The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD—A Review of Contemporary Literature
Abstract
:1. Introduction
2. ASD Biological Substrate
3. Congenital and Perinatal Factors
Perinatal Disorders and CNS Damage
4. Ophthalmic Manifestations
4.1. Refractive Errors, Strabismus, and Astigmatism
4.2. Fundoscopy
4.3. Optical Coherence Tomography (OCT) in Children with ASD
4.4. Electrophysiological Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edition, F. Diagnostic and statistical manual of mental disorders. Am. Psychiatr. Assoc. 2013, 21, 591–643. [Google Scholar]
- Bachmann, C.J.; Gerste, B.; Hoffmann, F. Diagnoses of autism spectrum disorders in Germany: Time trends in administrative prevalence and diagnostic stability. Autism 2018, 22, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Skonieczna-Żydecka, K.; Gorzkowska, I.; Pierzak-Sominka, J.; Adler, G. The prevalence of autism spectrum disorders in West Pomeranian and Pomeranian regions of Poland. J. Appl. Res. Intellect. Disabil. 2017, 30, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Lu, Y.; Li, Y.; Shi, J.; Cui, H.; Gu, Y.; Li, Y.; Zhong, W.; Zhu, X.; Liu, Y.; et al. Prevalence of autism spectrum disorder in Asia: A systematic review and meta-analysis. Psychiatry Res. 2020, 284, 112679. [Google Scholar] [CrossRef]
- Rudra, A.; Belmonte, M.K.; Soni, P.K.; Banerjee, S.; Mukerji, S.; Chakrabarti, B. Prevalence of autism spectrum disorder and autistic symptoms in a school-based cohort of children in Kolkata, India. Autism Res. 2017, 10, 1597–1605. [Google Scholar] [CrossRef] [Green Version]
- Maenner, M.J.; Shaw, K.A.; Baio, J. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2016. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef]
- Kogan, M.D.; Vladutiu, C.J.; Schieve, L.A.; Ghandour, R.M.; Blumberg, S.J.; Zablotsky, B.; Perrin, J.M.; Shattuck, P.; Kuhlthau, K.A.; Harwood, R.L.; et al. The prevalence of parent-reported autism spectrum disorder among US children. Pediatrics 2018, 142, e20174161. [Google Scholar] [CrossRef] [Green Version]
- Randall, M.; Sciberras, E.; Brignell, A.; Ihsen, E.; Efron, D.; Dissanayake, C.; Williams, K. Autism spectrum disorder: Presentation and prevalence in a nation- ally representative Australian sample. Aust. N. Z. J. Psychiatry 2016, 50, 243–253. [Google Scholar] [CrossRef]
- Delobel-Ayoub, M.; Ehlinger, V.; Klapouszczak, D.; Maffre, T.; Raynaud, J.P.; Delpierre, C.; Arnaud, C. Socioeconomic disparities and prevalence of autism spectrum disorders and intellectual disability. PLoS ONE 2015, 10, e0141964. [Google Scholar] [CrossRef]
- Morales Hidalgo, P.; Voltas Moreso, N.; Canals Sans, J. Autism spectrum disorder prevalence and associated sociodemographic factors in the school population: EPINED study. Autism 2021, 25, 1999–2011. [Google Scholar] [CrossRef]
- French, L.R.; Bertone, A.; Hyde, K.L.; Fombonne, E. Chapter 1.1—Epidemiology of autism spectrum disorders. In The Neuroscience of Autism Spectrum Disorders; Buxbaum, J., Hof, P.R., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 3–24. [Google Scholar]
- Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016, 351, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Ponzio, N.M.; Servatius, R.; Beck, K.; Marzouk, A.; Kreider, T.I.M. Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring. Ann. N. Y. Acad. Sci. 2007, 1107, 118–128. [Google Scholar] [CrossRef]
- Meltzer, A.; Van de Water, J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017, 42, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Al-Haddad, B.J.S.; Oler, E.; Armistead, B.; Elsayed, N.A.; Weinberger, D.R.; Bernier, R.; Burd, I.; Kapur, R.; Jacobsson, B.; Wang, C.; et al. The fetal origins of mental illness. Am. J. Obstet. Gynecol. 2019, 221, 549–562. [Google Scholar] [CrossRef]
