Response of Grassland Soil Quality to Shallow Plowing and Nutrient Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Treatment
2.3. Sample Collection
2.4. Analysis Methods
2.5. Data Analysis
3. Results and Analysis
3.1. Soil Physical and Chemical Properties
3.2. Variation Characteristics of Microbial Biomass Carbon Content and Microbial Entropy in Grassland Soil
3.3. Changes in Grassland Soil Quality under Different Grassland Management Measures
4. Discussion
4.1. Basic Properties of Soil
4.2. Changes in Microbial Biomass Carbon and Microbial Entropy in Grassland Soil
4.3. Soil Quality of Grassland under Different Grassland Management Measures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, G. Aggregating the whole society to promote the realization of carbon peak goal. Environ. Sustain. Dev. 2021, 46, 6–10. [Google Scholar] [CrossRef]
- Ji, B.; He, J.; Wang, Z.; Jiang, Q. Carbon Storage Characteristics and Composition of Natural Grassland Vegetation in Ningxia. J. Appl. Ecol. 2021, 32, 1259–1268. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, Y.; Wang, Y.; Zhou, K. Assessment and functional zoning of grassland ecosystem services in northern China contribute to the construction of ecological security barrier. Bull. Chin. Acad. Sci. 2020, 35, 675–689. [Google Scholar] [CrossRef]
- Xing, P.; Li, G.; Chen, X.; Li, D.; Wang, C.; Dong, K.; Zhao, X. Effects of grazing on carbon exchange of Leymus chinensis grassland ecosystem in farming-pastoral ecotone of northern Shanxi Province. Acta Prataculturae Sin. 2019, 28, 1–11. [Google Scholar]
- Zhang, W.; Zhang, Y.; Sun, J.; Yang, G. Advances in improvement of degraded Leymus chinensis grassland. Acta Agrestia Sin. 2012, 20, 603–608. [Google Scholar]
- Dong, W.; Ma, Y.; Zhang, D.; Sheng, L.; Shi, J.; Wang, Y.; Sun, X. Effects of improvement measures on community composition and productivity of alpine artificial grassland in returning farmland to grassland. Grassl. Turf. 2011, 31, 44–48. [Google Scholar] [CrossRef]
- Zhang, H.; Han, J.; Shi, Y. Effects of Enclosure and Shallow Tillage on Soil Physical Properties in Degraded Natural Leymus chinensis Meadow. Grassl. Anim. Husb. 2009, 8–10+18. [Google Scholar]
- Li, C.; Ma, S.; Shao, Y.; Ma, S.; Zhang, L. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. J. Integr. Agric. 2018, 17, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chai, F. Experimental Study on Irrigation and Fertilization of Natural Grassland. Heilongjiang J. Anim. Vet. Med. Sci. 2008, 11, 48–49. [Google Scholar] [CrossRef]
- Ma, T.; Dai, G.; Zhu, S.; Chen, D.; Chen, L.; Lü, X.; Wang, X.; Zhu, J.; Zhang, Y.; Ma, W.; et al. Distribution and preservation of root and shoot derived carbon components in soils across the Chinese-Mongolian Grasslands. J. Geophys. Res. Biogeosci. 2019, 124, 420–431. [Google Scholar] [CrossRef]
- Hu, L.; Li, Y.; Zhou, H.; Ye, S.; Yu, S. Study on the functional characteristics of soil microbial community and its relationship with stand structure in Pinus yunnanensis mixed forest. J. Northwest For. Univ. 2022, 37, 16–23+44. [Google Scholar]
- Zhao, Y.; Guo, H.; Xue, Z.; Mu, X.; Li, C. Effects of Tillage and Straw Returning on Soil Microbial Quantity, Enzyme Activity and Crop Yield. J. Appl. Ecol. 2015, 26, 1785–1792. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, J.; Xiong, Y.; Wang, L.; Zhang, X.; Xing, Y.; Ma, S. Effects of conservation tillage on microbial quantity and enzyme activity in rhizosphere soil of broad bean. Agric. Res. Arid. Areas 2018, 36, 79–85. [Google Scholar]
