What Influences Proprioceptive Impairments in Patients with Rheumatic Diseases? Analysis of Different Factors
Abstract
:1. Introduction
2. Methods and Protocol
3. Data Analysis and Statistical Evaluation
4. Results
4.1. Descriptive Analysis of Patient Groups
4.2. Comparison of JPS, ATE, and SLS in Study Groups
4.3. Comparison of Proprioception and SLS Results between Groups of Patients with Moderate and High Activity of RA
4.4. Correlation between DAS28, the VAS Ruler, and JPS and SLS Results
4.5. Comparison of JPS and SLS Depending on the Number of Falls within 1 Year
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sokołowska, B.; Sadura-Sieklucka, T.; Czerwosz, L.; Hallay-Suszek, M.; Lesyng, B.; Księżopolska-Orłowska, K. Estimation of Posturographic Trajectory Using K-Nearest Neighbors Classifier in Patients with Rheumatoid Arthritis and Osteoarthritis. Prog. Med. Res. 2018, 1070, 85–95. [Google Scholar] [CrossRef]
- Sokołowska, B.; Czerwosz, L.; Hallay-Suszek, M.; Sadura-Sieklucka, T.; Księżopolska-Orłowska, K. Posturography in Patients with Rheumatoid Arthritis and Osteoarthritis. Lung Cancer Autoimmune Disord. 2014, 833, 63–70. [Google Scholar] [CrossRef]
- Toprak, C.Ş. Static and Dynamic Balance Disorders in Patients With Rheumatoid Arthritis and Relationships with Lower Extremity Function and Deformities: A Prospective Controlled Study. Arch. Rheumatol. 2018, 33, 328–334. [Google Scholar] [CrossRef] [PubMed]
- van Tunen, J.A.C.; Dell’Isola, A.; Juhl, C.; Dekker, J.; Steultjens, M.; Thorlund, J.B.; Lund, H. Association of Malalignment, Muscular Dysfunction, Proprioception, Laxity and Abnormal Joint Loading with Tibiofemoral Knee Osteoarthritis—A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2018, 19, 273. [Google Scholar] [CrossRef] [PubMed]
- Hadamus, A.; Białoszewski, D. Objective Assessment of Knee Proprioception and Sensorimotor Function in Patients with Primary Gonarthrosis before and after Knee Replacement. Ortop. Traumatol. Rehabil. 2017, 19, 403–414. [Google Scholar] [CrossRef]
- Brenton-Rule, A.; Dalbeth, N.; Bassett, S.; Menz, H.B.; Rome, K. The Incidence and Risk Factors for Falls in Adults with Rheumatoid Arthritis: A Systematic Review. Semin. Arthritis Rheum. 2015, 44, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, D.; Liebl, D.; Hödl, C.; Heßler, V.; Kniewasser, C.K.; Thönnessen, T.; Zech, A. Gait Stability and Its Influencing Factors in Older Adults. Front. Physiol. 2019, 9, 1955. [Google Scholar] [CrossRef]
- Hirata, R.P.; Skou, S.T.; Simonsen, O.; Rasmussen, S.; Laursen, M.; Graven-Nielsen, T. Increased Postural Stiffness during Challenging Postural Tasks in Patients with Knee Osteoarthritis with High Pain Sensitization. Clin. Biomech. 2019, 61, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoop, J.; Steultjens, M.P.M.; van der Leeden, M.; van der Esch, M.; Thorstensson, C.A.; Roorda, L.D.; Lems, W.F.; Dekker, J. Proprioception in Knee Osteoarthritis: A Narrative Review. Osteoarthr. Cartil. 