- Abib, R.T.; Gaman, A.; Dargél, A.A.; Tamouza, R.; Kapczinski, F.; Gottfried, C.; Leboyer, M. Intracellular Pathogen Infections and Immune Response in Autism. Neuroimmunomodulation 2018, 25, 271–279. [Google Scholar] [CrossRef]
- Cheng, J.; Eskenazi, B.; Widjaja, F.; Cordero, J.F.; Hendren, R.L. Improving autism perinatal risk factors: A systematic review. Med. Hypotheses 2019, 127, 26–33. [Google Scholar] [CrossRef]
- Kabatas, E.U.; Ozer, P.A.; Ertugrul, G.T.; Kurtul, B.E.; Bodur, S.; Alan, B.E. Initial Ophthalmic Findings in Turkish Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2015, 45, 2578–2581. [Google Scholar] [CrossRef]
- Ikeda, J.; Davitt, B.V.; Ultmann, M.; Maxim, R.; Cruz, O.A. Brief report: Incidence of ophthalmologic disorders in children with autism. J. Autism Dev. Disord. 2013, 43, 1447–1451. [Google Scholar] [CrossRef]
- Coulter, R.A. Understanding the Visual Symptoms of Individuals with Autism Spectrum Disorder (ASD). Optom. Vis. Dev. 2009, 40, 164–175. [Google Scholar]
- Shen, M.D.; Swanson, M.R.; Wolff, J.J.; Elison, J.T.; Girault, J.B.; Kim, S.H. Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy. Am. J. Psychiatry 2022, 179, 562–572. [Google Scholar] [CrossRef]
- Ellis, R.E.; Milne, E.; Levita, L. Reduced visual cortical plasticity in autism spectrum disorder. Brain Res. Bull. 2021, 170, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Hellmer, K.; Nyström, P. Infant acetylcholine, dopamine, and melatonin dysregulation: Neonatal biomarkers and causal factors for ASD and ADHD phenotypes. Med. Hypotheses 2017, 100, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Pardo, C.A.; Vargas, D.L.; Zimmerman, A.W. Immunity, neuroglia, and neuroinflammation in autism. Int. Rev. Psychiatry 2005, 17, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, R.; Basta, R.; Salerno, L.; Elia, M. Autism, epilepsy, and synaptopathies: A not rare association. Neurol. Sci. 2017, 38, 1353–1361. [Google Scholar] [CrossRef]
- Watkins, L.V.; O’Dwyer, M.; Shankar, R. A review of the pharmacotherapeutic considerations for managing epilepsy in people with autism. Expert Opin. Pharmacother. 2022, 23, 841–851. [Google Scholar] [CrossRef]
- Tu, Y.F.; Wang, S.T.; Shih, H.I.; Wu, P.M.; Yu, W.H.; Huang, C.C. Epilepsy occurrence after neonatal morbidities in very preterm infants. Epilepsia 2019, 60, 2086–2094. [Google Scholar] [CrossRef]
- Movsas, T.Z.; Pinto-Martin, J.A.; Whitaker, A.H.; Feldman, J.F.; Lorenz, J.M.; Korzeniewski, S.J.; Levy, S.E.; Paneth, N. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J. Pediatr. 2013, 163, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Maramara, L.A.; He, W.; Ming, X. Pre- and perinatal risk factors for autism spectrum disorder in a New Jersey cohort. J. Child Neurol. 2014, 29, 1645–1651. [Google Scholar] [CrossRef]
- Van Tilborg, E.; Achterberg, E.J.M.; van Kammen, C.M.; van der Toorn, A.; Groenendaal, F.; Dijkhuizen, R.M.; Heijnen, C.J.; Vanderschuren, L.J.M.J.; Benders, M.N.J.L.; Nijboer, C.H.A. Combined fetal inflammation and postnatal hypoxia causes myelin deficits and autism-like behavior in a rat model of diffuse white matter injury. Glia 2018, 66, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Dammann, O.; Rivera, J.C.; Chemtob, S. The prenatal phase of retinopathy of prematurity. Acta Paediatr. 2021, 110, 2521–2528. [Google Scholar] [CrossRef]
- Tioleco, N.; Silberman, A.E.; Stratigos, K.; Banerjee-Basu, S.; Spann, M.N.; Whitaker, A.H.; Turner, J.B. Prenatal maternal infection and risk for autism in offspring: A meta-analysis. Autism Res. 2021, 14, 1296–1316. [Google Scholar] [CrossRef]
- Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod. Toxicol. 2015, 56, 155–169. [Google Scholar] [CrossRef]