- Jing, J.; Cong, W.; Bezemer, T.M. Legacies at work: Plant-soil-microbiome interactions underpinning agricultural sustainability. Trends Plant Sci. 2022, 27, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Duan, Y.; Zhang, J.; Ren, Y.; Liang, J.; Jing, Y.; Zhao, p. Effects of long-term fertilization on soil microbial diversity and community structure in dryland of agro-pastoral ecotone. Environ. Sci. 2022, 10, 993973. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L.; Yang, X.; Deng, M.; Wang, Z.; Wang, P.; Yang, S.; Li, P.; Peng, Z.; Yang, L.; et al. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Glob. Chang. Biol. 2022, 27, 3939–3950. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, J.; Li, L.; Luo, Z.; Zhang, R.; Jiang, Y. Nitrogen application increases soil microbial carbon fixation and maize productivity on the semiarid Loess Plateau. Plant Soil. 2022. [Google Scholar] [CrossRef]
- Patoine, G.; Eisenhauer, N.; Cesarz, S.; Phillips, H.R.P.; Xu, X.; Zhang, L.; Guerra, C.A. Drivers and trends of global soil microbial carbon over two decades. Nat. Commun. 2022, 13, 4195. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Jiang, F.; Hu, Y.; Long, L.; Pei, L.; Li, J.; Xu, K. Responses of soil microbial biomass carbon, nitrogen and microbial entropy to different materials returning in maize field. J. Soil Water Conserv. 2020, 34, 173–180. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhong, H.; Zhu, H.; Li, Y. Reconstruction and Spatial Pattern Analysis of Soil Bulk Density Stratification Data in North Temperate Grassland of China. Acta Prataculturae Sin. 2021, 30, 1–11. [Google Scholar]
- Hu, Y.; Guo, X.; Yue, P.; Li, X.; Zhao, S.; Guo, A.; Zuo, X. Effects of Water and Nutrient Addition on Growth, Physiological Characteristics and Sensitivity of Stipa deserticola in Desert Steppe of Inner Mongolia. Arid. Zone Res. 2021, 38, 487–493. [Google Scholar] [CrossRef]
- Gao, X.; Han, G.; Zhang, G. Composition and structure of soil microbial community in Stipa breviflora desert steppe. Acta Ecol. Sin. 2017, 37, 5129–5136. [Google Scholar]
- Qin, Y.; Liu, W.; He, F.; Tong, Z.; Li, X. Effects of Fertilization and Root Cutting on Soil Physical and Chemical Properties and Enzyme Activities in Degraded Leymus chinensis Grassland. Acta Prataculturae Sin. 2019, 28, 5–14. [Google Scholar]
- Xu, L.; Yu, Y.; Wang, K.; Chen, H.; Yue, Y. Effects of Different Human Disturbances on Soil Seed Bank Composition and Distribution in Karst Grassland Community in Northwest Guangxi. Karst China 2008, 27, 309–405. [Google Scholar]
- Zhao, Y.; Zhou, H.; Ma, Q.; Xu, Y.; Jiang, C.; Yu, W. Effects of fertilization and tillage on microbial biomass carbon and nitrogen in brown soil. Chin. J. Soil Sci. 2014, 45, 1099–1103. [Google Scholar] [CrossRef]
- Widdig, M.; Heintz-Buschart, A.; Schleuss, P.-M.; Guhr, A.; Borer, E.T.; Seabloom, E.W.; Spohn, M. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem. 2020, 151, 108041. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Yan, R.; Xin, X.; Zhang, B.; Yan, Y.; Yang, G. Effects of cattle grazing gradient on plant community characteristics of Hulunbeier meadow steppe. Chin. J. Grassl. 2010, 32, 62–67. [Google Scholar]
- Zeng, J.; Guo, T.; Bao, X.; Wang, Z.; Sun, J. Effects of long-term fertilization on soil organic carbon and inorganic carbon. Soil Fertil. China 2008, 2, 11–14. [Google Scholar]
- Hai, L.; Li, X.G.; Li, F.M.; Suo, D.R.; Guggenberger, G. Long-term fertilization and manuring effects on physically-separated soil organic matter pools under a wheat-wheat-maize cropping system in an arid region of China. Soil Biol. Biochem. 2010, 42, 253–259. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Jin, K.; Lv, J.; Wang, C.; Wang, Y.; Li, J.; Ding, Z. Effects of Conservation Tillage on Soil Microbial Biomass Carbon and Nitrogen in Slope Farmland. J. Soil Water Conserv. 2007, 4, 126–129. [Google Scholar] [CrossRef]