2011, 19, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Peel, N.M. Epidemiology of Falls in Older Age. Can. J. Aging La Rev. Can. du Vieil. 2011, 30, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Taglietti, M.; Bela, L.F.D.; Dias, J.M.; Pelegrinelli, A.R.M.; Nogueira, J.F.; Júnior, J.P.B.; Carvalho, R.G.D.S.; McVeigh, J.G.; Facci, L.M.; Moura, F.A.; et al. Postural Sway, Balance Confidence, and Fear of Falling in Women with Knee Osteoarthritis in Comparison to Matched Controls. PM&R 2017, 9, 774–780. [Google Scholar] [CrossRef]
- Brandt, K.D.; Dieppe, P.; Radin, E. Etiopathogenesis of Osteoarthritis. Med. Clin. N. Am. 2009, 93, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gibofsky, A. Overview of Epidemiology, Pathophysiology, and Diagnosis of Rheumatoid Arthritis. Am. J. Manag. Care 2012, 18 (Suppl. 13), S295–S302. [Google Scholar] [PubMed]
- McInnes, I.B.; Schett, G. The Pathogenesis of Rheumatoid Arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid Arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Pauk, J.; Ihnatouski, M.; Wasilewska, A. Detection of Inflammation from Finger Temperature Profile in Rheumatoid Arthritis. Med. Biol. Eng. Comput. 2019, 57, 2629–2639. [Google Scholar] [CrossRef] [Green Version]
- Pauk, J.; Wasilewska, A.; Ihnatouski, M. Infrared Thermography Sensor for Disease Activity Detection in Rheumatoid Arthritis Patients. Sensors 2019, 19, 3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar]
- Bruyère, O.; Cooper, C.; Pelletier, J.-P.; Branco, J.; Brandi, M.L.; Guillemin, F.; Hochberg, M.C.; Kanis, J.A.; Kvien, T.K.; Martel-Pelletier, J.; et al. An Algorithm Recommendation for the Management of Knee Osteoarthritis in Europe and Internationally: A Report from a Task Force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum. 2014, 44, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, B.S.; Woodhouse, F.G.; Besier, T.F.; Grodzinsky, A.J.; Lloyd, D.G.; Zhang, L.; Smith, D.W. Predicting Knee Osteoarthritis. Ann. Biomed. Eng. 2016, 44, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, H.; Liang, N.; Fan, W.; Li, J.; Huang, Z.; Yin, Z.; Wu, Z.; Hu, J. Prevalence and Associated Factors of Knee Osteoarthritis in a Rural Chinese Adult Population: An Epidemiological Survey. BMC Public Health 2015, 16, 94. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; da Silva, R.A.; de Oliveira, M.R.; Souza, R.D.N.; Borges, R.J.; Vieira, E.R. Effect of Body Mass Index and Fat Mass on Balance Force Platform Measurements during a One-Legged Stance in Older Adults. Aging Clin. Exp. Res. 2018, 30, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Risk Factors of Knee Osteoarthritis—Excellent Evidence but Little Has Been Done. Osteoarthr. Cartil. 2010, 18, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.C.; Hubbard-Turner, T.; Wikstrom, E.A.; Palmieri-Smith, R.M. Epidemiology of Posttraumatic Osteoarthritis. J. Athl. Train. 2017, 52, 491–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Rheumatology Ad Hoc Committee on Clinical Guidelines. Guidelines for the Management of Rheumatoid Arthritis. Arthritis Rheum. 1996, 39, 713–722. [Google Scholar] [CrossRef]