- Black, K.; McCarus, C.; Collins, M.L.; Jensen, A. Ocular manifestations of autism in ophthalmology. Strabismus 2013, 21, 98–102. [Google Scholar] [CrossRef]
- Ezegwui, I.R.; Lawrence, L.; Aghaji, A.E.; Okoye, O.I.; Okoye, O.; Onwasigwe, E.N.; Ebigbo, P.O. Refractive errors in children with autism in a developing country. Niger. J. Clin. Pract. 2014, 17, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Denis, D.; Burillon, C.; Livet, M.O.; Burguière, O. Signes ophtalmologiques chez l’enfant autiste [Ophthalmologic signs in children with autism]. J. Fr. Ophtalmol. 1997, 20, 103–110. [Google Scholar]
- Ouvrier, R.A. Pallor of the optic disc in children. Aust. N. Z. J. Ophthalmol. 1990, 18, 375–379. [Google Scholar] [CrossRef]
- Chang, M.Y.; Gandhi, N.; O’Hara, M. Ophthalmologic disorders and risk factors in children with autism spectrum disorder. J. AAPOS 2019, 23, 337-e1. [Google Scholar]
- Pineles, S.L.; Avery, R.A.; Liu, G.T. Vitamin B12 optic neuropathy in autism. Pediatrics 2010, 126, e967–e970. [Google Scholar] [CrossRef]
- Strand, M. Eggs, sugar, grated bones: Colour-based food preferences in autism, eating disorders, and beyond. Med. Humanit. 2021, 47, 87–94. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Lawrence, L.; Flora, J.; Perumalsamy, V. Functional and cognitive vision assessment in children with autism spectrum disorder. J. AAPOS 2018, 22, 304–308. [Google Scholar] [CrossRef]
- Gillberg, C.; Ehlers, S.; Schaumann, H.; Jakobsson, G.; Dahlgren, S.O.; Lindblom, R.; Bågenholm, A.; Tjuus, T.; Blidner, E. Autism under age 3 years: A clinical study of 28 cases referred for autistic symptoms in infancy. J. Child Psychol. Psychiatry 1990, 31, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.K.; Kovarski, K.; Arsene, S.; Siwiaszczyk, M.; Pisella, P.J.; Bonnet-Brilhault, F.; Batty, M.; Malvy, J. Ophthalmological findings in children with autism spectrum disorder. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar Bilen, N.; Titiz, A.P.; Bilen, S.; Polat Gultekin, B.; Sahin Hamurcu, M.; Kalayci, D. Optical coherence tomography and neurodegeneration in epilepsy. Eur. J. Ophthalmol. 2021, 31, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Emberti Gialloreti, L.; Pardini, M.; Benassi, F.; Marciano, S.; Amore, M.; Mutolo, M.G.; Porfirio, M.C.; Curatolo, P. Reduction in retinal nerve fiber layer thickness in young adults with autism spectrum disorders. J. Autism Dev. Disord. 2014, 44, 873–882. [Google Scholar] [CrossRef]
- García-Medina, J.J.; García-Piñero, M.; Del-Río-Vellosillo, M.; Fares-Valdivia, J.; Ragel-Hernández, A.B.; Martínez-Saura, S.; Cárcel-López, M.D.; Zanon-Moreno, V.; Pinazo-Duran, M.D.; Villegas-Pérez, M.P. Comparison of Foveal, Macular, and Peripapillary Intraretinal Thicknesses Between Autism Spectrum Disorder and Neurotypical Subjects. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5819–5826. [Google Scholar] [CrossRef] [Green Version]
- García-Medina, J.J.; Rubio-Velazquez, E.; Lopez-Bernal, M.D.; Parraga-Muñoz, D.; Perez-Martinez, A.; Pinazo-Duran, M.D.; Del-Rio-Vellosillo, M. Optical Coherence Tomography Angiography of Macula and Optic Nerve in Autism Spectrum Disorder: A Pilot Study. J. Clin. Med. 2020, 9, 3123. [Google Scholar] [CrossRef]
- Kealy, J.; Greene, C.; Campbell, M. Blood-brain barrier regulation in psychiatric disorders. Neurosci. Lett. 2020, 726, 133664. [Google Scholar] [CrossRef] [Green Version]
- Baruah, J.; Vasudevan, A. The Vessels Shaping Mental Health or Illness. Open Neurol. J. 2019, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Little, J.A.; Anketell, P.M.; Doyle, L.; Saunders, K. Investigation of retinal thickness using OCT in autism spectrum disorder. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4217. [Google Scholar]
