How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?
Abstract
:1. Introduction
2. Literature Reviews and Theoretical Framework
2.1. Literature Reviews
2.2. Theoretical Framework
3. Methodology and Data
3.1. Measurement of AGTFP
3.2. Variables Description
3.2.1. Core Explanatory Variables
3.2.2. Control Variables
3.3. Empirical Models
3.3.1. Spatial Durbin Model
3.3.2. Two-Regime Spatial Durbin Model
3.4. Data Resources
4. Results
4.1. Temporal Evolutionary Characteristics of AGTFP in China
4.2. Applicability Test of the Spatial Econometric Model
4.3. The Impact of AMS Supply Organizations on AGTFP
4.4. The Impact of AMS Supply Individuals on AGTFP
4.5. Regional Heterogeneity Analysis
5. Discussion
5.1. Development Path of AMS under the Goal of Agricultural Green Transformation
5.2. Characteristics of AMS Cross-Regional Operations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Z.; Baležentis, T.; Ferrier, G.D. Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator. China Econ. Rev. 2019, 57, 101315. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Li, W.; Li, G. Agricultural Modernization with Chinese Characteristics: Target Orientation, Reform and Innovation. Chin. Rural Econ. 2015, 1, 4–13. [Google Scholar]
- Zou, L.; Wang, Y.; Liu, Y. Spatial-temporal evolution of agricultural ecological risks in China in recent 40 years. Environ. Sci. Pollut. Res. Int. 2022, 29, 3686–3701. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, B.; Jiang, S.; Nie, Y. Can Increasing Scale Efficiency Curb Agricultural Nonpoint Source Pollution? Int. J. Environ. Res. Public Health 2021, 18, 8798. [Google Scholar] [CrossRef]
- Han, H.; Zhong, Z.; Guo, Y.; Xi, F.; Liu, S. Coupling and decoupling effects of agricultural carbon emissions in China and their driving factors. Environ. Sci. Pollut. Res. Int. 2018, 25, 25280–25293. [Google Scholar] [CrossRef]
- Wen, S.; Hu, Y.; Liu, H. Measurement and Spatial–Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective. Agriculture 2022, 12, 1749. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T. Why are Chinese small farmers planting more grain crops?—Review of the Logic of Grain Planting (2018). China Agric. Econ. Rev. 2019, 12, 173–175. [Google Scholar] [CrossRef]
- Ji, X.; Rozelle, S.; Huang, J.; Zhang, L.; Zhang, T. Are China’s Farms Growing? China World Econ. 2016, 24, 41–62. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Gao, J.; Song, G.; Sun, X. Does labor migration affect rural land transfer? Evidence from China. Land Use Policy 2020, 99, 105096. [Google Scholar] [CrossRef]
- Sims, B.; Kienzle, J. Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It? Agriculture 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Sims, B.; Heney, J. Promoting Smallholder Adoption of Conservation Agriculture through Mechanization Services. Agriculture 2017, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Luo, B. Service Scale Management: Vertical Division of Labor, Horizontal Division of Labor and Specialization of Connected Farmland. Chin. Rural Econ. 2017, 11, 2–16. [Google Scholar]