- Carole Lium Edelman, E.C.K. Health Promotion Throughout the Life Spanle; Mosby: Maryland Heights, MO, USA, 2017. [Google Scholar]
- Steinbrocker, O. Therapeutic Criteria In Rheumatoid Arthritis. JAMA J. Am. Med. Assoc. 1949, 140, 659. [Google Scholar] [CrossRef]
- Couper, M.P.; Tourangeau, R.; Conrad, F.G.; Singer, E. Evaluating the Effectiveness of Visual Analog Scales. Soc. Sci. Comput. Rev. 2006, 24, 227–245. [Google Scholar] [CrossRef]
- Liu, G.; Ma, H.; Hu, P.; Tian, Y.; Hu, S.; Fan, J.; Wang, K. Effects of Painful Stimulation and Acupuncture on Attention Networks in Healthy Subjects. Behav. Brain Funct. 2013, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Ferrell, W.; Crighton, A.; Sturrock, R. Position Sense at the Proximal Interphalangeal Joint Is Distorted in Patients with Rheumatoid Arthritis of Finger Joints. Exp. Physiol. 1992, 77, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, Z.R.; Shafaee, R.; Abbasi, L. The Effects of Transcutaneous Electrical Nerve Stimulation on Joint Position Sense in Patients with Knee Joint Osteoarthritis. Physiother. Theory Pract. 2014, 30, 495–499. [Google Scholar] [CrossRef]
- Amiri, P.; Kearney, R.E. Ankle Intrinsic Stiffness Is Modulated by Postural Sway. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 70–73. [Google Scholar] [CrossRef]
- Bearne, L.M.; Coomer, A.F.; Hurley, M.V. Upper Limb Sensorimotor Function and Functional Performance in Patients with Rheumatoid Arthritis. Disabil. Rehabil. 2007, 29, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Lund, H.; Juul-Kristensen, B.; Hansen, K.; Christensen, R.; Christensen, H.; Danneskiold-Samsoe, B.; Bliddal, H. Movement Detection Impaired in Patients with Knee Osteoarthritis Compared to Healthy Controls: A Cross-Sectional Case-Control Study. J. Musculoskelet. Neuronal Interact. 2008, 8, 391–400. [Google Scholar]
- Shanahan, C.J.; Wrigley, T.V.; Farrell, M.J.; Bennell, K.L.; Hodges, P.W. Proprioceptive Impairments Associated with Knee Osteoarthritis Are Not Generalized to the Ankle and Elbow Joints. Hum. Mov. Sci. 2015, 41, 103–113. [Google Scholar] [CrossRef]
- Cudejko, T.; Esch, M.; Leeden, M.; Holla, J.; Roorda, L.; Lems, W.; Dekker, J. Proprioception Mediates the Association between Systemic Inflammation and Muscle Weakness in Patients with Knee Osteoarthritis: Results from the Amsterdam Osteoarthritis Cohort. J. Rehabil. Med. 2018, 50, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Eurenius, E.; Brodin, N.; Lindblad, S.; Opava, C.H.; PARA Study Group. Predicting Physical Activity and General Health Perception among Patients with Rheumatoid Arthritis. J. Rheumatol. 2007, 34, 10–15. [Google Scholar]
