Patients with Adolescent Idiopathic Scoliosis Have Higher Metabolic Cost during High-Intensity Interval Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Baseline Measurements
2.3. Testing Procedures
2.4. Outcome Measures of Oxygen Consumption (VO2), Heart Rate (HR) and Rate of Perceived Exertion (RPE)
2.5. Statistical Analysis
3. Results
3.1. Group Comparison
3.2. Metabolic Demand between AIS and Healthy Controls
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, A.J.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.O.; et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Prim. 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.Y.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, T.H. Adolescent idiopathic scoliosis: The mechanobiology of differential growth. JOR Spine 2020, 3, e1115. [Google Scholar] [CrossRef]
- Barrios, C.; Pérez-Encinas, C.; Maruenda, J.I.; Laguía, M. Significant Ventilatory Functional Restriction in Adolescents With Mild or Moderate Scoliosis During Maximal Exercise Tolerance Test. Spine 2005, 30, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Koumbourlis, A.C. Scoliosis and the respiratory system. Paediatr. Respir. Rev. 2006, 7, 152–160. [Google Scholar] [CrossRef]
- Dos Santos Alves, V.L.; Stirbulov, R.; Avanzi, O. Impact of a physical rehabilitation program on the respiratory function of adolescents with idiopathic scoliosis. Chest 2006, 130, 500–505. [Google Scholar] [CrossRef]
- Teoh, O.H.; Trachsel, D.; Mei-Zahav, M.; Selvadurai, H. Exercise testing in children with lung diseases. Paediatr. Respir. Rev. 2009, 10, 99–104. [Google Scholar] [CrossRef]
- Czaprowski, D.; Kotwicki, T.; Biernat, R.; Urniaż, J.; Ronikier, A. Physical capacity of girls with mild and moderate idiopathic scoliosis: Influence of the size, length and number of curvatures. Eur. Spine J. 2012, 21, 1099–1105. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Tan, Q.; Chen, H.; Luo, F.; Xu, M.; Zhao, J.; Liu, P.; Sun, X.; Su, N.; Zhang, D.; et al. Imbalanced development of anterior and posterior thorax is a causative factor triggering scoliosis. J. Orthop. Transl. 2019, 17, 103–111. [Google Scholar] [CrossRef]
- Doi, T.; Harimaya, K.; Matsumoto, Y.; Iwamoto, Y. Aortic location and flat chest in scoliosis: A prospective study. Fukuoka Igaku Zasshi 2011, 102, 14–19. [Google Scholar]
- Doi, T.; Matsumoto, Y.; Tono, O.; Tarukado, K.; Harimaya, K.; Okada, S.; Kubota, K.; Hayashida, M.; Iwamoto, Y. A shallow chest correlates with the aortic position in the normal spine: Features resembling those observed in structural scoliosis. Scoliosis 2014, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.C.; Lu, W.W.; Luk, K.D.; Karlberg, E.M. Kinematics of the chest cage and spine during breathing in healthy individuals and in patients with adolescent idiopathic scoliosis. Spine 1999, 24, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Coast, J.; Cline, C. The effect of chest wall restriction on exercise capacity. Respirology 2004, 9, 197–203. [Google Scholar] [CrossRef]
- Kesten, S.; Garfinkel, S.K.; Wright, T.; Rebuck, A.S. Impaired exercise capacity in adults with moderate scoliosis. Chest 1991, 99, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Viviani, G.R.; Killian, K.J. Factors influencing work capacity in adolescent idiopathic thoracic scoliosis. Am. Rev. Respir. Dis. 1993, 148, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Llorens, J.; Ramírez, M.; Colomina, M.J.; Bagó, J.; Molina, A.; Cáceres, E.; Gea, J. Muscle dysfunction and exercise limitation in adolescent idiopathic scoliosis. Eur. Respir. J. 2010, 36, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Sperandio, E.F.; Alexandre, A.S.; Yi, L.C.; Poletto, P.R.; Gotfryd, A.O.; Vidotto, M.C.; Dourado, V.Z. Functional aerobic exercise capacity limitation in adolescent idiopathic scoliosis. Spine J. 2014, 14, 2366–2372. [Google Scholar] [CrossRef]
