Association of Dual Sensory Impairment with Declining Physical Function in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Sensory Impairment
2.3. Assessment of Physical Function
2.4. Adjustment Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association of Sensory Impairment with Physical Function
3.3. Association of DSI with Low Physical Function (Cross-Sectional Analysis)
3.4. Association of DSI with Low Physical Function (Longitudinal Analysis)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Correia, C.; Lopez, K.J.; Wroblewski, K.E.; Huisingh-Scheetz, M.; Kern, D.W.; Chen, R.C.; Schumm, L.P.; Dale, W.; McClintock, M.K.; Pinto, J.M. Global Sensory Impairment in Older Adults in the United States. J. Am. Geriatr. Soc. 2016, 64, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Owsley, C. Aging and vision. Vision Res. 2011, 51, 1610–1622. [Google Scholar] [CrossRef] [Green Version]
- Peelle, J.E.; Wingfield, A. The Neural Consequences of Age-Related Hearing Loss. Trends Neurosci. 2016, 39, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Bourne, R.R.A.; Flaxman, S.R.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; Leasher, J.; Limburg, H.; et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e888–e897. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.R.; Thorpe, R.; Gordon-Salant, S.; Ferrucci, L. Hearing loss prevalence and risk factors among older adults in the United States. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 582–590. [Google Scholar] [CrossRef]
- World Health Organization. Addressing the Rising Prevalence of Hearing Loss; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Kim, S.H.; Hurh, K.; Park, Y.; Jang, S.-I.; Park, E.-C. Synergistic associations of visual and self-reported hearing acuity with low handgrip strength in older adults: A population-based cross-sectional study. BMC Geriatr. 2021, 21, 513. [Google Scholar] [CrossRef]
- Martinez-Amezcua, P.; Powell, D.; Kuo, P.-L.; Reed, N.S.; Sullivan, K.J.; Palta, P.; Szklo, M.; Sharrett, R.; Schrack, J.A.; Lin, F.R.; et al. Association of Age-Related Hearing Impairment with Physical Functioning Among Community-Dwelling Older Adults in the US. JAMA Netw. Open 2021, 4, e2113742. [Google Scholar] [CrossRef]
- Miyata, K.; Yoshikawa, T.; Harano, A.; Ueda, T.; Ogata, N. Effects of visual impairment on mobility functions in elderly: Results of Fujiwara-kyo Eye Study. PLoS ONE 2021, 16, e0244997. [Google Scholar] [CrossRef]
- Gopinath, B.; McMahon, C.M.; Burlutsky, G.; Mitchell, P. Hearing and vision impairment and the 5-year incidence of falls in older adults. Age Ageing 2016, 45, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Lee, J.K.; Sim, S.; Choi, H.G. Hearing impairment increases the risk of distal radius, hip, and spine fractures: A longitudinal follow-up study using a national sample cohort. PLoS ONE 2018, 13, e0192820. [Google Scholar] [CrossRef] [Green Version]
- Loriaut, P.; Loriaut, P.; Boyer, P.; Massin, P.; Cochereau, I. Visual impairment and hip fractures: A case-control study in elderly patients. Ophthalmic. Res. 2014, 52, 212–216. [Google Scholar] [CrossRef]
