Climate Variables Related to the Incidence of Human Leishmaniosis in Montenegro in Southeastern Europe during Seven Decades (1945–2014)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. Who Leishmaniasis Control the WHO Leishmaniasis Control Team Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Leishmaniasis (2022) Factsheet 9 January 2022. Geneva: World Health Organization. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 9 June 2022).
- Ghatee, M.A.; Sharifi, I.; Haghdoost, A.A.; Kanannejad, Z.; Taabody, Z.; Hatam, G.; Abdollahipanah, A. Spatial correlations of population and ecological factors with distribution of visceral leishmaniasis cases in southwestern Iran. J. Vector Borne Dis. 2013, 50, 179–187. [Google Scholar] [PubMed]
- Karamian, M.; Ghatee, M.A.; Shayesteh, M.; Taylor, W.R.; Mohebi-Nejad, S.; Taheri, G.; Jamavar, M.R. The effect of geo-climatic determinants on the distribution of cutaneous leishmaniasis in a recently emerging focus in eastern Iran. Parasites Vectors 2021, 14, 538. [Google Scholar] [CrossRef] [PubMed]
- McGwire, B.S.; Satoskar, A.R. Leishmaniasis: Clinical syndromes and treatment. Qjm: Int. J. Med. 2013, 107, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Griensven, J.; Diro, E. Visceral leishmaniasis. Infect. Dis. Clin. North Am. 2012, 26, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Avila-García, M.; Mancilla, J.; Segura-Cervantes, E.; Galindo-Sevilla, N. Transmission to humans. In Leishmaniasis—Trends in Epidemiology, Diagnosis and Treatment; Claborn, D.M., Ed.; InTech: London, UK, 2014; pp. 27–44. [Google Scholar]
- Di Muccio, T.; Scalone, A.; Bruno, A.; Marangi, M.; Grande, R.; Armignacco, O.; Gradoni, L.; Gramiccia, M. Epidemiology of Imported Leishmaniasis in Italy: Implications for a European Endemic Country. PLoS ONE. 2015, 10, e0129418. [Google Scholar]
- Aversi-Ferreira, R.A.; Galvão, J.D.; da Silva, S.F.; Bhatia-Dey, N.; Aversi-Ferreira, T.A. Geographical and Environmental Variables of Leishmaniasis Trans-mission. In Leishmaniasis—Trends in Epidemiology, Diagnosis and Treatment; Claborn, D.M., Ed.; InTech: London, UK, 2014; pp. 105–124. [Google Scholar]
- Madabber, F. Leishmaniasis. In Tropical Disease Research: Progres 1991–1992. Eleventh Program Report; UNDP/WORLD BANK/WHO Special Programme for Research and Training in Tropical Diseases; WHO: Geneva, Switzerland, 1993; pp. 77–87. [Google Scholar]
- Ready, P.D. Leishmaniasis emergence in Europe. Eurosurveillance 2010, 15, 19505. [Google Scholar] [CrossRef]
- De Leo, G.A.; Stensgaard, A.S.; Sokolow, S.H.; N’Goran, E.K.; Chamberlin, A.J.; Yang, G.J.; Utzinger, J. Schistosomiasis and climate change. BMJ 2020, 371, m4324. [Google Scholar] [CrossRef]
- Adekiya, T.A.; Kappo, A.P.; Okosun, K.O. Temperature and rainfall impact on schistosomiasis. Glob. J. Pure Appl. Mathemat. 2017, 13, 8453–8469. [Google Scholar]
- Tran, B.-L.; Tseng, W.-C.; Chen, C.-C.; Liao, S.-Y. Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. Int. J. Environ. Res. Public Heal. 2020, 17, 1392. [Google Scholar] [CrossRef] [Green Version]
- Petrić, M.; Lalić, B.; Pajović, I.; Micev, S.; Đurđević, V.; Petrić, D. Expected Changes of Montenegrin Climate, Impact on the Establishment and Spread of the Asian Tiger Mosquito (Aedes albopictus), and Validation of the Model and Model-Based Field Sampling. Atmosphere 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Statistički godišnjak Crne Gore 2011. Zavod za statistiku Crne Gore, Podgorica, 2011. (In Montenegrian). Available online: https://www.monstat.org/userfiles/file/publikacije/godisnjak%202011/GODISNJAK%20%202011-%20new.pdf (accessed on 6 June 2022).