- Yu, D.; Liu, L.; Gao, S.; Yuan, S.; Shen, Q.; Chen, H. Impact of carbon trading on agricultural green total factor productivity in China. J. Clean. Prod. 2022, 367, 132789. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998-2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Liu, S.; Lei, P.; Li, X.; Li, Y. A nonseparable undesirable output modified three-stage data envelopment analysis application for evaluation of agricultural green total factor productivity in China. Sci. Total Environ. 2022, 838, 155947. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Wang, S.; Huang, X. Measurement for China’s Agricultural Green TFP. China Popul. Resour. Environ. 2018, 28, 66–74. [Google Scholar]
- Xiao, S.; He, Z.; Zhang, W.; Qin, X. The Agricultural Green Production following the Technological Progress: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9876. [Google Scholar] [CrossRef]
- Diao, P.; Zhang, Z.; Jin, Z. Dynamic and static analysis of agricultural productivity in China. China Agric. Econ. Rev. 2018, 10, 293–312. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.; Huang, J.; Gao, X.; Chen, L. Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998-2016: Based on More Sophisticated Calculations of Carbon Emissions. Int. J. Environ. Res. Public Health 2019, 16, 3932. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Shi, R.; Mi, L.; Liu, P.; Wang, G. Spatial Distribution and Convergence of Agricultural Green Total Factor Productivity in China. Int. J. Environ. Res. Public Health 2022, 19, 8786. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resour. Conserv. Recycl. 2019, 147, 201–213. [Google Scholar] [CrossRef]
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef]
- Ablimit, R.; Li, W.; Zhang, J.; Gao, H.; Zhao, Y.; Cheng, M.; Meng, X.; An, L.; Chen, Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. J. Environ. Manag. 2022, 321, 115859. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Piao, H. Does Agricultural Mechanization Improve the Green Total Factor Productivity of China’s Planting Industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Liu, F.; Lv, N. The threshold effect test of human capital on the growth of agricultural green total factor productivity: Evidence from China. Int. J. Electr. Eng. Educ. 2021, in press. [Google Scholar] [CrossRef]
- Ren, C.; Liu, S.; van Grinsven, H.; Reis, S.; Jin, S.; Liu, H.; Gu, B. The impact of farm size on agricultural sustainability. J. Clean. Prod. 2019, 220, 357–367. [Google Scholar] [CrossRef]
- Sun, Y. Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity. Front. Environ. Sci. 2022, 10, 955954. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, C.; Sun, G.; Li, J. The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: Evidence From China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]
- Deng, H.; Jing, X.; Shen, Z. Internet technology and green productivity in agriculture. Environ. Sci. Pollut. Res. Int. 2022, 29, 81441–81451. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Tang, M.; Guo, L. Impact of Population Aging and Renewable Energy Consumption on Agricultural Green Total Factor Productivity in Rural China: Evidence from Panel VAR Approach. Agriculture 2022, 12, 715. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, H.; Wu, G. Agricultural Green Total Factor Productivity under the Distortion of the Factor Market in China. Sustainability 2022, 14, 9309. [Google Scholar] [CrossRef]