- Chan, Y.M.; Sahril, N.; Chan, Y.Y.; Ab Wahab, N.A.; Shamsuddin, N.; Ismail, M.Z.H. Vision and Hearing Impairments Affecting Activities of Daily Living among Malaysian Older Adults by Gender. Int. J. Environ. Res. Public Health 2021, 18, 6271. [Google Scholar] [CrossRef]
- Mick, P.; Parfyonov, M.; Wittich, W.; Phillips, N.; Guthrie, D.; Kathleen Pichora-Fuller, M. Associations between sensory loss and social networks, participation, support, and loneliness: Analysis of the Canadian Longitudinal Study on Aging. Can. Fam. Physician 2018, 64, e33–e41. [Google Scholar]
- Tseng, Y.C.; Liu, S.H.; Lou, M.F.; Huang, G.S. Quality of life in older adults with sensory impairments: A systematic review. Qual. Life Res. 2018, 27, 1957–1971. [Google Scholar] [CrossRef]
- Byeon, G.; Oh, G.H.; Jhoo, J.H.; Jang, J.W.; Bae, J.B.; Han, J.W.; Kim, T.H.; Kwak, K.P.; Kim, B.J.; Kim, S.G.; et al. Dual Sensory Impairment and Cognitive Impairment in the Korean Longitudinal Elderly Cohort. Neurology 2021, 96, e2284–e2295. [Google Scholar] [CrossRef]
- Bouscaren, N.; Yildiz, H.; Dartois, L.; Vercambre, M.N.; Boutron-Ruault, M.C. Decline in Instrumental Activities of Daily Living over 4-Year: The Association with Hearing, Visual and Dual Sensory Impairments among Non-Institutionalized Women. J. Nutr. Health Aging 2019, 23, 687–693. [Google Scholar] [CrossRef]
- Rong, H.; Lai, X.; Jing, R.; Wang, X.; Fang, H.; Mahmoudi, E. Association of Sensory Impairments with Cognitive Decline and Depression Among Older Adults in China. JAMA Netw. Open 2020, 3, e2014186. [Google Scholar] [CrossRef]
- Armstrong, N.M.; Vieira Ligo Teixeira, C.; Gendron, C.; Brenowitz, W.D.; Lin, F.R.; Swenor, B.; Deal, J.A.; Simonsick, E.M.; Jones, R.N. Associations of dual sensory impairment with incident mobility and ADL difficulty. J. Am. Geriatr. Soc. 2022, 70, 1997–2007. [Google Scholar] [CrossRef]
- Heine, C.; Browning, C. Dual Sensory Loss in Older Adults: A Systematic Review. Gerontologist 2015, 55, 913–928. [Google Scholar] [CrossRef] [Green Version]
- Tiwana, R.; Benbow, S.M.; Kingston, P. Late life acquired dual-sensory impairment: A systematic review of its impact on everyday competence. Br. J. Vis. Impair. 2016, 34, 203–213. [Google Scholar] [CrossRef]
- Won, C.W.; Lee, S.; Kim, J.; Chon, D.; Kim, S.; Kim, C.-O.; Kim, M.K.; Cho, B.; Choi, K.M.; Roh, E.; et al. Korean frailty and aging cohort study (KFACS): Cohort profile. BMJ Open 2020, 10, e035573. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Deafness and Hearing Loss. Available online: https://www.who.int/health-topics/hearing-loss#tab=tab_1 (accessed on 25 June 2022).
- Chayaopas, N.; Kasemsiri, P.; Thanawirattananit, P.; Piromchai, P.; Yimtae, K. The effective screening tools for detecting hearing loss in elderly population: HHIE-ST Versus TSQ. BMC Geriatr. 2021, 21, 37. [Google Scholar] [CrossRef]