- Yang, N.; Zou, D.; Yang, M.; Lei, Y.; Lin, Z.; Fu, M.; Song, G. Changes of soil microbial biomass carbon and microbial entropy during vegetation restoration in purple hilly slope land. Bull. Soil Water Conserv. 2014, 34, 39–43. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Sun, L.; Wang, C.; Bai, E. Effects of nitrogen and phosphorus addition on soil microbial community composition and amino sugar in Changbai Mountain temperate forest. J. Appl. Ecol. 2020, 31, 1948–1956. [Google Scholar] [CrossRef]
- Wendu, R.; Li, G.; Zhang, J.; Lai, X.; Yi, J.; Fan, G.; Yang, D. Study on soil microbial biomass and soil enzyme different grassland types in Hulunbeier. Acta Prataculturae Sin. 2010, 19, 94–101. [Google Scholar]
- Zhou, H.; Zhao, X.; Zhou, L.; Liu, W.; Li, Y.; Tang, Y. Vegetation degradation and soil degradation characteristics of alpine meadow in Qinghai-Tibetan Plateau. Acta Prataculturae Sin. 2005, 31–40. [Google Scholar]
- Yang, F.; Zhang, T.; Zhang, M.; Chen, C. Effects of shallow tillage on grassland vegetation community composition and productivity in karst mountainous areas of Guizhou. Guizhou Anim. Husb. Vet. Med. 2019, 43, 63–65. [Google Scholar]
- Song, K.; Wang, X.; Xu, D.; Li, Y.; Sa, C.; Ma, S. Effects of Short-term Nitrogen Addition on Soil Microbial Characteristics in Desert Steppe. J. Soil Water Conserv. 2022, 3, 303–310+318. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Zheng, M.; Jiang, L.; Luo, Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 2017, 115, 433–441. [Google Scholar] [CrossRef]
- Zhang, T. Effect of global nitrogen deposition on soil microorganisms and litter decomposition and contribution of driving variables in ecological prediction. Nanjing For. Univ. 2020. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Huangfu, C.; Li, J.; Zhou, G.; Yang, D. Effects of long-term nitrogen addition on soil microbial community diversity in Stipa baicalensis steppe. J. Agric. Environ. Sci. 2017, 36, 709–717. [Google Scholar]
- Jia, G.-M.; Cao, J.; Wang, C.; Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, Northwest China. For. Ecol. Manag. 2005, 217, 117–125. [Google Scholar] [CrossRef]
- Liu, J.; Han, G.; Wang, Z.; Wang, J.; Li, Z. Response of soil physical properties to different stocking rates in Stipa breviflora steppe. J. Hulunbeir Coll. 2014, 22, 104–107. [Google Scholar]
- Wu, X. Effects of Desertification on Ecological Stoichiometry of Soil–Microorganism-Extracellular Enzyme C:N:P in Desert Steppe. Ningxia Univ. 2019. [Google Scholar] [CrossRef]
Nutrient | Form/Element | Analysis | |
---|---|---|---|
Major element applied every year in the treatment 10 g·m−2·y−1 | Nitrogen: time release urea | (NH2)2CO or N2H4CO | 43.00% |
Phosphorus: triple super phosphate | P2O5 | 45% | |
P (by atomic mass) | 19.63% | ||
Ca | 16% | ||
S | 1% | ||
Mg | 1% | ||
Potassium sulfate (K2SO4) | K (by atomic mass) | 44.9% | |
S (by atomic mass) | 18% | ||
Microelement applied only in the first year of treatment 100 g·m−2 | Ca | 6% | |
Mg | 3% | ||
S | 12% | ||
B | 0.10% | ||
Cu | 1% | ||
Fe | 17% | ||
Mn | 2.50% | ||
Mo | 0.05% | ||
Zn | 1% |
Coefficient | ||||||
---|---|---|---|---|---|---|
Model | Unstandardized Coefficient | Standardized Coefficient | t | Significance | ||
B | Stderr | Beta | ||||
1 Meadow steppe | (Constant) | 0.632 | 0.003 | 183.761 | 0.000 | |
Plowing | −0.527 | 0.005 | −1.083 | −108.327 | 0.000 | |
Nutrient | −0.500 | 0.005 | −1.028 | −102.788 | 0.000 | |