- Medenica, S.; Jovanović, S.; Dožić, I.; Miličić, B.; Lakićević, N.; Rakočević, B. Epidemiological Surveillance of Leishmaniasis in Montenegro, 1992–2013. Srp. Arh. Za Celok. Lek. 2015, 143, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Gore, V.C. Strategija regionalnog razvoja Crne Gore za period 2014–2020. Minist. Ekon. Podgor. 2014. (In Mon-tenegrian). [Google Scholar]
- Medenica, S.P. Epidemiological and Ecological Characteristics of Leishmaniosis in Montenegro. Doctoral Dissertation, University of Niš, Faculty of Medicine, Niš, Serbia, 2015. (In Serbian). [Google Scholar]
- Zavod Za Hidrometeorologiju I Seizmologiju. Karakteristike. (In Montenegrian). Available online: http://www.meteo.co.me/page.php?id=39 (accessed on 9 June 2022).
- Burić, M.; Micev, B.; Mitrović, L. Atlas Klime Crne Gore; Crnogorska Akademija Nauke i Umjetnosti: Podgorica, Montenegro, 2012. (In Serbian) [Google Scholar]
- Ministarstvo uređenja prostora i zaštite životne sredine (2010) Prvi nacionalni izvještaj Crne Gore o klimatskim promjenama prema okvirnoj konvenciji Ujedinjenih Nacija o klimatskim promjenama (UNFCCC). Podgorica, maj 2010. (In Mon-tenegrian). Available online: http://tehnika-informatika.com/vijesti/infofest-2010-ministarstvo-uredenja-prostora-i-zastite-zivotne-sredine-crne-gore/ (accessed on 6 June 2022).
- Amin, M.R.; Tareq, S.M.; Rahman, S.H.; Uddin, M.R. Effects of temperature, rainfall and relative humidity on visceral leish-maniasis prevalence at two highly affected upazilas in Bangladesh. Life Sci. J. 2013, 10, 1440. [Google Scholar]
- World Health Organization (WHO). Library Cataloguing-in-Publication Data: Control of the Leishmaniasis: Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Ready, P.D. Biology of Phlebotomine Sand Flies as Vectors of Disease Agents. Annu. Rev. Èntomol. 2013, 58, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.M.; Rangel, E.F.; Ready, P.D.; Vale, M.M. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change. PLoS ONE 2015, 10, e0143282. [Google Scholar] [CrossRef]
- Daoui, O.; Bennaid, H.; Kbaich, M.A.; Mhaidi, I.; Aderdour, N.; Rhinane, H.; Bouhout, S.; Akarid, K.; Lemrani, M. Environmental, Climatic, and Parasite Molecular Factors Impacting the Incidence of Cutaneous Leishmaniasis Due to Leishmania tropica in Three Moroccan Foci. Microorganisms 2022, 10, 1712. [Google Scholar] [CrossRef]
- Andrić, B.; Mijović, G.; Terzić, D.; Dupanović, B. Vector borne transmisive zoonozes in Montenegro. J. IMAB -Annu. Proceeding 2012, 18, 220–225. [Google Scholar] [CrossRef]
- Hlavacova, J.; Votypka, J.; Volf, P. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. J. Med. Èntomol. 2013, 50, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Kasap, O.E.; Alten, B. Laboratory estimation of degree-day developmental requirements of Phlebotomus papatasi (Diptera: Psychodidae). J. Vector Ecol. 2005, 30, 328–333. [Google Scholar] [PubMed]
