, L.B. 3487 Trust in Research Among Older Adults. J. Clin. Transl. Sci. 2019, 3, 98. [Google Scholar] [CrossRef]
- Hultsch, D.F.; MacDonald, S.W.S.; Hunter, M.A.; Maitland, S.B.; Dixon, R.A. Sampling and Generalisability in Developmental Research: Comparison of Random and Convenience Samples of Older Adults. Int. J. Behav. Dev. 2002, 26, 345–359. [Google Scholar] [CrossRef]
- Santangelo, S.L.; Tsatsanis, K. What Is Known About Autism. Am. J. Pharmacogenomics 2005, 5, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Webb, S.; Schellenberg, G.D.; Dager, S.; Friedman, S.; Aylward, E.; Richards, T. Defining the Broader Phenotype of Autism: Genetic, Brain, and Behavioral Perspectives. Dev. Psychopathol. 2002, 14, 581–611. [Google Scholar] [CrossRef] [PubMed]
- Bennetto, L.; Pennington, B.F.; Rogers, S.J. Intact and Impaired Memory Functions in Autism. Child Dev. 1996, 67, 1816–1835. [Google Scholar] [CrossRef] [PubMed]
- Luna, B.; Doll, S.K.; Hegedus, S.J.; Minshew, N.J.; Sweeney, J.A. Maturation of Executive Function in Autism. Biol. Psychiatry 2007, 61, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Minshew, N.J.; Sweeney, J.; Luna, B. Autism as a Selective Disorder of Complex Information Processing and Underdevelopment of Neocortical Systems. Mol. Psychiatry 2002, 7, S14–S15. [Google Scholar] [CrossRef] [PubMed]
- Luna, B.; Garver, K.E.; Urban, T.A.; Lazar, N.A.; Sweeney, J.A. Maturation of Cognitive Processes from Late Childhood to Adulthood. Child Dev. 2004, 75, 1357–1372. [Google Scholar] [CrossRef]
- O’Hearn, K.; Asato, M.; Ordaz, S.; Luna, B. Neurodevelopment and Executive Function in Autism. Dev. Psychopathol. 2008, 20, 1103–1132. [Google Scholar] [CrossRef]
- Durante, R.; Ainsworth, B.E. The Recall of Physical Activity: Using a Cognitive Model of the Question-Answering Process. Med. Sci. Sports Exerc. 1996, 28, 1282–1291. [Google Scholar] [CrossRef]
- Jobe, J.B.; Mingay, D.J. New from Cognitive Research Improves Questionnaires. Am. J. Public Health 1989, 79, 1053–1055. [Google Scholar] [CrossRef]
- Knell, G.; Gabriel, K.P.; Businelle, M.S.; Shuval, K.; Wetter, D.W.; Kendzor, D.E. Ecological Momentary Assessment of Physical Activity: Validation Study. J. Med. Internet Res. 2017, 19, e253. [Google Scholar] [CrossRef]
- Carter, D.D.; Robinson, K.; Forbes, J.; Hayes, S. Experiences of Mobile Health in Promoting Physical Activity: A Qualitative Systematic Review and Meta-Ethnography. PLoS ONE 2018, 13, e0208759. [Google Scholar] [CrossRef]
- Lubans, D.R.; Plotnikoff, R.C.; Miller, A.; Scott, J.J.; Thompson, D.; Tudor-Locke, C. Using Pedometers for Measuring and Increasing Physical Activity in Children and Adolescents: The Next Step. Am. J. Lifestyle Med. 2015, 9, 418–427. [Google Scholar] [CrossRef]
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of Physical Activity in Clinical Practice Using Accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef]
Variables | All | Sex | Physical Activity Guidelines | ||
---|---|---|---|---|---|
Males | Females | Achieved | Not Achieved | ||
n | 47 | 11 | 36 | 11 | 36 |
Age (years) | 20.1 (1.4) | 20.2 (1.6) | 20.1 (1.3) | 19.8 (1.0) | 20.3 (1.5) |
Females (n) | 36 | - | - | 10 | 26 |
Males (n) | 11 | - | - | 1 | 10 |
Academic attainment (%) | 64.2 (7.3) | 59.9 (6.8) | 65.2 (7.1) | 63.1 (6.5) | 64.6 (7.6) |
IMD decile | 5.4 (3.2) | 5.6 (3.4) | 5.3 (3.2) | 4.3 (3.4) | 5.7 (3.2) |
Physical activity | |||||
MVPA (minutes) | 78.1 (116.2) | 38.6 (58.6) | 90.2 (127.0) | 255.6 (107.7) | 23.9 (38.9) |
RPE | 3.9 (2.3) | 3.3 (7.1) | 2.3 (4.1) | 4.9 (3.9) | 2.0 (6.4) |
Step value (number) | 7688.5 (3516.8) | 8362.4 (4368.7) | 7495.9 (3283.6) | 8562.3 (2985.7) | 7438.8 (3654.8) |
Executive function | |||||
Stroop effect (m/s) | 74.4 (101.9) | 88.7 (93.6) | 70.0 (105.2) | 68.8 (75.2) | 76.1 (109.7) |