- Hakkinen, A. Muscle Strength, Pain, and Disease Activity Explain Individual Subdimensions of the Health Assessment Questionnaire Disability Index, Especially in Women with Rheumatoid Arthritis. Ann. Rheum. Dis. 2006, 65, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Luoto, S.; Riikonen, K.; Siivola, M.; Laiho, K.; Kauppi, M.; Mikkelsson, M. Impaired Postural Control Is Associated with Worse Scores of the Health Assessment Questionnaire Disability Index among Women with Rheumatoid Arthritis. J. Rehabil. Med. 2011, 43, 900–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, M.D.A.; Carli, F.V.B.O.; de Assis, M.R. Characterization of Falls in Adults with Established Rheumatoid Arthritis and Associated Factors. Adv. Rheumatol. 2018, 58, 16. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Lee, J.S.; Shin, J.K.; Goh, T.S. Correlations Between Sagittal Spinal Balance and Quality of Life in Rheumatoid Arthritis. Clin. Spine Surg. A Spine Publ. 2017, 30, E412–E417. [Google Scholar] [CrossRef]
- Manlapaz, D.G.; Sole, G.; Jayakaran, P.; Chapple, C.M. Risk Factors for Falls in Adults with Knee Osteoarthritis: A Systematic Review. PM&R 2019, 11, 745–757. [Google Scholar] [CrossRef]
- Stubbs, B.; Binnekade, T.; Eggermont, L.; Sepehry, A.A.; Patchay, S.; Schofield, P. Pain and the Risk for Falls in Community-Dwelling Older Adults: Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2014, 95, 175–187.e9. [Google Scholar] [CrossRef] [PubMed]
- Kuryliszyn-Moskal, A.; Hryniewicz, A.; Bagiński, N.; Moskal-Jasińska, D.; Dzięcioł-Anikiej, Z.; Dzięcioł, J. Foot Static Disturbances and Clinical Features in Overweight Patients with Rheumatoid Arthritis. Arch. Med. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Dzieciol-Anikiej, Z.; Kuryliszyn-Moskal, A.; Hryniewicz, A.; Kaniewska, K.; Chilińska-Kopko, E.; Dzieciol, J. Gait disturbances in patients with rheumatoid arthritis. Arch. Med. Sci. 2022, 8. [Google Scholar] [CrossRef]
- Jamison, M.; Neuberger, G.B.; Miller, P.A. Correlates of Falls and Fear of Falling among Adults with Rheumatoid Arthritis. Arthritis Rheum. 2003, 49, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C. Occurrence and Risk Factors for Falls in Rheumatoid Arthritis. Ann. Rheum. Dis. 2005, 64, 1602–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Habtemariam, D.; Iloputaife, I.; Lipsitz, L.A.; Manor, B. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study. Sci. Rep. 2017, 7, 2924. [Google Scholar] [CrossRef] [Green Version]
- Kuryliszyn-Moskal, A.; Kaniewska, K.; Dzięcioł-Anikiej, Z.; Klimiuk, P.A. Evaluation of Foot Static Disturbances in Patients with Rheumatic Diseases. Rheumatology 2017, 55, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Kuryliszyn-Moskal, A.; Kaniewska, K.; Konarzewski, P.; Dzięcioł, Z. New Methods in Diagnosis and Therapy in Case of Disorder in Static Foot Function in Rheumatoid Arthritis Patients. Reumatologia/Rheumatology 2012, 6, 507–511. [Google Scholar] [CrossRef]
- Dzięcioł, Z.; Kuryliszyn-Moskal, A.; Dzięcioł, J. Application of Plantography Examination to the Assessment of Foot Deformity in Patients with Rheumatoid Arthritis. Arch. Med. Sci. 2015, 11, 1015–1020. [Google Scholar] [CrossRef]
Age (Years) | Duration of the Disease (Years) | BMI (kg/m2) | VAS Ruler (mm) | |||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |
RA | 61.8 | 9.7 | 13.3 | 8.7 | 26.8 | 3.7 | 52.5 | 21.6 |
