Salivary Alterations in Autoimmune Thyroid Diseases: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Extraction
- -
- For PubMed: saliva* AND (((thyroid OR Graves) AND (orbitopathy OR ophthalmopathy)) OR ((Graves OR Hashimoto) AND (disease OR thyroiditis)));
- -
- For Scopus: TITLE-ABS-KEY(saliva* AND (((thyroid OR Graves) AND (orbitopathy OR ophthalmopathy)) OR ((Graves OR Hashimoto) AND (disease OR thyroiditis))));
- -
- For Web of Science: TS = (saliva* AND (((thyroid OR Graves) AND (orbitopathy OR ophthalmopathy)) OR ((Graves OR Hashimoto) AND (disease OR thyroiditis)))).
2.2. Quality Assessment and Critical Appraisal for the Systematic Review of Included Studies
3. Results
4. Discussion
4.1. Quantitative Assessment of Saliva
4.2. Qualitative Assessment of Saliva
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogusławska, J.; Godlewska, M.; Gajda, E.; Piekiełko-Witkowska, A. Cellular and Molecular Basis of Thyroid Autoimmunity. Eur. Thyroid J. 2022, 11, e210024. [Google Scholar] [CrossRef]
- Lee, H.J.; Li, C.W.; Hammerstad, S.S.; Stefan, M.; Tomer, Y. Immunogenetics of Autoimmune Thyroid Diseases: A Comprehensive Review. J. Autoimmun. 2015, 64, 82–90. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, S.M.; Rapoport, B. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity. Endocr. Rev. 2014, 35, 59–105. [Google Scholar] [CrossRef] [Green Version]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Zawalna, N.; Nijakowski, K.; Muller, I.; Karpiński, T.; Salvi, M.; Ruchała, M. Microbiota Alterations in Patients with Autoimmune Thyroid Diseases: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 13450. [Google Scholar] [CrossRef]
- Bliddal, S.; Nielsen, C.H.; Feldt-Rasmussen, U. Recent Advances in Understanding Autoimmune Thyroid Disease: The Tallest Tree in the Forest of Polyautoimmunity. F1000Research 2017, 6, 1776. [Google Scholar] [CrossRef]
- Tomer, Y.; Huber, A. The Etiology of Autoimmune Thyroid Disease: A Story of Genes and Environment. J. Autoimmun. 2009, 32, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, E.; Wahl, R. Thyroid Autoimmunity: Role of Anti-Thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front. Immunol. 2017, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.H.; Fu, D.G. Autoimmune Thyroid Disease: Mechanism, Genetics and Current Knowledge. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3611–3618. [Google Scholar]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ Thyroiditis: Epidemiology, Pathogenesis, Clinic and Therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s Thyroiditis: An Update on Pathogenic Mechanisms, Diagnostic Protocols, Therapeutic Strategies, and Potential Malignant Transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef]
- Sawicka-Gutaj, N.; Ziółkowska, P.; Wojciechowska, K.; Shawkat, S.; Czarnywojtek, A.; Warchoł, W.; Sowiński, J.; Szczepanek-Parulska, E.; Ruchała, M. Eye Symptoms in Patients with Benign Thyroid Diseases. Sci. Rep. 2021, 11, 18706. [Google Scholar] [CrossRef]
- Davies, T.F.; Andersen, S.; Latif, R.; Nagayama, Y.; Barbesino, G.; Brito, M.; Eckstein, A.K.; Stagnaro-Green, A.; Kahaly, G.J. Graves’ Disease. Nat. Rev. Dis. Primer 2020, 6, 52. [Google Scholar] [CrossRef]
- Edgar, W.M. Saliva: Its Secretion, Composition and Functions. Br. Dent. J. 1992, 172, 305–312. [Google Scholar] [CrossRef]
- Zhang, C.-Z.; Cheng, X.-Q.; Li, J.-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.-D. Saliva in the Diagnosis of Diseases. Int. J. Oral Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Rehak, N.N.; Cecco, S.A.; Csako, G. Biochemical Composition and Electrolyte Balance of “Unstimulated” Whole Human Saliva. Clin. Chem. Lab. Med. 2000, 38, 335–343. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Wong, D.T. Saliva: An Emerging Biofluid for Early Detection of Diseases. Am. J. Dent. 2009, 22, 241–248. [Google Scholar]
- Nijakowski, K.; Surdacka, A. Salivary Biomarkers for Diagnosis of Inflammatory Bowel Diseases: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 7477. [Google Scholar] [CrossRef]
- Maeshima, E.; Furukawa, K.; Maeshima, S.; Koshiba, H.; Sakamoto, W. Hyposalivation in Autoimmune Diseases. Rheumatol. Int. 2013, 33, 3079–3082. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, K.R.; Junjappa, R.; Handigund, M.; Kim, H.-R.; Chae, H.-J. The Imprint of Salivary Secretion in Autoimmune Disorders and Related Pathological Conditions. Autoimmun. Rev. 2018, 17, 376–390. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva Diagnostics—Current Views and Directions. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- NHLBI; NIH. Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 22 August 2020).