- Benkova, I.; Volf, P. Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae). J. Med. Entomol. 2007, 44, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, C. Associations between Meteorological Factors and Visceral Leishmaniasis Outbreaks in Jiashi County, Xinjiang Uygur Autonomous Region, China, 2005–2015. Int. J. Environ. Res. Public Heal. 2019, 16, 1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunia, G.S.; Kumar, V.; Kumar, A.J.; Das, P.; Kesari, S. The use of remote sensing in the identification of the eco-environmental factors associated with the risk of human visceral leishmaniasis (kala-azar) on the Gangetic plain, in north-eastern India. Ann. Trop. Med. Parasitol. 2010, 104, 35–53. [Google Scholar] [CrossRef]
- Chamaillé, L.; Tran, A.; Meunier, A.; Bourdoiseau, G.; Ready, P.; Dedet, J.P. Environmental risk mapping of canine leish-maniasis in France. Parasit Vectors 2010, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Thomas, S.M.; Beierkuhnlein, C. Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospat. Heal. 2010, 5, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gálvez, R.; Descalzo, M.A.; Guerrero, I.; Miró, G.; Molina, R. Mapping the Current Distribution and Predicted Spread of the Leishmaniosis Sand Fly Vector in the Madrid Region (Spain) Based on Environmental Variables and Expected Climate Change. Vector-Borne Zoonotic Dis. 2011, 11, 799–806. [Google Scholar] [CrossRef]
- Fernandez, M.S.; Lestani, E.A.; Cavia, R.; Salomon, O.D. Phlebotominae fauna in a recent deforested area with american tegumentary leishmaniasis transmission (Puerto Iguazu, Misiones, Argentina): Seasonal distribution in domestic and perido-mestic environments. Acta Trop. 2012, 122, 16–23. [Google Scholar] [CrossRef]
- Branco, S.; Alves-Pires, C.; Maia, C.; Cortes, S.; Cristovão, J.M.S.; Gonçalves, L.; Campino, L.; Afonso, M.O. Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central region, Portugal. Acta Trop. 2013, 125, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Turki, K.; Faraj, I.R. Lake The seasonality of cutaneous leishmaniasis in Asir Region, Saudi Arabia. IJES 2014, 3, 1–13. [Google Scholar]
- Shirzadi, M.R.; Mollalo, A.; Yaghoobi-Ershadi, M.R. Dynamic Relations between Incidence of Zoonotic Cutaneous Leishmaniasis and Climatic Factors in Golestan Province, Iran. J. Arthropod-Borne Dis. 2015, 9, 148–160. [Google Scholar]
- Roger, A.; Carme, B.; Couppie, P.; Dufour, J.; Marie, D.S.; Simon, S.; Adenis, A.; Nacher, M.; Blanchet, D.; Basurko, C.; et al. Climate and Leishmaniasis in French Guiana. Am. J. Trop. Med. Hyg. 2013, 89, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.V. Studies on the role of climatological factors in the distribution of phlebotomine sandflies (Diptera: Psychodidae) in semi-arid areas of Rajasthan, India. J. Arid. Environ. 1999, 42, 43–48. [Google Scholar] [CrossRef]