- Xu, P.; Jin, Z.; Ye, X.; Wang, C. Efficiency Measurement and Spatial Spillover Effect of Green Agricultural Development in China. Front. Environ. Sci. 2022, 10, 909321. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, B.; Wang, J.; Kwek, K. The impact of climate change on China’s agricultural green total factor productivity. Technol. Forecast. Soc. Change 2022, 185, 122054. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Wang, T. Spatial Spillover Effects of Resource Misallocation on the Green Total Factor Productivity in Chinese Agriculture. Int. J. Environ. Res. Public Health 2022, 19, 15718. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhu, P.; Tang, L. Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land 2022, 11, 1170. [Google Scholar] [CrossRef]
- Zhu, Y.; Deng, J.; Wang, M.; Tan, Y.; Yao, W.; Zhang, Y. Can Agricultural Productive Services Promote Agricultural Environmental Efficiency in China? Int. J. Environ. Res. Public Health 2022, 19, 9339. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, J.; Wang, Y. Can Socialized Service of Agricultural Green Production Improve Agricultural Green Productivity? J. Agrotech. Econ. 2021, 9, 36–49. [Google Scholar] [CrossRef]
- Zhang, M.; Tong, T.; Chen, Z. Can Agricultural Socialized Service Improve Agricultural Green Productivity? South China J. Econ. 2022, in press. [Google Scholar] [CrossRef]
- Otsuka, K. Food insecurity, income inequality, and the changing comparative advantage in world agriculture. Agric. Econ. 2013, 44, 7–18. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization outsourcing clusters and division of labor in Chinese agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Qian, L.; Lu, H.; Gao, Q.; Lu, H. Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China. Land Use Policy 2022, 115, 106008. [Google Scholar] [CrossRef]
- Zhou, J. The Dual Division of Agricultural Socialization Service and its Consequences under the Background of Land Circulation. J. Nanjing Agric. Univ. 2017, 17, 141–151+166. [Google Scholar]
- Anang, B.T.; Asante, B.O. Farm household access to agricultural services in northern Ghana. Heliyon 2020, 6, e05517. [Google Scholar] [CrossRef]
- Lu, Q.; Du, X.; Qiu, H. Adoption patterns and productivity impacts of agricultural mechanization services. Agric. Econ. 2022, 53, 826–845. [Google Scholar] [CrossRef]
- Guo, L.; Duan, X.; Li, H.; Yang, W.; Ren, Y.; Guo, Y. Does a higher minimum wage accelerate labour division in agricultural production? Evidence from the main rice-planting area in China. Econ. Res. 2021, 35, 2984–3010. [Google Scholar] [CrossRef]
- Liao, W.; Zeng, F.; Chanieabate, M. Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery. Sustainability 2022, 14, 7964. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agric. Econ. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
- Tang, L.; Liu, Q.; Yang, W.; Wang, J. Do agricultural services contribute to cost saving? Evidence from Chinese rice farmers. China Agric. Econ. Rev. 2018, 10, 323–337. [Google Scholar] [CrossRef]
- Qiu, T.; Luo, B. Do small farms prefer agricultural mechanization services? Evidence from wheat production in China. Appl. Econ. 2021, 53, 2962–2973. [Google Scholar] [CrossRef]
- Mi, Q.; Li, X.; Gao, J. How to improve the welfare of smallholders through agricultural production outsourcing: Evidence from cotton farmers in Xinjiang, Northwest China. J. Clean. Prod. 2020, 256, 120636. [Google Scholar] [CrossRef]