- OCEBM Levels of Evidence. Available online: https://www.cebm.net/2016/05/ocebm-levels-of-evidence/ (accessed on 22 August 2020).
- Ford, H.; Johnson, L.; Purdie, G.; Feek, C. Effects of Hyperthyroidism and Radioactive Iodine given to Ablate the Thyroid on the Composition of Whole Stimulated Saliva. Clin. Endocrinol. 1997, 46, 189–193. [Google Scholar] [CrossRef]
- Higashi, T.; Ichikawa, T.; Shimizu, C.; Nagai, S.; Inagaki, S.; Min, J.Z.; Chiba, H.; Ikegawa, S.; Toyo’oka, T. Stable Isotope-Dilution Liquid Chromatography/Tandem Mass Spectrometry Method for Determination of Thyroxine in Saliva. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2011, 879, 1013–1017. [Google Scholar] [CrossRef]
- Morawska, K.; Maciejczyk, M.; Zięba, S.; Popławski, Ł.; Kita-Popławska, A.; Krętowski, J.; Zalewska, A. Cytokine/Chemokine/Growth Factor Profiles Contribute to Understanding the Pathogenesis of the Salivary Gland Dysfunction in Euthyroid Hashimoto’s Thyroiditis Patients. Mediators Inflamm. 2021, 2021, 3192409. [Google Scholar] [CrossRef]
- Morawska, K.; Maciejczyk, M.; Popławski, Ł.; Popławska-Kita, A.; Kretowski, A.; Zalewska, A. Enhanced Salivary and General Oxidative Stress in Hashimoto’s Thyroiditis Women in Euthyreosis. J. Clin. Med. 2020, 9, 2102. [Google Scholar] [CrossRef]
- Pelewicz, K.; Szewczyk, S.; Miśkiewicz, P. Treatment with Intravenous Methylprednisolone in Patients with Graves’ Orbitopathy Significantly Affects Adrenal Function: Assessment of Serum, Salivary Cortisol and Serum Dehydroepiandrosterone Sulfate. J. Clin. Med. 2020, 9, 3233. [Google Scholar] [CrossRef]
- Rao, N.L.; Shetty, S.; Upadhyaya, K.; Prasad, R.M.; Lobo, E.C.; Kedilaya, H.P.; Prasad, G. Salivary C-Reactive Protein in Hashimoto’s Thyroiditis and Subacute Thyroiditis. Int. J. Inflamm. 2010, 2010, 514659. [Google Scholar] [CrossRef] [Green Version]
- Tumilasci, O.R.; Arqueros, M.C.; Ostuni, M.A.; el Tamer, E.; Houssay, A.B. Thyrotropin Receptor Antibodies in Parotid Saliva. J. Endocrinol. Investig. 1996, 19, 412–414. [Google Scholar] [CrossRef]
- Van Herle, A.J.; Rosenblit, P.D.; Van Herle, T.L.; Van Herle, P.; Greipel, M.; Kellett, K. Immunoreactive Thyroglobulin in Sera and Saliva of Patients with Various Thyroid Disorders: Role of Autoantibodies. J. Endocrinol. Investig. 1989, 12, 177–182. [Google Scholar] [CrossRef]
- Agha-Hosseini, F.; Shirzad, N.; Moosavi, M.-S. Evaluation of Xerostomia and Salivary Flow Rate in Hashimoto’s Thyroiditis. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e1-5. [Google Scholar] [CrossRef]
- Chang, C.-P.; Shiau, Y.-C.; Wang, J.-J.; Ho, S.-T.; Kao, C.-H. Decreased Salivary Gland Function in Patients with Autoimmune Thyroiditis. Head Neck 2003, 25, 132–137. [Google Scholar] [CrossRef]
- Changlai, S.P.; Chen, W.K.; Chung, C.; Chiou, S.M. Objective Evidence of Decreased Salivary Function in Patients with Autoimmune Thyroiditis (Chronic Thyroiditis, Hashimoto’s Thyroiditis). Nucl. Med. Commun. 2002, 23, 1029–1033. [Google Scholar] [CrossRef]
- Coll, J.; Anglada, J.; Tomas, S.; Reth, P.; Goday, A.; Millan, M.; Pujol-Borrell, R.; Corominas, J. High Prevalence of Subclinical Sjögren’s Syndrome Features in Patients with Autoimmune Thyroid Disease. J. Rheumatol. 1997, 24, 1719–1724. [Google Scholar]