- Cardenas, R.; Sandoval, C.M.; Rodriguez-Morales, A.J.; Franco-Paredes, C. Impact of climate variability in the occurrence of leishmaniasis in northeastern colombia. Am. J. Trop. Med. Hyg. 2006, 75, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ahmed, K.; Aoun, K.; Jeddi, F.; Ghrab, J.; El-Aroui, M.A.; Bouratbine, A. Visceral leishmaniasis in tunisia: Spatial distri-bution and association with climatic factors. Am. J. Trop. Med. Hyg. 2009, 8, 140–145. [Google Scholar]
- Rajesh, K.; Sanjay, K. Change in global climate and prevalence of Visceral Leishmaniasis. Int. J. Sci. Res. Pub. 2013, 3, 1–3. [Google Scholar]
- Dokhan, M.R.; Kenawy, M.A.; Doha, S.A.; El-Hosary, S.S.; Shaibi, T.; Annajar, B.B. Entomological studies of phlebotomine sand flies (Diptera: Psychodidae) in relation to cutaneous leishmaniasis transmission in Al Rabta, North West of Libya. Acta Trop. 2016, 154, 95–101. [Google Scholar] [CrossRef]
- Dawit, G.; Girma, Z.; Simenew, K. A review on biology, epidemiology and public health significance of leishmaniasis. J. Bacteriol. Parasitol. 2013, 4, 166. [Google Scholar]
- Killick-Kendrick, R. The biology and control of Phlebotomine sand flies. Clin. Dermatol. 1999, 17, 279–289. [Google Scholar] [CrossRef]
- Feliciangeli, M.D. Natural breeding places of phlebotomine sandflies. Med. Veter Èntomol. 2004, 18, 71–80. [Google Scholar] [CrossRef]
Coastal | Central | Highland | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 95% CI Cut-Off | p | B | 95% CI Cut-Off | p | B | 95% CI Cut-Off | p | ||||
Upper | Lower | Upper | Lower | Upper | Lower | |||||||
Temperature in January | 0.499 | −0.652 | 1.649 | 0.389 | 1.016 | 0.416 | 1.616 | 0.001 | 0.499 | −0.652 | 1.649 | 0.183 |
Temperature in February | 0.161 | −0.827 | 1.150 | 0.745 | −0.017 | −0.806 | 0.772 | 0.966 | 0.161 | −0.827 | 1.150 | 0.469 |
Temperature in March | 1.086 | 0.147 | 2.025 | 0.024 | 0.378 | −0.588 | 1.344 | 0.437 | 1.086 | 0.147 | 2.025 | 0.469 |
Temperature in April | 0.895 | 0.223 | 1.567 | 0.010 | 0.728 | 0.239 | 1.216 | 0.004 | 0.895 | 0.223 | 1.567 | 0.550 |
Temperature in May | 0.514 | −0.104 | 1.132 | 0.102 | 0.983 | 0.415 | 1.550 | 0.001 | 0.514 | −0.104 | 1.132 | 0.805 |
Temperature in June | 0.474 | −0.020 | 0.968 | 0.060 | 0.631 | 0.268 | 0.994 | 0.001 | 0.474 | −0.020 | 0.968 | 0.187 |
Temperature in July | 0.530 | 0.057 | 1.003 | 0.029 | 0.702 | 0.318 | 1.087 | 0.001 | 0.530 | 0.057 | 1.003 | 0.117 |
Temperature in August | 0.339 | −0.122 | 0.801 | 0.146 | 0.538 | 0.216 | 0.861 | 0.001 | 0.339 | −0.122 | 0.801 | 0.051 |
Temperature in September | 0.338 | −0.447 | 1.123 | 0.393 | 0.242 | −0.242 | 0.726 | 0.322 | 0.338 | −0.447 | 1.123 | 0.026 |
Temperature in October | 0.098 | −0.682 | 0.879 | 0.802 | 0.471 | −0.098 | 1.039 | 0.103 | 0.098 | −0.682 | 0.879 | 0.248 |
Temperature in November | 0.260 | −0.347 | 0.866 | 0.396 | 0.412 | −0.029 | 0.852 | 0.066 | 0.260 | −0.347 | 0.866 | 0.094 |
Temperature in December | 0.428 | −0.380 | 1.237 | 0.294 | 0.842 | 0.336 | 1.347 | 0.001 | 0.428 | −0.380 | 1.237 | 0.015 |
Yearly temperature | 1.068 | 0.117 | 2.019 | 0.028 | 1.326 | 0.652 | 2.000 | 0.000 | 1.068 | 0.117 | 2.019 | 0.060 |