OA | 63.0 | 9.9 | 10.9 | 5.9 | 27.8 | 3.6 | 47.6 | 15.7 |
RA vs. OA | ||
---|---|---|
Difference of Means | p | |
JPS 5 deg. plantar flexion—mean absolute error | −0.17 | 0.90 |
JPS 5 deg. plantar flexion—mean relative error | −0.03 | 0.91 |
JPS 5 deg. dorsal flexion—results range in samples | −0.37 | 0.42 |
JPS 10 deg. plantar flexion—mean absolute error | 0.49 | 0.02 |
JPS 10 deg. plantar flexion—mean relative error | 0.05 | 0.05 |
JPS 10 deg. plantar flexion—results range in samples | 0.16 | 0.66 |
JPS 5 deg. dorsal flexion—mean absolute error | −0.17 | 1.00 |
JPS 5 deg. dorsal flexion—mean relative error | −0.03 | 1.00 |
JPS 5 deg. dorsal flexion—results range in samples | 0.00 | 1.00 |
JPS 10 deg. dorsal flexion—mean absolute error | 0.01 | 0.99 |
JPS 10 deg. dorsal flexion—mean relative error | 0.00 | 0.99 |
JPS 10 deg. dorsal flexion—results range in samples | 0.10 | 0.62 |
RA vs. OA | ||
---|---|---|
Difference of Means | p | |
ATE (%) | −6.48 | 0.02 |
ATE (time) | 2.43 | 0.77 |
AFV (kg) | −0.22 | 0.23 |
RA: DAS28 < 5.1 (n = 54) | RA: DAS28 > 5.1 (n = 28) | 95% CI | |||||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | t, sec. | p | LL | UL | dCohen | |
JPS 5 deg. plantar flexion—mean absolute error | 3.21 | 2.42 | 4.51 | 2.53 | −2.27 | 0.02 | −2.44 | −0.16 | 0.53 |
JPS 5 deg. plantar flexion—mean relative error | 0.64 | 0.48 | 0.90 | 0.50 | −2.26 | 0.02 | −0.48 | −0.03 | 0.53 |
JPS 5 deg. plantar flexion—range of results in attempts | 1.84 | 1.29 | 1.95 | 1.80 | −0.33 | 0.74 | −0.80 | 0.57 | 0.08 |
JPS 10 deg. plantar flexion—mean absolute error | 2.79 | 1.27 | 2.31 | 1.35 | 1.57 | 0.11 | −0.13 | 1.08 | 0.37 |
JPS 10 deg. plantar flexion—mean relative error | 0.28 | 0.13 | 0.23 | 0.13 | 1.57 | 0.11 | −0.01 | 0.11 | 0.37 |
JPS 10 deg. plantar flexion—range of results in attempts | 1.75 | 1.19 | 1.46 | 1.28 | 1.02 | 0.31 | −0.28 | 0.85 | 0.24 |
JPS 5 deg. dorsal flexion—mean absolute error | 1.63 | 1.12 | 1.84 | 0.86 | −0.89 | 0.37 | −0.70 | 0.27 | 0.21 |
JPS 5 deg. dorsal flexion—mean relative error | 0.33 | 0.22 | 0.37 | 0.17 | −0.80 | 0.42 | −0.13 | 0.06 | 0.19 |
JPS 5 deg. dorsal flexion—range of results in attempts | 0.99 | 0.75 | 1.13 | 0.90 | −0.74 | 0.46 | −0.51 | 0.24 | 0.17 |
JPS 10 deg. dorsal flexion—mean absolute error | 1.14 | 0.99 | 1.85 | 0.90 | −3.16 | 0.00 | −1.15 | −0.26 | 0.73 |
JPS 10 deg. dorsal flexion—mean relative error | 0.11 | 0.10 | 0.18 | 0.09 | −3.16 | 0.00 | −0.12 | −0.03 | 0.73 |
JPS 10 deg. dorsal flexion—range of results in attempts | 0.73 | 0.59 | 0.78 | 0.59 | −0.30 | 0.76 | −0.31 | 0.23 | 0.07 |
RA—DAS28 | RA—VAS | OA—VAS Ruler | |
---|---|---|---|
JPS 5 deg. plantar flexion—mean absolute error | 0.13 | 0.11 | 0.13 |
JPS 5 deg. plantar flexion—mean relative error | 0.13 | 0.11 | 0.13 |
JPS 5 deg. plantar flexion—range of results in attempts | 0.08 | 0.09 | −0.08 |
JPS 10 deg. plantar flexion—mean absolute error | −0.16 | 0.09 | −0.04 |
JPS 10 deg. plantar flexion—mean relative error | −0.16 | 0.09 | −0.04 |
JPS 10 deg. plantar flexion—range of results in attempts | −0.05 | −0.03 | 0.02 |