- Jung, J.-H.; Lee, C.-H.; Son, S.H.; Jeong, J.H.; Jeong, S.Y.; Lee, S.-W.; Lee, J.; Ahn, B.-C. High Prevalence of Thyroid Disease and Role of Salivary Gland Scintigraphy in Patients with Xerostomia. Nucl. Med. Mol. Imaging 2017, 51, 169–177. [Google Scholar] [CrossRef]
- Pang, X.-A.; Wei, Z.-X.; Li, J.-H.; Pang, X.-Q. Salivary Gland Function in Women with Hashimoto’s Thyroiditis without Xerostomia and the Correlation with Auto-Thyroid Antibodies. Nukl. Nucl. Med. 2021, 60, 47–54. [Google Scholar] [CrossRef]
- Warfvinge, G.; Larsson, A.; Henricsson, V.; Ericsson, U.B.; Hansen, B.; Manthorpe, R. Salivary Gland Involvement in Autoimmune Thyroiditis, with Special Reference to the Degree of Association with Sjögren’s Syndrome. Oral Surg. Oral Med. Oral Pathol. 1992, 74, 288–293. [Google Scholar] [CrossRef]
Parameter | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Patients with autoimmune thyroid diseases, including Graves’ disease and Hashimoto’s thyroiditis—aged from 0 to 99 years, both genders | Patients with other autoimmune diseases |
Intervention | Not applicable | |
Comparison | Not applicable | |
Outcomes | Salivary alterations quantitative (e.g., hyposalivation) and/or qualitative (e.g., biomolecules) | Other salivary alterations (e.g., microbiota) |
Study design | Case-control, cohort and cross-sectional studies | Literature reviews, case reports, expert opinion, letters to the editor, conference reports |
Published until 27th September 2022 | Not published in English |
Author, Year | Setting | Study Group (F/M); Age | Control Group (F/M); Age | AITD Diagnosis | Inclusion Criteria | Exclusion Criteria | Smoking Status | Pharmacological Treatment |
---|---|---|---|---|---|---|---|---|
Ford et al., 1997 [24] | New Zealand | 38 (NR); NR | 93 (NR); NR | GD | Hyperthyroidism | NR | NR | CBZ, 370 MBq 131I |
Higashi et al., 2011 [25] | Japan | 2 (2/0); 22–43 | 16 (6/10); 22–41 | GD | Diagnosed with GD | NR | NR | Untreated |
Morawska et al., 2021 [26] | Poland | 25 (25/0); 34.5 (27.8–41.5) | 25 (25/0); 34.3 (27.2–42.0) | HT | Euthyroid HT who had never been treated with synthetic or natural thyroid hormones or had any other treatments applied, no other diseases | BMI < 18.5 and >25, periodontal disease, candidiasis, inflammation in the oral mucosa, poor oral hygiene, presence of multiple dental deposits, medications on a permanent basis, other than second phase of the menstrual cycle (between the 18th and 25th day), weight-loss diet and significantly changed lifestyle (during 6 months preceding the research), consumption of alcohol not only occasionally and addiction to other stimulants | Non-smokers | Untreated |
Morawska et al., 2020 [27] | Poland | 45 (45/0); 35 (29–43) | 45 (45/0); 35 (29–43) | HT | Not any associated diseases, including other autoimmune diseases or depression; Ctrl: normal serum TSH, fT4, anti-TG and anti-TPO levels as well as thyroid imaging (homogenous parenchyma without nodules) on USG | BMI < 18.5 and >25, any drugs that could affect saliva secretion (mainly antidepressants or drugs for hypertension) or its redox status (vitamins, antioxidants) within 3 months prior to saliva collection, reducing diet, periodontitis, gingivitis, active foci of odontogenic infections, any amount of alcohol or other stimulants | Non-smokers | 24 patients treated with LT4 (doses from 50 to 150 mg; the last tablet taken 24 h before the hormone level test) and 21 patients untreated |