Coastal | Central | Highland | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 95% CI Cut-Off | p | B | 95% CI Cut-Off | p | B | 95% CI Cut-Off | p | ||||
Upper | Lower | Upper | Lower | Upper | Lower | |||||||
Air humidity in January | 0.226 | −0.063 | 0.515 | 0.123 | 0.044 | −0.148 | 0.235 | 0.650 | 0.107 | 0.030 | 0.184 | 0.007 |
Air humidity in February | 0.065 | −0.080 | 0.210 | 0.371 | 0.141 | −0.011 | 0.294 | 0.069 | 0.061 | −0.009 | 0.131 | 0.086 |
Air humidity in March | 0.225 | 0.021 | 0.429 | 0.031 | 0.245 | −0.012 | 0.503 | 0.061 | 0.026 | −0.038 | 0.090 | 0.422 |
Air humidity in April | 0.003 | −0.322 | 0.327 | 0.987 | −0.226 | −0.380 | −0.071 | 0.005 | 0.002 | −0.057 | 0.061 | 0.948 |
Air humidity in May | −0.107 | −0.297 | 0.084 | 0.266 | −0.317 | −0.494 | −0.140 | 0.001 | 0.131 | 0.045 | 0.218 | 0.003 |
Air humidity in June | −0.131 | −0.315 | 0.052 | 0.158 | −0.114 | −0.219 | −0.009 | 0.034 | −0.024 | −0.086 | 0.039 | 0.456 |
Air humidity in July | −0.056 | −0.320 | 0.208 | 0.674 | −0.168 | −0.300 | −0.036 | 0.014 | −0.038 | −0.094 | 0.019 | 0.186 |
Air humidity in August | −0.048 | −0.358 | 0.262 | 0.757 | −0.104 | −0.208 | 0.000 | 0.050 | −0.046 | −0.084 | −0.009 | 0.017 |
Air humidity in September | −0.714 | −1.617 | 0.190 | 0.119 | −0.123 | −0.240 | −0.006 | 0.040 | −0.045 | −0.100 | 0.011 | 0.113 |
Air humidity in October | 0.271 | 0.070 | 0.473 | 0.009 | 0.041 | −0.153 | 0.235 | 0.674 | 0.012 | −0.122 | 0.147 | 0.853 |
Air humidity in November | 0.022 | −0.128 | 0.172 | 0.769 | 0.126 | −0.086 | 0.338 | 0.238 | 0.184 | 0.058 | 0.311 | 0.005 |
Air humidity in December | −0.167 | −0.395 | 0.062 | 0.150 | 0.935 | 0.277 | 1.594 | 0.006 | 0.057 | −0.053 | 0.167 | 0.306 |
Yearly air humidity | 0.099 | −0.310 | 0.509 | 0.630 | −0.251 | −0.521 | 0.019 | 0.068 | −0.012 | −0.176 | 0.151 | 0.881 |
Coastal | Central | Highland | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 95% CI Cut-Off | p | B | 95% CI Cut-Off | p | B | 95% CI Cut-Off | p | ||||
Upper | Lower | Upper | Lower | Upper | Lower | |||||||
Precipitation in January | 0.009 | 0.000 | 0.017 | 0.042 | 0.004 | −0.002 | 0.009 | 0.189 | −0.001 | −0.005 | 0.003 | 0.603 |
Precipitation in February | 0.017 | 0.004 | 0.030 | 0.009 | 0.012 | 0.004 | 0.019 | 0.003 | 0.009 | 0.002 | 0.017 | 0.018 |
Precipitation in March | 0.015 | −0.001 | 0.032 | 0.070 | 0.000 | −0.008 | 0.008 | 0.978 | −0.004 | −0.012 | 0.003 | 0.232 |
Precipitation in April | −0.011 | −0.032 | 0.010 | 0.306 | −0.011 | −0.019 | −0.002 | 0.013 | −0.003 | −0.007 | 0.002 | 0.278 |
Precipitation in May | 0.016 | −0.010 | 0.043 | 0.226 | −0.017 | −0.044 | 0.009 | 0.202 | 0.014 | 0.005 | 0.023 | 0.002 |
Precipitation in June | 0.035 | 0.011 | 0.059 | 0.005 | 0.034 | 0.009 | 0.059 | 0.008 | −0.009 | −0.016 | −0.001 | 0.030 |
Precipitation in July | −0.016 | −0.060 | 0.028 | 0.459 | −0.022 | −0.048 | 0.003 | 0.084 | −0.005 | −0.013 | 0.003 | 0.246 |
Precipitation in August | −0.035 | −0.064 | −0.005 | 0.021 | −0.020 | −0.038 | −0.002 | 0.032 | −0.007 | −0.013 | −0.001 | 0.029 |