JPS 5 deg. dorsal flexion—mean absolute error | 0.03 | 0.01 | 0.12 |
JPS 5 deg. dorsal flexion—mean relative error | 0.02 | 0.00 | 0.11 |
JPS 5 deg. dorsal flexion—range of results in attempts | −0.05 | 0.08 | 0.08 |
JPS 10 deg. dorsal flexion—mean absolute error | 0.24 * | 0.04 | −0.15 |
JPS 10 deg. dorsal flexion—mean relative error | 0.24 * | 0.04 | −0.15 |
JPS 10 deg. dorsal flexion—range of results in attempts | 0.03 | 0.08 | −0.21 |
RA | |||||||||
No falls within last year (n = 48) | Falls within last year (n = 34) | 95% CI | |||||||
M | SD | M | SD | t, sec. | p | LL | UL | dCohen | |
JPS 5 deg. plantar flexion—mean absolute error | 3.18 | 2.32 | 4.31 | 2.67 | −2.04 | 0.045 | −2.23 | −0.03 | 0.46 |
JPS 5 deg. plantar flexion—mean relative error | 0.64 | 0.46 | 0.86 | 0.53 | −2.05 | 0.044 | −0.45 | −0.01 | 0.46 |
JPS 5 deg. plantar flexion—range of results in attempts | 1.82 | 1.43 | 1.96 | 1.55 | −0.40 | 0.690 | −0.79 | 0.53 | 0.09 |
JPS 10 deg. plantar flexion—mean absolute error | 2.56 | 1.36 | 2.72 | 1.25 | −0.54 | 0.594 | −0.75 | 0.43 | 0.12 |
JPS 10 deg. plantar flexion—mean relative error | 0.26 | 0.14 | 0.27 | 0.12 | −0.54 | 0.594 | −0.07 | 0.04 | 0.12 |
JPS 10 deg. plantar flexion—range of results in attempts | 1.73 | 1.25 | 1.53 | 1.18 | 0.72 | 0.475 | −0.35 | 0.74 | 0.16 |
JPS 5 deg. dorsal flexion—mean absolute error | 1.64 | 1.02 | 1.79 | 1.08 | −0.68 | 0.499 | −0.62 | 0.31 | 0.15 |
JPS 5 deg. dorsal flexion—mean relative error | 0.33 | 0.20 | 0.36 | 0.22 | −0.66 | 0.509 | −0.12 | 0.06 | 0.15 |
JPS 5 deg. dorsal flexion—range of results in attempts | 0.99 | 0.63 | 1.12 | 1.00 | −0.67 | 0.506 | −0.52 | 0.26 | 0.16 |
JPS 10 deg. dorsal flexion—mean absolute error | 1.18 | 0.96 | 1.67 | 1.02 | −2.25 | 0.027 | −0.94 | −0.06 | 0.50 |
JPS 10 deg. dorsal flexion—mean relative error | 0.12 | 0.10 | 0.17 | 0.10 | −2.25 | 0.027 | −0.09 | −0.01 | 0.50 |
JPS 10 deg. dorsal flexion—range of results in attempts | 0.53 | 0.34 | 1.05 | 0.72 | −3.89 | <0.001 | −0.78 | −0.25 | 0.97 |
OA | |||||||||
No falls within last year (n = 34) | Falls within last year (n = 24) | 95% CI | |||||||
M | SD | M | SD | t, sec. | p | LL | UL | dCohen | |
JPS 5 deg. plantar flexion—mean absolute error | 3.55 | 2.51 | 4.36 | 2.23 | −1.26 | 0.212 | −2.09 | 0.47 | 0.34 |
JPS 5 deg. plantar flexion—mean relative error | 0.71 | 0.50 | 0.87 | 0.44 | −1.26 | 0.214 | −0.42 | 0.10 | 0.34 |
JPS 5 deg. plantar flexion—range of results in attempts | 2.10 | 1.50 | 2.52 | 2.34 | −0.77 | 0.444 | −1.52 | 0.68 | 0.22 |
JPS 10 deg. plantar flexion—mean absolute error | 2.21 | 1.36 | 2.16 | 0.98 | 0.13 | 0.894 | −0.61 | 0.70 | 0.04 |
JPS 10 deg. plantar flexion—mean relative error | 0.22 | 0.14 | 0.22 | 0.10 | 0.13 | 0.894 | −0.06 | 0.07 | 0.04 |
JPS 10 deg. plantar flexion—range of results in attempts | 1.23 | 0.87 | 1.85 | 1.18 | −2.30 | 0.025 | −1.16 | −0.08 | 0.61 |
JPS 5 deg. dorsal flexion—mean absolute error | 1.52 | 0.80 | 2.43 | 1.38 | −2.91 | 0.006 | −1.55 | −0.28 | 0.85 |