- Lyne, M.C.; Jonas, N.; Ortmann, G.F. A quantitative assessment of an outsourced agricultural extension service in the Umzimkhulu District of KwaZulu-Natal, South Africa. J. Agric. Educ. Ext. 2017, 24, 51–64. [Google Scholar] [CrossRef]
- Houssou, N.; Diao, X.; Cossar, F.; Kolavalli, S.; Jimah, K.; Aboagye, P.O. Agricultural Mechanization in Ghana: Is Specialized Agricultural Mechanization Service Provision a Viable Business Model? Am. J. Agric. Econ. 2013, 95, 1237–1244. [Google Scholar] [CrossRef]
- Qiu, T.; Choy, S.; Li, Y.; Luo, B.; Li, J. Farmers’ Exit from Land Operation in Rural China: Does the Price of Agricultural Mechanization Services Matter? China World Econ. 2021, 29, 99–122. [Google Scholar] [CrossRef]
- Chi, L.; Han, S.; Huan, M.; Li, Y.; Liu, J. Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8147. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, J.; Wu, J.; Zhai, Q. The dual impacts of specialized agricultural services on pesticide application intensity: Evidence from China. Pest. Manag. Sci. 2022, 79, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Guzmán, G.I.; González de Molina, M.; Soto, D.; Infante-Amate, J. From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. J. Clean. Prod. 2019, 221, 295–305. [Google Scholar] [CrossRef]
- Qing, Y.; Chen, M.; Sheng, Y.; Huang, J. Mechanization services, farm productivity and institutional innovation in China. China Agric. Econ. Rev. 2019, 11, 536–554. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Fang, S.; Wei, L.; Wu, J. The Spatial Spillover Effect of Agricultural Mechanization and Its Distribution Pattern: The Perspective of Interregional-Service of Agricultural Machinery. J. Manag. World 2017, 11, 65–78+187–188. [Google Scholar] [CrossRef]
- Wu, J.; Fang, S.; LI, G.; Xu, G. The Spillover Effect of Agricultural Mechanization on Grain Output in China: From the Perspective of Cross-regional Mechanization Service. Chin. Rural Econ. 2017, 6, 44–57. [Google Scholar]
- Li, J.; Lin, Q. Can the Adjustment of China’s Grain Purchase and Storage Policy Improve Its Green Productivity? Int. J. Environ. Res. Public Health 2022, 19, 6310. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Tang, M.; Su, M.; Guo, L. Scale of Operation, Financial Support, and Agricultural Green Total Factor Productivity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9043. [Google Scholar] [CrossRef]
- Razzaq, A.; Qing, P.; Naseer, M.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef]
- Jomthanachai, S.; Wong, W.-P.; Lim, C.-P. An Application of Data Envelopment Analysis and Machine Learning Approach to Risk Management. IEEE Access 2021, 9, 85978–85994. [Google Scholar] [CrossRef]
- Hong, H.K.; Ha, S.H.; Shin, C.K.; Park, S.C.; Kima, S.H. Evaluating the efficiency of system integration projects using data envelopment analysis (DEA) and machine learning. Expert Syst. Appl. 1999, 16, 283–296. [Google Scholar] [CrossRef]
- Yang, N.; Sun, X.; Qi, Q. Impact of factor quality improvement on agricultural carbon emissions: Evidence from China’s high-standard farmland. Front. Environ. Sci. 2022, 10, 989684. [Google Scholar] [CrossRef]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of Agricultural Carbon Emissions and Their Spatiotemporal Changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation: Contribution of Working Group III to the Fourth Assessment Report ofthe Intergovernmental Panel on Climate Change: Summary for Policymakers and Technical Summary; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Elhorst, J.; Freret, S. Evidence of Political Yardstick Competition in France Uing A Two-Regime Spatial Durbin Model with Fixed Effects. J. Reg. Sci. 2009, 49, 931–951. [Google Scholar] [CrossRef]