- Yang, T.H.; Chu, Y.C.; Chen, Y.F.; Chen, M.Y.; Cheng, Y.F.; Wu, C.S.; Huang, H.M. Diagnostic Validity of Self-Reported Hearing Loss in Elderly Taiwanese Individuals: Diagnostic Performance of a Hearing Self-Assessment Questionnaire on Audiometry. Int. J. Environ. Res. Public Health 2021, 18, 13215. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Sommer, A.; Witt, K.; Katz, J.; Royall, R.M. Blindness and Visual Impairment in an American Urban Population: The Baltimore Eye Survey. Arch. Ophthalmol. 1990, 108, 286–290. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Shakarchi, A.F.; Assi, L.; Gami, A.; Kohn, C.; Ehrlich, J.R.; Swenor, B.K.; Reed, N.S. The Association of Vision, Hearing, and Dual-Sensory Loss with Walking Speed and Incident Slow Walking: Longitudinal and Time to Event Analyses in the Health and Retirement Study. Semin. Hear. 2021, 42, 75–84. [Google Scholar] [CrossRef]
- Smith, P.F. Interactions between the vestibular nucleus and the dorsal cochlear nucleus: Implications for tinnitus. Hear. Res. 2012, 292, 80–82. [Google Scholar] [CrossRef]
- Negahban, H.; Bavarsad Cheshmeh ali, M.; Nassadj, G. Effect of hearing aids on static balance function in elderly with hearing loss. Gait Posture 2017, 58, 126–129. [Google Scholar] [CrossRef]
- Berger, S.; Porell, F. The Association Between Low Vision and Function. J. Aging Health 2008, 20, 504–525. [Google Scholar] [CrossRef]
- Hong, T.; Mitchell, P.; Burlutsky, G.; Samarawickrama, C.; Wang, J.J. Visual Impairment and the Incidence of Falls and Fractures Among Older People: Longitudinal Findings From the Blue Mountains Eye Study. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7589–7593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cade, W.T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.E.; Cruickshanks, K.J.; Schubert, C.R.; Pinto, A.A.; Carlsson, C.M.; Klein, B.E.; Klein, R.; Tweed, T.S. Age-Related Sensory Impairments and Risk of Cognitive Impairment. J. Am. Geriatr. Soc. 2016, 64, 1981–1987. [Google Scholar] [CrossRef] [Green Version]
- Lindenberger, U.; Baltes, P.B. Sensory functioning and intelligence in old age: A strong connection. Psychol Aging 1994, 9, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Liew, G.; Burlutsky, G.; Mitchell, P. Associations Between Vision, Hearing, and Olfactory Impairment with Handgrip Strength. J. Aging Health 2020, 32, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; García-Hermoso, A.; Cano, C.A.; Izquierdo, M. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults. J. Cachexia Sarcopenia Muscle 2019, 10, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rantanen, T.; Masaki, K.; Foley, D.; Izmirlian, G.; White, L.; Guralnik, J.M. Grip strength changes over 27 yr in Japanese-American men. J. Appl. Physiol. 1998, 85, 2047–2053. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.; Su, Y.P.; Horowitz, A. Longitudinal associations between dual sensory impairment and everyday competence among older adults. J. Rehabil. Res. Dev. 2006, 43, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Reuben, D.B.; Mui, S.; Damesyn, M.; Moore, A.A.; Greendale, G.A. The prognostic value of sensory impairment in older persons. J. Am. Geriatr. Soc. 1999, 47, 930–935. [Google Scholar] [CrossRef] [PubMed]
Variables | NS | HI Only | VI Only | DSI | Total | p-Value |