- Athanasopoulos, S.; Paxinos, T.; Tsafantakis, E.; Zachariou, K.; Chatziconstantinou, S. The effect of aerobic training in girls with idiopathic scoliosis. Scand. J. Med. Sci. Sport. 1999, 9, 36–40. [Google Scholar] [CrossRef]
- Xavier, V.B.; Avanzi, O.; de Carvalho, B.D.M.C.; Alves, V.L.d.S. Combined aerobic and resistance training improves respiratory and exercise outcomes more than aerobic training in adolescents with idiopathic scoliosis: A randomised trial. J. Physiother. 2020, 66, 33–38. [Google Scholar] [CrossRef]
- Lau, R.W.-L.; Cheuk, K.-Y.; Ng, B.K.-W.; Tam, E.M.-S.; Hung, A.L.-H.; Cheng, J.C.-Y.; Hui, S.S.-C.; Lam, T.-P. Effects of a Home-Based Exercise Intervention (E-Fit) on Bone Density, Muscle Function, and Quality of Life in Girls with Adolescent Idiopathic Scoliosis (AIS): A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 10899. [Google Scholar] [CrossRef]
- Biddle, S.J.; Batterham, A.M. High-intensity interval exercise training for public health: A big HIT or shall we HIT it on the head? Int. J. Behav. Nutr. Phys. Act. 2015, 12, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.C.Y.; Leung, S.S.F.; Lau, J. Anthropometric measurements and body proportions among Chinese children. Clin. Orthop. Relat. Res. 1996, 323, 22–30. [Google Scholar] [CrossRef]
- Hung, A.L.H.; Chau, W.W.; Shi, B.; Chow, S.K.; Yu, F.Y.P.; Lam, T.P.; Ng, B.K.W.; Qiu, Y.; Cheng, J.C.Y. Thumb Ossification Composite Index (TOCI) for Predicting Peripubertal Skeletal Maturity and Peak Height Velocity in Idiopathic Scoliosis: A Validation Study of Premenarchal Girls with Adolescent Idiopathic Scoliosis Followed Longitudinally Until Skeletal Maturity. J. Bone Jt. Surg. Am. 2017, 99, 1438–1446. [Google Scholar]
- Kong, A.P.; Choi, K.C.; Li, A.M.; Hui, S.S.; Chan, M.H.; Wing, Y.K.; Ma, R.C.; Lam, C.W.; Lau, J.T.; So, W.Y.; et al. Association between physical activity and cardiovascular risk in Chinese youth independent of age and pubertal stage. BMC Public Health 2010, 10, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinnington, H.C.; Wong, P.; Tay, J.; Green, D.; Dawson, B. The level of accuracy and agreement in measures of FEO2, FECO2 and VE between the cosmed K4b2 portable, respiratory gas analysis system and a metabolic cart. J. Sci. Med. Sport 2001, 4, 324–335. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Hommerding, P.X.; Donadio, M.V.; Paim, T.F.; Marostica, P.J. The Borg scale is accurate in children and adolescents older than 9 years with cystic fibrosis. Respir. Care 2010, 55, 729–733. [Google Scholar]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Hillman, C.H.; Lubans, D.R. High-Intensity Interval Training for Cognitive and Mental Health in Adolescents. Med. Sci. Sport. Exerc. 2016, 48, 1985–1993. [Google Scholar] [CrossRef]
- Kaufman, B.A.; Warren, M.P.; Dominguez, J.E.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bone Density and Amenorrhea in Ballet Dancers Are Related to a Decreased Resting Metabolic Rate and Lower Leptin Levels. J. Clin. Endocrinol. Metab. 2002, 87, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Hohenadel, M.G.; Hollstein, T.; Thearle, M.; Reinhardt, M.; Piaggi, P.; Salbe, A.D.; Krakoff, J. A low resting metabolic rate in late childhood is associated with weight gain in adolescence. Metabolism 2019, 93, 68–74. [Google Scholar] [CrossRef]