- Ma, G.; Lv, D.; Luo, Y.; Jiang, T. Environmental Regulation, Urban-Rural Income Gap and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 8995. [Google Scholar] [CrossRef]
- Chi, Y.; Zhou, W.; Wang, Z.; Hu, Y.; Han, X. The Influence Paths of Agricultural Mechanization on Green Agricultural Development. Sustainability 2022, 13, 12984. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, O.; Tang, K. Cost-effective Analysis on Machinery Operation of China Agricultural Machinery Cooperitives: Based on Comparision of East-Central-West Regions and Different Scales. J. Nanjing Agric. Univ. 2015, 15, 51–56+126. [Google Scholar]
- Qiu, T.; Shi, X.; He, Q.; Luo, B. The paradox of developing agricultural mechanization services in China: Supporting or kicking out smallholder farmers? China Econ. Rev. 2021, 69, 101680. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, H.; Zhang, Y. Are Socialized Services of Agricultural Green Production Conducive to the Reduction in Fertilizer Input? Empirical Evidence from Rural China. Int. J. Environ. Res. Public Health 2022, 19, 14856. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.C.M.; Li, X.; Chen, T.; Lang, W. Deciphering the spatial structure of China’s megacity region: A new bay area—The Guangdong-Hong Kong-Macao Greater Bay Area in the making. Cities 2020, 105, 102168. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, R.; Wang, M.; Xue, W.; He, L. The impact of urbanization on urban agriculture: Evidence from China. J. Clean. Prod. 2020, 276, 122686. [Google Scholar] [CrossRef]
- Deng, H.; Jin, Y.; Pray, C.; Hu, R.; Xia, E.; Meng, H. Impact of public research and development and extension on agricultural productivity in China from 1990 to 2013. China Econ. Rev. 2021, 70, 101699. [Google Scholar] [CrossRef]
- Huo, Y.; Ye, S.; Wu, Z.; Zhang, F.; Mi, G. Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey. Agriculture 2022, 12, 287. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Rozelle, S. The subsidization of farming households in China’s agriculture. Food Policy 2013, 41, 124–132. [Google Scholar] [CrossRef]
- Huang, Z.; Liang, Q. Agricultural organizations and the role of farmer cooperatives in China since 1978: Past and future. China Agric. Econ. Rev. 2018, 10, 48–64. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, D.; Wen, T. Agricultural production mode transformation and production efficiency. China Agric. Econ. Rev. 2018, 11, 160–179. [Google Scholar] [CrossRef]
Indicator | Index | Definition | Mean | Unit |
---|---|---|---|---|
Input indicators | Labor input | Number of employees in agriculture | 780.16 | 10,000 peoples |
Land input | The sowing area of crops | 5336.93 | 1000 HA | |
Mechanical input | Total power of agricultural machinery | 3318.60 | 10,000 kW | |
Fertilizer input | Chemical fertilizer application in agriculture | 185.89 | 10,000 tons | |
Film input | Amount of Agricultural plastic film application | 7.98 | 10,000 tons | |