Precipitation in September | 0.005 | −0.011 | 0.020 | 0.541 | 0.000 | −0.010 | 0.010 | 0.972 | −0.002 | −0.006 | 0.002 | 0.353 |
Precipitation in October | 0.007 | −0.023 | 0.037 | 0.642 | 0.004 | −0.004 | 0.012 | 0.287 | 0.000 | −0.003 | 0.003 | 0.910 |
Precipitation in November | 0.007 | −0.009 | 0.023 | 0.378 | 0.000 | −0.012 | 0.011 | 0.954 | −0.005 | −0.010 | 0.000 | 0.031 |
Precipitation in December | 0.015 | 0.003 | 0.028 | 0.018 | 0.009 | 0.004 | 0.015 | 0.001 | 0.002 | −0.002 | 0.005 | 0.355 |
Yearly precipitation | 0.003 | 0.000 | 0.005 | 0.027 | 0.002 | 0.000 | 0.004 | 0.060 | −0.001 | −0.002 | 0.001 | 0.344 |
Factor | B | 95% CI Cut-Off | T | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Temperature (°C) | 0.150 | 0.013 | 0.287 | 2.166 | 0.031 |
Humidity (%) | 0.031 | −0.129 | 0.190 | 0.377 | 0.707 |
Precipitation (mm) | 0.00005 | −0.000002 | 0.001 | 1.911 | 0.057 |
Constant | −4.039 |
Factor | B | 95% CI Cut-Off | T | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Temperature (°C) | 1.178 | 0.421 | 1.935 | 3.107 | 0.003 |
Humidity (%) | −0.314 | −0.599 | −0.029 | −2.201 | 0.031 |
Precipitation (mm) | 0.002 | 0.000 | 0.005 | 1.820 | 0.073 |
Constant | 3.103 |
Factor | B | 95% CI Cut-Offs | T | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Temperature (°C) | 0.174 | 0.028 | 0.319 | 2.382 | 0.020 |
Humidity (%) | 0.073 | −0.101 | 0.248 | 0.840 | 0.404 |
Precipitation (mm) | −0.001 | −0.002 | 0.000 | −1.669 | 0.100 |
Constant | −5.552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medenica, S.; Miladinović-Tasić, N.; Stojanović, N.M.; Lakićević, N.; Rakočević, B. Climate Variables Related to the Incidence of Human Leishmaniosis in Montenegro in Southeastern Europe during Seven Decades (1945–2014). Int. J. Environ. Res. Public Health 2023, 20, 1656. https://doi.org/10.3390/ijerph20031656
Medenica S, Miladinović-Tasić N, Stojanović NM, Lakićević N, Rakočević B. Climate Variables Related to the Incidence of Human Leishmaniosis in Montenegro in Southeastern Europe during Seven Decades (1945–2014). International Journal of Environmental Research and Public Health. 2023; 20(3):1656. https://doi.org/10.3390/ijerph20031656
Chicago/Turabian StyleMedenica, Sanja, Nataša Miladinović-Tasić, Nikola M. Stojanović, Novak Lakićević, and Božidarka Rakočević. 2023. "Climate Variables Related to the Incidence of Human Leishmaniosis in Montenegro in Southeastern Europe during Seven Decades (1945–2014)" International Journal of Environmental Research and Public Health 20, no. 3: 1656. https://doi.org/10.3390/ijerph20031656
APA StyleMedenica, S., Miladinović-Tasić, N., Stojanović, N. M., Lakićević, N., & Rakočević, B. (2023). Climate Variables Related to the Incidence of Human Leishmaniosis in Montenegro in Southeastern Europe during Seven Decades (1945–2014). International Journal of Environmental Research and Public Health, 20(3), 1656. https://doi.org/10.3390/ijerph20031656