---|---|---|---|---|---|---|
Age, years; mean (SD) | 75.1 (3.6) | 76.8 (3.9) a | 76.2 (3.8) a | 78.5 (3.6) abc | 75.9 (3.9) | <0.001 |
Sex, n (%) | <0.05 | |||||
Males | 638 (42.5) | 513 (58.1) | 94 (45.0) | 80 (42.8) | 1325 (47.7) | |
Females | 863 (57.5) | 370 (41.9) | 115 (55.0) | 107 (57.2) | 1455 (52.3) | |
BMI, kg/m2; mean (SD) | 24.5 (2.9) | 24.4 (3.1) | 24.1 (3.2) | 23.9 (3.2) a | 24.4 (3.0) | <0.05 |
Education level, n (%) | <0.001 | |||||
<Elementary | 252 (16.8) | 161 (18.2) | 60 (28.7) | 75 (40.1) | 548 (19.7) | |
Elementary | 406 (27.0) | 228 (25.8) | 67 (32.1) | 50 (26.7) | 751 (27.0) | |
Middle or high school | 558 (37.2) | 326 (36.9) | 61 (29.2) | 43 (23.0) | 988 (35.5) | |
>High school | 285 (19.0) | 168 (19.0) | 21 (10.0) | 19 (10.2) | 493 (17.7) | |
Alcohol consumption, n (%) | 1042 (69.4) | 645 (73.0) | 156 (74.6) | 134 (71.7) | 1977 (71.1) | 0.10 |
Smoking history, n (%) | <0.01 | |||||
Never smoked | 986 (65.7) | 482 (54.6) | 132 (63.2) | 114 (61.0) | 1714 (61.7) | |
Ex-smoker | 433 (28.8) | 350 (39.6) | 63 (30.1) | 56 (29.9) | 902 (32.4) | |
Current smoker | 82 (5.5) | 51 (5.8) | 14 (6.7) | 17 (9.1) | 164 (5.9) | |
Number of underlying diseases, n (%) | 0.52 | |||||
0 | 750 (50.0) | 459 (52.0) | 100 (47.8) | 85 (45.5) | 1394 (50.1) | |
1 | 578 (38.5) | 304 (34.4) | 90 (43.1) | 78 (41.7) | 1050 (37.8) | |
2 | 148 (9.9) | 100 (11.3) | 17 (8.1) | 22 (11.8) | 287 (10.3) | |
≥3 | 25 (1.7) | 20 (2.3) | 2 (1.0) | 2 (1.1) | 49 (1.8) | |
Cerebrovascular disease (+), (%) | 64 (4.3) | 44 (5.0) | 11 (5.3) | 8 (4.3) | 127 (4.6) | 0.61 |
Physical function | ||||||
Handgrip strength, kg; mean (SD) | 25.8 (7.6) | 26.5 (7.3) | 24.1 (7.5) ab | 22.8 (6.9) ab | 25.7 (7.5) | <0.001 |
TUG, s; mean (SD) | 10.0 (2.3) | 10.5 (2.5) a | 10.6 (2.3) a | 11.9 (3.5) abc | 10.4 (2.5) | <0.001 |
Gait speed, m/s; mean (SD) | 1.1 (0.2) | 1.1 (0.3) | 1.1 (0.3) | 1.0 (0.3) abc | 1.1 (0.2) | <0.001 |
CS-5, s; mean (SD) | 11.1 (3.4) | 11.5 (4.1) | 11.8 (3.7) | 13.1 (5.2) abc | 11.4 (3.8) | <0.001 |
Composite SPPB score, points; mean (SD) | 11.0 (1.3) | 10.8 (1.5) a | 10.7 (1.4) a | 10.1 (1.9) abc | 10.9 (1.4) | <0.001 |
Outcome Variables | β (95% CI) | ||
Handgrip Strength | TUG | SPPB Composite Score | |
Category 1 | |||
Normal | Reference | Reference | Reference |
HI | −0.31 (−0.51 to −0.11) | 0.32 (0.22 to 0.41) b | −0.16 (−0.21 to −0.10) b |
Category 2 | |||
Normal | Reference | Reference | Reference |
VI | −1.18 (−1.45 to −0.91) c | 0.52 (0.39 to 0.65) c | −0.26 (−0.33 to −0.18) c |
Category 3 | |||
Normal | Reference | Reference | Reference |
HI only | −0.29 (−0.51 to −0.08) | 0.20 (0.10 to 0.30) a | −0.11 (−0.17 to −0.05) |
VI only | −1.24 (−1.61 to −0.87) b | 0.22 (0.05 to 0.39) | −0.12 (−0.22 to −0.02) |
DSI | −1.39 (−1.78 to −1.00) c | 1.08 (0.89 to 1.26) c | −0.51 (−0.61 to −0.40) c |
Outcome Variables | β (95% CI) | ||
Balance | CS-5 | Gait Speed | |
Category 1 | |||
Normal | Reference | Reference | Reference |
HI | −0.10 (−0.13 to −0.08) c | 0.24 (0.10 to 0.39) | −0.002 (−0.011 to 0.007) |
Category 2 | |||
Normal | Reference | Reference | Reference |