Pesticide input | Amount of pesticide application | 5.35 | 10,000 tons | |
Energy input | Amount of Agricultural diesel consumption | 66.75 | 10,000 tons | |
Water input | Amount of Agricultural water consumption | 121.89 | 100 million m3 | |
Output indicators | Desired output | The gross production of agriculture | 1784.42 | 100 million yuan |
Undesired output | Agricultural carbon emissions | 29,416.66 | 10,000 tons |
Variable | Mean | Std. Dev. | Max | Min |
---|---|---|---|---|
IND | 0.337 | 0.080 | 0.100 | 0.574 |
lnDI | 9.354 | 0.418 | 8.271 | 10.461 |
lnAFE | 6.160 | 0.573 | 4.519 | 7.200 |
lnDIS | 5.985 | 1.550 | 0.693 | 8.349 |
UR | 59.006 | 12.218 | 35.030 | 89.600 |
lnGDP | 10.841 | 0.436 | 9.706 | 12.013 |
MI | 0.328 | 0.112 | 0.136 | 0.693 |
POP | 4599.783 | 2837.845 | 568.000 | 12,624.000 |
Province | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Whole | 0.1990 | 0.2168 | 0.2353 | 0.2489 | 0.2620 | 0.2874 | 0.3094 | 0.3534 | 0.4327 | 0.5590 |
MGP | 0.1799 | 0.1938 | 0.2083 | 0.2157 | 0.2229 | 0.2337 | 0.2416 | 0.2572 | 0.2827 | 0.3567 |
NMGP | 0.2136 | 0.2344 | 0.2560 | 0.2743 | 0.2919 | 0.3285 | 0.3612 | 0.4269 | 0.5474 | 0.7138 |
EDR | 0.2510 | 0.2733 | 0.2989 | 0.3154 | 0.3346 | 0.3684 | 0.4026 | 0.4595 | 0.5887 | 0.6812 |
UEDR | 0.1730 | 0.1885 | 0.2035 | 0.2157 | 0.2257 | 0.2469 | 0.2628 | 0.3003 | 0.3547 | 0.4979 |
Beijing | 0.3095 | 0.3768 | 0.4432 | 0.4943 | 0.5720 | 0.6139 | 0.6896 | 0.8063 | 1.0572 | 1.0217 |
Tianjin | 0.1607 | 0.1694 | 0.1829 | 0.1935 | 0.2013 | 0.2087 | 0.2319 | 0.3130 | 0.3422 | 0.4642 |
Hebei | 0.1655 | 0.1779 | 0.1935 | 0.1894 | 0.1859 | 0.2014 | 0.2142 | 0.2430 | 0.2602 | 0.3007 |
Shanxi | 0.1366 | 0.1451 | 0.1559 | 0.1628 | 0.1564 | 0.1738 | 0.1937 | 0.2029 | 0.2180 | 0.2582 |
Inner Mongolia | 0.1388 | 0.1457 | 0.1567 | 0.1558 | 0.1496 | 0.1544 | 0.1460 | 0.1561 | 0.1660 | 0.1803 |
Liaoning | 0.2074 | 0.2290 | 0.2400 | 0.2431 | 0.2689 | 0.2772 | 0.2851 | 0.3235 | 0.3659 | 0.3925 |
Jilin | 0.1445 | 0.1521 | 0.1529 | 0.1525 | 0.1470 | 0.1305 | 0.1199 | 0.1332 | 0.1429 | 0.1737 |
Heilongjiang | 0.1418 | 0.1726 | 0.2123 | 0.2251 | 0.2234 | 0.2261 | 0.2399 | 0.2536 | 0.2823 | 0.3050 |
Shanghai | 0.3783 | 0.3894 | 0.4177 | 0.4117 | 0.4089 | 0.3600 | 0.3548 | 0.4444 | 0.4600 | 0.4356 |
Jiangsu | 0.2197 | 0.2442 | 0.2566 | 0.2678 | 0.2994 | 0.3032 | 0.3100 | 0.3119 | 0.3283 | 0.3973 |
Zhejiang | 0.2261 | 0.2447 | 0.2791 | 0.3005 | 0.3139 | 0.3598 | 0.4334 | 0.4496 | 0.5377 | 0.5467 |
Anhui | 0.1330 | 0.1431 | 0.1506 | 0.1615 | 0.1623 | 0.1690 | 0.1820 | 0.1840 | 0.1978 | 0.2169 |
Fujian | 0.2892 | 0.3233 | 0.3445 | 0.3760 | 0.3976 | 0.5018 | 0.5953 | 0.7180 | 1.0882 | 1.0268 |
Jiangxi | 0.1290 | 0.1380 | 0.1822 | 0.1910 | 0.2117 | 0.2303 | 0.2339 | 0.2466 | 0.2695 | 0.2887 |
Shandong | 0.1936 | 0.1999 | 0.2262 | 0.2402 | 0.2495 | 0.2531 | 0.2591 | 0.2767 | 0.2929 | 0.3163 |
Henan | 0.1897 | 0.2002 | 0.2066 | 0.2297 | 0.2290 | 0.2353 | 0.2434 | 0.2652 | 0.2944 | 0.3475 |
Hubei | 0.2231 | 0.2379 | 0.2488 | 0.2527 | 0.2573 | 0.2907 | 0.3042 | 0.3149 | 0.3530 | 0.3912 |
Hunan | 0.2003 | 0.2080 | 0.2030 | 0.2059 | 0.2061 | 0.2203 | 0.2322 | 0.2401 | 0.2880 | 0.3265 |
Guangdong | 0.2918 | 0.3120 | 0.3413 | 0.3557 | 0.3733 | 0.4705 | 0.5106 | 0.5865 | 0.7635 | 1.1907 |
Guangxi | 0.2183 | 0.2233 | 0.2348 | 0.2442 | 0.2541 | 0.2795 | 0.3054 | 0.3301 | 0.4389 | 0.4881 |