P + N | −0.302 | 0.005 | −0.621 | −62.157 | 0.000 | |
Control | 0 | |||||
1 Typical steppe | (Constant) | 0.515 | 0.006 | 79.475 | 0.000 | |
Plowing | 0.042 | 0.009 | 0.185 | 4.586 | 0.000 | |
Nutrient | −0.147 | 0.009 | −0.648 | −16.018 | 0.000 | |
P + N | −0.190 | 0.009 | −0.838 | −20.722 | 0.000 | |
Control | 0 | |||||
1 Desert steppe | (Constant) | 0.305 | 0.005 | 63.689 | 0.000 | |
Plowing | 0.197 | 0.007 | 0.558 | 29.064 | 0.000 | |
Nutrient | −0.151 | 0.007 | −0.429 | −22.315 | 0.000 | |
P + N | 0.221 | 0.007 | 0.628 | 32.719 | 0.000 | |
Control | 0 |
Coefficient | ||||||
---|---|---|---|---|---|---|
Model | Unstandardized Coefficient | Standardized Coefficient | t | Significance | ||
B | Stderr | Beta | ||||
1 Meadow steppe | (Constant) | 0.018 | 0.000 | 37.771 | 0.000 | |
Plowing | −0.016 | 0.001 | −1.066 | −22.660 | 0.000 | |
Nutrient | −0.015 | 0.001 | −1.018 | −21.628 | 0.000 | |
P + N | −0.009 | 0.001 | −0.631 | −13.410 | 0.000 | |
Control | 0 | |||||
1 Typical steppe | (Constant) | 0.079 | 0.004 | 18.479 | 0.000 | |
Plowing | 0.003 | 0.006 | 0.058 | 0.422 | 0.678 | |
Nutrient | −0.024 | 0.006 | −0.557 | −4.022 | 0.001 | |
P + N | −0.036 | 0.006 | −0.827 | −5.967 | 0.000 | |
Control | 0 | |||||
1 Desert steppe | (Constant) | 0.118 | 0.011 | 10.516 | 0.000 | |
Plowing | 0.040 | 0.016 | 0.327 | 2.523 | 0.020 | |
Nutrient | −0.077 | 0.016 | −0.629 | −4.849 | 0.000 | |
P + N | 0.034 | 0.016 | 0.280 | 2.157 | 0.043 | |
Control | 0 |
Type | Score Coefficient Matrix Formula |
---|---|
Meadow steppe | y1 = −0.269X1 + 0.379X2 − 0.407X3 + 0.295X4 − 0.418X5 + 0.423X6 + 0.422X7 |
y2 = 0.497X1 + 0.425X2 + 0.291X3 + 0.601X4 − 0.207X5 − 0.205X6 − 0.204X7 | |
y = 0.7196y1 + 0.2052y2 | |
Typical steppe | y1 = 0.317X1 + 0.433X2 − 0.408X3 − 0.078X4 − 0.375X5 + 0.045X6 + 0.449X7 |
y2 = 0.407X1 + 0.025X2 + 0.221X3 − 0.743X4 + 0.462X5 + 0.137X6 + 0.011X7 | |
y = 0.7052y1 + 0.1838y2 | |
Desert steppe | y1 = −0.116X1 + 0.451X2 + 0.449X3 − 0.385X4 + 0.455X5 − 0.289X6 − 0.379X7 |
y2 = −0.614X1 + 0.013X2 + 0.194X3 − 0.272X4 + 0.118X5 + 0.568X6 + 0.416X7 | |
y = 0.6557y1 + 0.2607y2 |
Type | Treatment | y1 Score | y2 Score | y Score | Rank |
---|---|---|---|---|---|
Meadow steppe | C | 2.73 | −0.22 | 1.92 | 1 |
P | −2.60 | −0.88 | −2.05 | 4 | |
N | −0.74 | 1.75 | −0.17 | 2 | |
P + N | −0.60 | −0.65 | −0.30 | 3 | |
Typical steppe | C | 1.85 | −1.24 | 1.08 | 2 |
P | 1.93 | 1.35 | 1.61 | 1 | |
N | −1.37 | −0.55 | −1.07 | 3 | |
P + N | −2.41 | 0.44 | −1.62 | 4 | |
Desert steppe | C | −1.86 | −1.47 | −1.60 | 4 |
P | −0.98 | 0.39 | −0.54 | 3 | |
N | 3.05 | −0.64 | 1.83 | 1 | |
P + N | −0.21 | 1.71 | 0.31 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Ren, G.; Hou, X.; An, X.; Lv, G. Response of Grassland Soil Quality to Shallow Plowing and Nutrient Addition. Int. J. Environ. Res. Public Health 2023, 20, 2308. https://doi.org/10.3390/ijerph20032308
Li B, Ren G, Hou X, An X, Lv G. Response of Grassland Soil Quality to Shallow Plowing and Nutrient Addition. International Journal of Environmental Research and Public Health. 2023; 20(3):2308. https://doi.org/10.3390/ijerph20032308
Chicago/Turabian StyleLi, Bin, Guohua Ren, Xiangyang Hou, Xiaotian An, and Guanhua Lv. 2023. "Response of Grassland Soil Quality to Shallow Plowing and Nutrient Addition" International Journal of Environmental Research and Public Health 20, no. 3: 2308. https://doi.org/10.3390/ijerph20032308
APA StyleLi, B., Ren, G., Hou, X., An, X., & Lv, G. (2023). Response of Grassland Soil Quality to Shallow Plowing and Nutrient Addition. International Journal of Environmental Research and Public Health, 20(3), 2308. https://doi.org/10.3390/ijerph20032308