- Kara, M.Z.; Örüm, M.H. Optical coherence tomography findings in autism spectrum disorder and healthy controls. Psychiatry Clin. Psychopharmacol. 2019, 29, 1. [Google Scholar]
- Bozkurt, A.; Say, G.N.; Şahin, B.; Usta, M.B.; Kalyoncu, M.; Koçak, N.; Osmanlı, C.Ç. Evaluation of retinal nerve fiber layer thickness in children with autism spectrum disorders. Res. Autism Spectr. Disord. 2022, 98, 102050. [Google Scholar] [CrossRef]
- Matta, S.M.; Hill-Yardin, E.L.; Crack, P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019, 79, 75–90. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Chiba, K. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia. J. Pharmacol. Exp. Ther. 2016, 358, 504–515. [Google Scholar] [CrossRef] [Green Version]
- London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 2013, 9, 44–53. [Google Scholar] [CrossRef]
- Constable, P.A.; Gaigg, S.B.; Bowler, D.M.; Jägle, H.; Thompson, D.A. Full-field electroretinogram in autism spectrum disorder. Doc. Ophthalmol. 2016, 132, 83–99. [Google Scholar] [CrossRef]
- Ritvo, E.R.; Creel, D.; Realmuto, G.; Crandall, A.S.; Freeman, B.J.; Bateman, J.B.; Barr, R.; Pingree, C.; Coleman, M.; Purple, R. Electroretinograms in autism: A pilot study of b-wave amplitudes. Am. J. Psychiatry 1988, 145, 229–232. [Google Scholar]
- Castrogiovanni, P.; Marazziti, D. ERG b-wave amplitude and brain dopaminergic activity. Am. J. Psychiatry 1989, 146, 1085–1086. [Google Scholar]
- Lavoie, J.; Maziade, M.; Hébert, M. The brain through the retina: The flash electroretinogram as a tool to investigate psychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 129–134. [Google Scholar] [CrossRef]
- Constable, P.A.; Lee, I.O.; Marmolejo-Ramos, F.; Skuse, D.H.; Thompson, D.A. The photopic negative response in autism spectrum disorder. Clin. Exp. Optom. 2021, 104, 841–847. [Google Scholar] [CrossRef]
- Lee, I.O.; Skuse, D.H.; Constable, P.A.; Marmolejo-Ramos, F.; Olsen, L.R.; Thompson, D.A. The electroretinogram b-wave amplitude: A differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. J. Neurodev. Disord. 2022, 6, 30. [Google Scholar] [CrossRef]
- Friedel, E.B.N.; Schäfer, M.; Endres, D.; Maier, S.; Runge, K.; Bach, M.; Heinrich, S.P.; Ebert, D.; Domschke, K.; Tebartz van Elst, L.; et al. Electroretinography in adults with high-functioning autism spectrum disorder. Autism Res. 2022, 15, 2026–2037. [Google Scholar] [CrossRef] [PubMed]
- Manjur, S.M.; Hossain, M.B.; Constable, P.A.; Thompson, D.A.; Marmolejo-Ramos, F.; Lee, I.O.; Skuse, D.H.; Posada-Quintero, H.F. Detecting Autism Spectrum Disorder Using Spectral Analysis of Electroretinogram and Machine Learning: Preliminary results. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 3435–3438. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modrzejewska, M.; Bosy-Gąsior, W. The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD—A Review of Contemporary Literature. Int. J. Environ. Res. Public Health 2023, 20, 3591. https://doi.org/10.3390/ijerph20043591
Modrzejewska M, Bosy-Gąsior W. The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD—A Review of Contemporary Literature. International Journal of Environmental Research and Public Health. 2023; 20(4):3591. https://doi.org/10.3390/ijerph20043591
Chicago/Turabian StyleModrzejewska, Monika, and Wiktoria Bosy-Gąsior. 2023. "The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD—A Review of Contemporary Literature" International Journal of Environmental Research and Public Health 20, no. 4: 3591. https://doi.org/10.3390/ijerph20043591
APA StyleModrzejewska, M., & Bosy-Gąsior, W. (2023). The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD—A Review of Contemporary Literature. International Journal of Environmental Research and Public Health, 20(4), 3591. https://doi.org/10.3390/ijerph20043591