Hainan | 0.3048 | 0.3362 | 0.3490 | 0.3946 | 0.4270 | 0.5433 | 0.5923 | 0.8344 | 1.0507 | 1.0547 |
Chongqing | 0.2178 | 0.2355 | 0.2488 | 0.2616 | 0.2725 | 0.3220 | 0.3372 | 0.3732 | 0.6644 | 1.0216 |
Sichuan | 0.2528 | 0.2702 | 0.2785 | 0.2898 | 0.3076 | 0.3461 | 0.3712 | 0.3951 | 0.4344 | 1.0000 |
Guizhou | 0.1585 | 0.1984 | 0.2248 | 0.2934 | 0.3967 | 0.4520 | 0.5047 | 0.5756 | 0.7185 | 1.0977 |
Yunnan | 0.1424 | 0.1600 | 0.1794 | 0.1899 | 0.1915 | 0.2016 | 0.2115 | 0.2824 | 0.4057 | 1.0000 |
Shaanxi | 0.2495 | 0.2671 | 0.2943 | 0.3203 | 0.3210 | 0.3548 | 0.3812 | 0.4548 | 0.5889 | 1.0372 |
Gansu | 0.1008 | 0.1087 | 0.1158 | 0.1184 | 0.1229 | 0.1403 | 0.1629 | 0.1803 | 0.2065 | 0.3193 |
Qinghai | 0.1539 | 0.1743 | 0.2014 | 0.2057 | 0.1989 | 0.2219 | 0.2342 | 0.2579 | 0.3168 | 0.4640 |
Ningxia | 0.1197 | 0.1285 | 0.1402 | 0.1468 | 0.1633 | 0.1787 | 0.1902 | 0.2167 | 0.2102 | 0.3456 |
Xinjiang | 0.1727 | 0.1924 | 0.1984 | 0.1935 | 0.1912 | 0.2021 | 0.2116 | 0.2308 | 0.2387 | 0.3620 |
LSO | 0.164 * (0.090) | 0.132 * (0.071) | 0.172 ** (0.083) | |||
SPO | 0.228 *** (0.057) | 0.255 *** (0.077) | 0.194 *** (0.064) | |||
IND | −0.703 ** (0.322) | −0.099 (0.303) | −0.432 (0.311) | −0.018 (0.292) | −0.508 * (0.308) | −0.006 (0.286) |
lnDI | −0.070 (0.208) | −0.309 (0.204) | −0.192 (0.200) | −0.351 * (0.194) | −0.240 (0.203) | −0.429 ** (0.195) |
lnAFE | −0.076 (0.049) | −0.077 (0.050) | −0.054 (0.048) | −0.032 (0.047) | −0.093 * (0.050) | −0.055 (0.050) |
lndisaster | −0.015 * (0.009) | −0.016 * (0.009) | −0.015 * (0.008) | −0.016 ** (0.008) | −0.018 ** (0.008) | −0.232 *** (0.008) |
UR | 0.000 (0.005) | 0.006 (0.005) | −0.001 (0.005) | −0.001 (0.005) | 0.000 (0.005) | 0.002 (0.005) |
lnGDP | 0.303 *** (0.075) | 0.261 *** (0.073) | 0.288 *** (0.071) | 0.247 *** (0.064) | 0.255 *** (0.069) | 0.230 *** (0.064) |
MI | 0.321 *** (0.117) | 0.297 *** (0.112) | 0.320 *** (0.110) | 0.300 *** (0.106) | 0.377 *** (0.113) | 0.337 *** (0.110) |
POP | 0.000 ** (0.000) | 0.000 * (0.000) | 0.000 *** (0.000) | 0.000 ** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) |
LSO*W | −0.437 *** (0.167) | −1.662 ** (0.673) | −1.119 ** (0.507) | |||
SPO*W | 0.379 *** (0.146) | 1.265 *** (0.639) | 0.877 ** (0.402) | |||
IND*W | 0.433 (0.643) | 0.560 (0.637) | −3.737 (2.823) | −1.859 (2.730) | 2.164 (2.141) | 0.412 (2.106) |
lnDI*W | 0.086 (0.382) | 0.279 (0.369) | 0.701 (1.229) | 1.044 (1.135) | 0.095 (0.887) | 0.605 (0.791) |
lnAFE*W | 0.315 *** (0.098) | 0.311 *** (0.099) | 1.479 *** (0.357) | 1.808 *** (0.344) | 0.287 (0.231) | 0.470 ** (0.201) |
lndisaster*W | −0.006 (0.017) | 0.010 (0.016) | 0.028 (0.054) | 0.734 (0.055) | −0.022 (0.034) | 0.030 (0.032) |
UR*W | −0.045 *** (0.011) | −0.047 *** (0.011) | −0.027 (0.029) | −0.022 (0.028) | −0.006 * (0.021) | −0.016 (0.019) |
lnGDP*W | 0.224 * (0.134) | 0.357 *** (0.110) | −0.196 (0.529) | 0.571 (0.407) | −0.062 (0.389) | 0.510 (0.333) |
MI*W | −0.091 (0.232) | 0.135 (0.225) | 0.471 (0.695) | 0.767 (0.680) | −0.852 (0.689) | 0.468 (0.630) |
POP*W | 0.000 * (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) |
rho | 0.232 ** (0.093) | 0.289 *** (0.090) | 1.638 *** (0.294) | 1.845 *** (0.283) | 0.728 *** (0.209) | 0.802 *** (0.204) |
Province FE | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
R-squared | 0.261 | 0.235 | 0.444 | 0.511 | 0.245 | 0.373 |