VI | −0.11 (−0.14 to −0.08) c | 0.54 (0.34 to 0.73) b | −0.016 (−0.028 to −0.004) |
Category 3 | |||
Normal | Reference | Reference | Reference |
HI only | −0.08 (−0.11 to −0.06) b | 0.13 (−0.03 to 0.29) | 0.004 (−0.006 to 0.014) |
VI only | −0.05 (−0.09 to −0.01) | 0.26 (0.00 to 0.53) | 0.000 (−0.017 to 0.017) |
DSI | −0.25 (−0.29 to −0.20) c | 1.02 (0.74 to 1.31) c | −0.033 (−0.051 to −0.015) c |
Low Muscle Strength (Handgrip Strength) | ||||||
Unadjusted | Model 1 | Model 2 | ||||
OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value | |
HI only | 1.34 (1.11–1.61) | <0.01 | 1.07 (0.88–1.32) | 0.50 | 1.04 (0.85–1.27) | 0.71 |
VI only | 1.88 (1.38–2.55) | <0.001 | 1.71 (1.25–2.34) | <0.01 | 1.51 (1.10–2.08) | <0.05 |
DSI | 2.99 (2.19–4.08) | <0.001 | 2.05 (1.48–2.84) | <0.001 | 1.78 (1.27–2.48) | <0.01 |
Poor Physical Performance (SPPB) | ||||||
Unadjusted | Model 1 | Model 2 | ||||
OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value | |
HI only | 1.51 (1.21–1.89) | <0.001 | 1.42 (1.12–1.80) | <0.01 | 1.39 (1.10–1.77) | <0.01 |
VI only | 2.14 (1.50–3.05) | <0.001 | 1.94 (1.35–2.80) | <0.001 | 1.72 (1.18–2.50) | <0.01 |
DSI | 3.21 (2.25–4.59) | <0.001 | 2.34 (1.61–3.41) | <0.001 | 2.04 (1.38–3.00) | <0.001 |
Low Muscle Strength (Handgrip Strength) | ||||||
Unadjusted | Model 1 | Model 2 | ||||
OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value | |
HI only | 1.50 (1.23–1.84) | <0.001 | 1.21 (0.98–1.50) | 0.08 | 1.19 (0.96–1.49) | 0.11 |
VI only | 2.13 (1.53–2.97) | <0.001 | 1.82 (1.29–2.57) | <0.01 | 1.61 (1.14–2.28) | <0.01 |
DSI | 2.62 (1.85–3.71) | <0.001 | 1.68 (1.17–2.40) | <0.01 | 1.51 (1.04–2.18) | <0.05 |
Poor Physical performance (SPPB) | ||||||
Unadjusted | Model 1 | Model 2 | ||||
OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value | |
HI only | 1.51 (1.21–1.89) | <0.001 | 1.36 (1.07–1.72) | <0.05 | 1.34 (1.06–1.71) | <0.05 |
VI only | 2.14 (1.50–3.05) | <0.001 | 1.87 (1.28–2.72) | <0.01 | 1.67 (1.14–2.47) | <0.01 |
DSI | 3.21 (2.25–4.59) | <0.001 | 2.20 (1.51–3.21) | <0.001 | 1.94 (1.31–2.88) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, H.H.; Shin, K.; Won, C.W. Association of Dual Sensory Impairment with Declining Physical Function in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2023, 20, 3546. https://doi.org/10.3390/ijerph20043546
Kong HH, Shin K, Won CW. Association of Dual Sensory Impairment with Declining Physical Function in Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health. 2023; 20(4):3546. https://doi.org/10.3390/ijerph20043546
Chicago/Turabian StyleKong, Hyun Ho, Kwangsoo Shin, and Chang Won Won. 2023. "Association of Dual Sensory Impairment with Declining Physical Function in Community-Dwelling Older Adults" International Journal of Environmental Research and Public Health 20, no. 4: 3546. https://doi.org/10.3390/ijerph20043546
APA StyleKong, H. H., Shin, K., & Won, C. W. (2023). Association of Dual Sensory Impairment with Declining Physical Function in Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health, 20(4), 3546. https://doi.org/10.3390/ijerph20043546