- Jurado-Fasoli, L.; Mochon-Benguigui, S.; Castillo, M.J.; Amaro-Gahete, F.J. Association between sleep quality and time with energy metabolism in sedentary adults. Sci. Rep. 2020, 10, 4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.G.; Edgar, M.; Margulies, J.Y.; Miller, N.H.; Raso, V.J.; Reinker, K.A.; Rivard, C.H. Etiology of idiopathic scoliosis: Current trends in research. J. Bone Jt. Surg. Am. 2000, 82, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Bas, P.; Romagnoli, M.; Gomez-Cabrera, M.C.; Bas, J.L.; Aura, J.V.; Franco, N.; Bas, T. Beneficial effects of aerobic training in adolescent patients with moderate idiopathic scoliosis. Eur. Spine J. 2011, 20, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Leech, J.A.; Ernst, P.; Rogala, E.J.; Gurr, J.; Gordon, I.; Becklake, M.R. Cardiorespiratory status in relation to mild deformity in adolescent idiopathic scoliosis. J. Pediatr. 1985, 106, 143–149. [Google Scholar] [CrossRef]
- Mahaudens, P.; Detrembleur, C.; Mousny, M.; Banse, X. Gait in adolescent idiopathic scoliosis: Energy cost analysis. Eur. Spine J. 2009, 18, 1160–1168. [Google Scholar] [CrossRef] [Green Version]
- Machida, M.; Dubousset, J.; Imamura, Y.; Miyashita, Y.; Yamada, T.; Kimura, J. Melatonin. A possible role in pathogenesis of adolescent idiopathic scoliosis. Spine 1996, 21, 1147–1152. [Google Scholar] [CrossRef]
- Alves, V.L.; Avanzi, O. Objective assessment of the cardiorespiratory function of adolescents with idiopathic scoliosis through the six-minute walk test. Spine 2009, 34, E926–E929. [Google Scholar] [CrossRef]
- Shneerson, J.M. Pulmonary artery pressure in thoracic scoliosis during and after exercise while breathing air and pure oxygen. Thorax 1978, 33, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiRocco, P.J.; Vaccaro, P. Cardiopulmonary functioning in adolescent patients with mild idiopathic scoliosis. Arch. Phys. Med. Rehabil. 1988, 69, 198–201. [Google Scholar]
- Low, W.D.; Chew, E.C.; Kung, L.S.; Hsu, L.C.; Leong, J.C. Ultrastructures of nerve fibers and muscle spindles in adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 1983, 174, 217–221. [Google Scholar] [CrossRef]
- Grinton, S.; Powers, S.K.; Lawler, J.; Criswell, D.; Dodd, S.; Edwards, W. Endurance training-induced increases in expiratory muscle oxidative capacity. Med. Sci. Sport. Exerc. 1992, 24, 551–555. [Google Scholar] [CrossRef]
- Takken, T.; Bongers, B.C.; van Brussel, M.; Haapala, E.A.; Hulzebos, E.H.J. Cardiopulmonary Exercise Testing in Pediatrics. Ann. Am. Thorac. Soc. 2017, 14, S123–S128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AIS (n = 10) | Control (n = 12) | p-Value | |
---|---|---|---|
Age (yr) a | 13.71 ± 2.04 | 12.11 ± 1.92 | 0.080 |
Anthropometric measurements | |||
Body weight (kg) b | 44.38 ± 6.67 | 42.00 ± 8.39 | 0.477 |
Body height (cm) b | 154.57 ± 7.14 | 152.67 ± 7.96 | 0.565 |
Sitting height (cm) a | 78.50 ± 16.07 | 86.33 ± 14.63 | 0.668 |
Arm span (cm) b | 153.90 ± 9.40 | 153.98 ± 7.33 | 0.446 |
BMI (kg/m2) a | 18.61 ± 1.27 | 17.86 ± 2.12 | 0.467 |
BMI by arm span a | 18.63 ± 1.40 | 18.31 ± 2.15 | 0.684 |
Maturity | |||
Tanner scale—breast development (1–5) c | 3.20 (3, 4) | 2.25 (2, 3) | 0.312 |
Tanner scale—pubic hair development (1–5) c | 3.10 (3, 4) | 1.92 (1, 3) | 0.155 |