Obs | 300 | 300 | 300 | 300 | 300 | 300 |
DE | IE | TE | DE | IE | TE | DE | IE | TE | |
LSO | 0.192 ** (0.094) | −0.412 *** (0.153) | −0.219 (0.150) | 0.232 ** (0.096) | −0.825 *** (0.313) | −0.593 ** (0.282) | 0.270 *** (0.070) | −1.270 *** (0.439) | −1.000 ** (0.445) |
SPO | 0.211 *** (0.068) | 0.278 ** (0.123) | 0.489 *** (0.157) | 0.209 *** (0.067) | 0.355 (0.233) | 0.564 ** (0.259) | 0.172 *** (0.065) | 0.442 * (0.239) | 0.614 (0.254) |
LSI | 0.224 * (0.130) | 0.386 ** (0.164) | 0.237 * (0.138) | |||
LSI*W | −0.273 (0.252) | −0.523 (0.687) | 0.110 (0.156) | |||
SPI | −0.398 *** (0.102) | −0.311 *** (0.110) | −0.341 *** (0.101) | |||
SPI*W | 0.250 (0.274) | 1.290 (0.854) | −0.093 (0.405) | |||
rho | 0.295 *** (0.091) | 0.258 *** (0.092) | 1.813 *** (0.284) | 1.826 *** (0.291) | 0.841 *** (0.205) | 0.786 *** (0.215) |
Control Variables | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
R-squared | 0.185 | 0.293 | 0.512 | 0.508 | 0.451 | 0.467 |
Obs | 300 | 300 | 300 | 300 | 300 | 300 |
DE | IE | TE | DE | IE | TE | DE | IE | TE | |
LSI | 0.238 * (0.134) | −0.270 (0.233) | −0.032 (0.250) | 0.414 ** (0.171) | −0.485 (0.416) | −0.071 (0.429) | 0.241 * (0.143) | 0.035 (0.117) | 0.277 * (0.152) |
SPO | −0.406 *** (0.105) | 0.290 (0.251) | −0.116 (0.265) | −0.360 *** (0.109) | 0.906 (0.565) | 0.546 (0.485) | −0.336 *** (0.104) | 0.041 (0.305) | −0.296 (0.330) |
LSO | 0.171 *** (2.612) | 0.173 *** (2.587) | ||||||
LSO*W | −0.180 ** (−2.140) | −0.183 ** (−2.201) | ||||||
SPO | 0.135 * (1.886) | 0.131 * (1.746) | ||||||
SPO*W | 0.308 * (1.866) | 0.286 * (1.730) | ||||||
LSI | 0.546 *** (3.281) | 0.597 *** (3.526) | ||||||
LSI*W | −0.035 (−0.033) | 0.318 (0.305) | ||||||
SPI | −0.234 *** (−2.728) | −0.223 *** (−2.584) | ||||||
SPI*W | 0.441 (1.159) | 0.439 (1.132) | ||||||
rho1 | −0.157 (−1.250) | −0.177 (−1.405) | −0.103 (−0.813) | −0.167 (−1.298) | 0.272 *** (2.982) | 0.269 *** (2.972) | 0.272 *** (2.947) | 0.272 *** (2.947) |
rho2 | 0.410 *** (3.303) | 0.405 *** (3.268) | 0.348 *** (2.776) | 0.411 *** (3.289) | −0.197 (−0.986) | −0.223 (1.110) | −0.218 (−1.078) | −0.218 (−1.078) |
rho1-rho2 | −0.567 *** (−3.173) | −0.582 *** (−3.259) | −0.452 ** (−2.504) | −0.578 *** (−3.169) | 0.469 ** (2.129) | 0.493 ** (2.227) | 0.491 ** (2.194) | 0.491 ** (2.194) |
Control Variables | YES | YES | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES | YES | YES |
R-squared | 0.847 | 0.843 | 0.845 | 0.853 | 0.847 | 0.844 | 0.847 | 0.853 |
Obs | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Guan, R. How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China? Int. J. Environ. Res. Public Health 2023, 20, 1655. https://doi.org/10.3390/ijerph20021655
Li X, Guan R. How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China? International Journal of Environmental Research and Public Health. 2023; 20(2):1655. https://doi.org/10.3390/ijerph20021655
Chicago/Turabian StyleLi, Xuelan, and Rui Guan. 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?" International Journal of Environmental Research and Public Health 20, no. 2: 1655. https://doi.org/10.3390/ijerph20021655
APA StyleLi, X., & Guan, R. (2023). How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China? International Journal of Environmental Research and Public Health, 20(2), 1655. https://doi.org/10.3390/ijerph20021655