JPS 5 deg. dorsal flexion—mean relative error | 0.31 | 0.16 | 0.48 | 0.28 | −2.81 | 0.008 | −0.30 | −0.05 | 0.82 |
JPS 5 deg. dorsal flexion—range of results in attempts | 1.02 | 0.80 | 1.08 | 0.90 | −0.29 | 0.777 | −0.52 | 0.39 | 0.08 |
JPS 10 deg. dorsal flexion—mean absolute error | 1.18 | 0.83 | 1.73 | 1.21 | −2.05 | 0.045 | −1.08 | −0.01 | 0.55 |
JPS 10 deg. dorsal flexion—mean relative error | 0.12 | 0.08 | 0.17 | 0.12 | −2.05 | 0.045 | −0.11 | 0.00 | 0.55 |
JPS 10 deg. dorsal flexion—range of results in attempts | 0.69 | 0.75 | 0.59 | 0.50 | 0.60 | 0.550 | −0.25 | 0.46 | 0.16 |
RA Patients | |||||||||
No falls within last year (n = 48) | Falls within last year (n = 34) | 95% CI | |||||||
M | SD | M | SD | t, sec. | p | LL | UL | dCohen | |
ATE (%) | 28.35 | 10.32 | 29.59 | 7.48 | −0.60 | 0.554 | −5.36 | 2.89 | 0.13 |
ATE (time) | 76.81 | 20.39 | 89.59 | 21.43 | −2.74 | 0.008 | −22.07 | −3.49 | 0.61 |
AFV (kg) | 1.02 | 0.76 | 0.88 | 0.62 | 0.86 | 0.391 | −0.19 | 0.47 | 0.20 |
OA patients | |||||||||
No falls within last year (n = 34) | Falls within last year (n = 24) | 95% CI | |||||||
M | SD | M | SD | t, sec. | p | LL | UL | dCohen | |
ATE (%) | 32.24 | 12.26 | 40.33 | 20.57 | −1.72 | 0.094 | −17.64 | 1.44 | 0.50 |
ATE (time) | 80.56 | 22.16 | 78.63 | 17.09 | 0.36 | 0.721 | −8.87 | 12.74 | 0.10 |
AFV (kg) | 1.03 | 0.77 | 1.38 | 0.85 | −1.65 | 0.105 | −0.78 | 0.08 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konarzewski, P.; Konarzewska, U.; Kuryliszyn-Moskal, A.; Terlikowski, R.; Pauk, J.; Daunoraviciene, K.; Pauk, K.; Dakowicz, A.; Wojciuk, M.; Dzięcioł, J.; et al. What Influences Proprioceptive Impairments in Patients with Rheumatic Diseases? Analysis of Different Factors. Int. J. Environ. Res. Public Health 2023, 20, 3698. https://doi.org/10.3390/ijerph20043698
Konarzewski P, Konarzewska U, Kuryliszyn-Moskal A, Terlikowski R, Pauk J, Daunoraviciene K, Pauk K, Dakowicz A, Wojciuk M, Dzięcioł J, et al. What Influences Proprioceptive Impairments in Patients with Rheumatic Diseases? Analysis of Different Factors. International Journal of Environmental Research and Public Health. 2023; 20(4):3698. https://doi.org/10.3390/ijerph20043698
Chicago/Turabian StyleKonarzewski, Paweł, Urszula Konarzewska, Anna Kuryliszyn-Moskal, Robert Terlikowski, Jolanta Pauk, Kristina Daunoraviciene, Konrad Pauk, Agnieszka Dakowicz, Mariusz Wojciuk, Janusz Dzięcioł, and et al. 2023. "What Influences Proprioceptive Impairments in Patients with Rheumatic Diseases? Analysis of Different Factors" International Journal of Environmental Research and Public Health 20, no. 4: 3698. https://doi.org/10.3390/ijerph20043698
APA StyleKonarzewski, P., Konarzewska, U., Kuryliszyn-Moskal, A., Terlikowski, R., Pauk, J., Daunoraviciene, K., Pauk, K., Dakowicz, A., Wojciuk, M., Dzięcioł, J., & Dziecioł-Anikiej, Z. (2023). What Influences Proprioceptive Impairments in Patients with Rheumatic Diseases? Analysis of Different Factors. International Journal of Environmental Research and Public Health, 20(4), 3698. https://doi.org/10.3390/ijerph20043698