Menarche onset (months) a | 22.90 ± 15.28 | 7.83 ± 16.28 | 0.014 * |
Curve Features | |||
Cobb angle (˚) | 24.50 ± 6.38 | N/A | N/A |
TOCI (stage 1–8) | 5.60 ± 1.71 | N/A | N/A |
Body Composition b | |||
Fat free mass (kg) | 32.69 ± 3.97 | 33.32 ± 5.53 | 0.768 |
Skeletal muscle mass (kg) | 17.18 ± 2.25 | 17.49 ± 3.39 | 0.806 |
Visceral adipose tissue (cm2) | 52.67 ± 18.28 | 38.19 ± 11.89 | 0.037 * |
BF% | 24.78 ± 4.16 | 19.99 ± 5.10 | 0.027 * |
Physical Activity Level | |||
CUHK-PARCY c | 4.00 (3, 6) | 5.33 (6, 8) | 0.698 |
AIS (n = 10) | Control (n = 12) | p-Value | |
---|---|---|---|
Resting HR (bpm) | 89.10 ± 11.41 | 89.75 ± 9.54 | 0.190 |
50% HRR (bpm) | 144.55 ± 5.70 | 143.67 ± 3.87 | 0.367 |
Resting VO2 (mL/kg/min) | 3.19 ± 0.54 | 4.16 ± 1.03 | 0.045 * |
Predicted VO2 peak (mL/kg/min) | 57.43 ± 14.14 | 56.65 ± 11.57 | 0.353 |
AIS (n = 10) | Control (n = 12) | p-Value a | ||||
---|---|---|---|---|---|---|
M ± SD | Madj ± SE | M ± SD | Madj ± SE | |||
HR peak | 1st E-Fit Trial | 152.30 ± 10.64 | 149.85 ± 3.96 | 145.58 ± 12.44 | 147.63 ± 3.55 | 0.204 |
2nd E-Fit Trial | 148.90 ± 17.01 | 143.78 ± 5.25 | 146.17 ± 14.01 | 150.44 ± 4.71 | 0.324 | |
HR average | 1st E-Fit Trial | 131.20 ± 9.31 | 128.4 ± 3.13 | 125.50 ± 10.21 | 127.83 ± 2.81 | 0.093 |
2nd E-Fit Trial | 126.60 ± 11.65 | 121.75 ± 3.66 | 126.17 ± 11.67 | 130.21 ± 3.27 | 0.129 | |
Highest measured VO2 | 1st E-Fit Trial | 34.65 ± 7.18 | 36.85 ± 2.14 | 34.38 ± 6.12 | 32.54 ± 1.92 | 0.186 |
2nd E-Fit Trial | 35.24 ± 5.35 | 37.46 ± 1.20 | 35.72 ± 3.94 | 33.87 ± 1.08 | 0.010 * | |
VO2 average | 1st E-Fit Trial | 19.03 ± 3.14 | 20.27 ± 0.79 | 19.66 ± 2.46 | 18.63 ± 0.71 | 0.033 * |
2nd E-Fit Trial | 18.73 ± 2.57 | 19.45 ± 0.56 | 20.08 ± 1.17 | 19.48 ± 0.51 | 0.022 * | |
%VO2 peak | 1st E-Fit Trial | 62.89 ± 16.97 | 62.85 ± 5.50 | 62.41 ± 13.98 | 62.44 ± 4.93 | 0.548 |
2nd E-Fit Trial | 64.98 ± 19.05 | 64.23 ± 6.06 | 65.32 ± 14.08 | 65.94 ± 5.43 | 0.692 | |
RPE | 1st E-Fit Trial | 2.85 ± 0.35 | 2.70 ± 0.42 | 2.00 ± 0.36 | 2.12 ± 0.38 | 0.236 |
2nd E-Fit Trial | 2.55 ± 0.40 | 2.43 ± 0.36 | 2.17 ± 0.29 | 2.27 ± 0.32 | 0.143 | |
Overall within-group effect of RPE: p = 0.016 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, R.W.-L.; Kwan, R.L.-C.; Cheng, J.C.-Y.; Hui, S.S.-C.; Lam, T.-P. Patients with Adolescent Idiopathic Scoliosis Have Higher Metabolic Cost during High-Intensity Interval Training. Int. J. Environ. Res. Public Health 2023, 20, 2155. https://doi.org/10.3390/ijerph20032155
Lau RW-L, Kwan RL-C, Cheng JC-Y, Hui SS-C, Lam T-P. Patients with Adolescent Idiopathic Scoliosis Have Higher Metabolic Cost during High-Intensity Interval Training. International Journal of Environmental Research and Public Health. 2023; 20(3):2155. https://doi.org/10.3390/ijerph20032155
Chicago/Turabian StyleLau, Rufina Wing-Lum, Rachel Lai-Chu Kwan, Jack Chun-Yiu Cheng, Stanley Sai-Chuen Hui, and Tsz-Ping Lam. 2023. "Patients with Adolescent Idiopathic Scoliosis Have Higher Metabolic Cost during High-Intensity Interval Training" International Journal of Environmental Research and Public Health 20, no. 3: 2155. https://doi.org/10.3390/ijerph20032155
APA StyleLau, R. W. -L., Kwan, R. L. -C., Cheng, J. C. -Y., Hui, S. S. -C., & Lam, T. -P. (2023). Patients with Adolescent Idiopathic Scoliosis Have Higher Metabolic Cost during High-Intensity Interval Training. International Journal of Environmental Research and Public Health, 20(3), 2155. https://doi.org/10.3390/ijerph20032155