Corsi-backward span (number of items) | 4.5 (2.3) | 5.1 (2.1) | 4.3 (2.4) | 3.8 (2.7) | 4.7 (2.2) |
Task-switch cost (response time in m/s) | 440.4 (296.1) | 346.6 (259.0) | 366.3 (304.1) | 456.2 (261.5) | 435.6 (309.2) |
Model | B | 95% CI for B | SE B | β | |
---|---|---|---|---|---|
LL | UL | ||||
Stroop Effect | |||||
MVPA | 0.09 | −0.22 | 0.40 | 0.15 | 0.11 |
Academic attainment | 0.64 | −4.73 | 6.00 | 2.62 | 0.05 |
IMD decile | −4.38 | −16.02 | 7.25 | 5.68 | −0.15 |
Sex | 38.03 | −59.96 | 135.75 | 47.71 | 0.16 |
Age | 12.19 | −21.99 | 46.37 | 16.68 | 0.15 |
Backward Corsi Span | |||||
MVPA | −0.01 | −0.01 | 0.00 | 0.00 | −0.24 |
Academic attainment | 0.07 | −0.05 | 0.19 | 0.06 | 0.22 |
IMD decile | 0.19 | −0.06 | 0.45 | 0.12 | 0.26 |
Sex | 0.35 | −1.80 | 2.48 | 1.04 | 0.06 |
Age | 0.21 | −0.54 | 0.96 | 0.36 | 0.10 |
Task-Switch Cost | |||||
MVPA | −0.14 | −0.96 | 0.69 | 0.40 | −0.06 |
Academic attainment | 13.32 | −0.88 | 27.52 | 6.93 | 0.38 |
IMD decile | −13.76 | −44.54 | 17.02 | 15.03 | −0.17 |
Sex | 29.54 | −228.99 | 288.07 | 126.21 | 0.05 |
Age | −29.56 | −119.97 | 60.86 | 44.14 | −0.13 |
Model | B | 95% CI for B | SE B | β | |
---|---|---|---|---|---|
LL | UL | ||||
Stroop Effect | |||||
Step value | 0.01 | −0.005 | 0.16 | 0.005 | 0.22 |
Academic Attainment | −0.07 | −5.47 | 5.34 | 2.64 | −0.01 |
IMD decile | −4.78 | −16.08 | 6.52 | 5.52 | −0.16 |
Sex | 15.56 | −83.07 | 114.19 | 48.15 | 0.07 |
Age | 17.91 | −17.60 | 53.42 | 17.33 | 0.21 |
Backward Corsi Span | |||||
Step value | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 |
Academic Attainment | 0.05 | −0.07 | 0.17 | 0.06 | 0.17 |
IMD decile | 0.23 | −0.02 | 0.48 | 0.12 | 0.31 |
Sex | 0.17 | 0.88 | 2.34 | 1.06 | 0.03 |
Age | 0.42 | 0.29 | 1.20 | 0.38 | 0.20 |
Task-Switch Cost | |||||
Step value | 0.01 | −0.02 | 0.04 | 0.01 | 0.14 |
Academic Attainment | 12.35 | −2.07 | 26.77 | 7.04 | 0.35 |
IMD decile | −12.62 | −42.76 | 17.51 | 14.71 | −0.15 |
Sex | 10.64 | −252.40 | 273.67 | 128.41 | 0.02 |
Age | −18.31 | −113.00 | 76.39 | 46.23 | −0.08 |
Females | Physical Activity Guidelines | |
---|---|---|
Stroop effect | ||
Achieved | Not Achieved | |
M(SD) | 69.0 (84.0) | 42.0 (104.3) |
Madj (SE) | 67.0 (72.6) | 42.3 (28.8) |
Backward Corsi span | ||
Achieved | Not Achieved | |
M(SD) | 3.0 (2.7) | 5.0 (2.0) |
Madj (SE) | 3.6 (1.6) | 4.6 (0.6) |
Task-switch | ||
Achieved | Not Achieved | |
M(SD) | 386.0 (260.7) | 434.8 (281.1) |
Madj (SE) | 386.8 (192.4) | 412.4 (76.2) |
Males | Physical Activity Guidelines | |
Stroop effect | ||
Achieved | Not Achieved | |
M(SD) | n/a | 81.4 (95.0) |
Madj (SE) | n/a | 82.7 (44.0) |
Backward Corsi span | ||
Achieved | Not Achieved | |
M(SD) | n/a | 4.7 (2.6) |
Madj (SE) | n/a | 4.9 (1.0) |
Task-switch | ||
Achieved | Not Achieved | |
M(SD) | n/a | 376.4 (269.8) |
Madj (SE) | n/a | 439.5 (116.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilmour, A.-M.; MacDonald, M.J.; Cox, A.; Fairclough, S.J.; Tyler, R. Investigating Ecological Momentary Assessed Physical Activity and Core Executive Functions in 18- to 24-Year-Old Undergraduate Students. Int. J. Environ. Res. Public Health 2023, 20, 6944. https://doi.org/10.3390/ijerph20206944
Gilmour A-M, MacDonald MJ, Cox A, Fairclough SJ, Tyler R. Investigating Ecological Momentary Assessed Physical Activity and Core Executive Functions in 18- to 24-Year-Old Undergraduate Students. International Journal of Environmental Research and Public Health. 2023; 20(20):6944. https://doi.org/10.3390/ijerph20206944
Chicago/Turabian StyleGilmour, Ayva-Mae, Mhairi J. MacDonald, Ashley Cox, Stuart J. Fairclough, and Richard Tyler. 2023. "Investigating Ecological Momentary Assessed Physical Activity and Core Executive Functions in 18- to 24-Year-Old Undergraduate Students" International Journal of Environmental Research and Public Health 20, no. 20: 6944. https://doi.org/10.3390/ijerph20206944