Pelewicz et al., 2020 [28] | Poland | 14 (11/3); NR | NA | GO | Euthyroidism within the last 3 months before the study | Diagnosis of adrenal insufficiency, treatment with GCs or medication altering the plasma CBG and serum DHEA-S levels within the last 6 months before the study, medical conditions altering CBG levels | NR | IVMP followed by oral prednisone |
Rao et al., 2010 [29] | India | 30 (28/2); 28.85 ± 8.83 | 20 (17/3); 31.82 ± 9.39 | HT | Clinical features of hypothyroidism | Ctrl: existence of any comorbid cardiac, autoimmune, infectious, musculoskeletal, malignant disease, oral disease; recent history of operation or trauma; pregnancy, peri- or postmenopausal age; drug regimen | NR | NR |
Tumilasci et al., 1996 [30] | Argentina | GD: 8 (NR); NR HT: 10 (NR); NR | 6 (NR); NR | GD, HT | Diagnosed with AITD | NR | NR | LT4 |
Van Herle et al., 1989 [31] | USA | GD: 21 (NR); NR HT: 9 (NR); NR | 10 (NR); NR | GD, HT | Ctrl: no thyroid disorders; age between 14 and 52 years | NR | NR | NR |
Author, Year | AITD Diagnosis | Type of Saliva and Method of Collection | Centrifugation and Storing | Method of Analysis | Method of Salivation Assessment | Potential Salivary Biomarkers |
---|---|---|---|---|---|---|
Ford et al., 1997 [24] | GD | Stimulated saliva collected over a 5 min period during which the subject chewed raw gum (chicle) and spat into a plastic container | Lysozyme activity and total protein concentration determined on fresh specimens left at 5 °C overnight; other assays performed on specimens frozen at −70 °C up to 3 weeks | Protein assay kits based on the method of Bradford, Hitachi 717 random access analyser | Flow rate (mL/min) | Up: urate (p-value < 0.02), potassium (p-value < 0.01); down: total protein, calcium (p-value < 0.02), lactate dehydrogenase (p-value < 0.01) |
Higashi et al., 2011 [25] | GD | Unstimulated saliva (ca. 1 mL) directly collected into a collecting tube; at least 1 h after any food intake | Stored below −15 °C until the analysis; after thawing, centrifuged at 1000× g for 10 min | Stable isotope-dilution liquid chromatography/tandem mass spectrometry method | NR | T4 |
Morawska et al., 2021 [26] | HT | Unstimulated whole saliva collected into a centrifuge tube placed in a container with ice for 15 min, one day after blood collection and dental examination, between 7 a.m. and 9 a.m., on an empty stomach (last meal at least 10 h earlier) and did not perform any oral hygiene procedures on this day other than rinsing the mouth with water | Centrifuged for 20 min at 4 °C, 10,000× g, and frozen at −80 °C for no longer than 4 months, until assayed | Bio-Plex Pro Human Cytokine Assay (a multiplex assay based on magnetic beads) | Flow rate (mL/min) measured with a calibrated pipette | Cytokines: up: IL-3, IFN-γ, IL-5, IL-6, TNF-α, IL-12 (p40), HGF, IL-1α, IL-1β, IL-1RA, down: IL-8, IL-10; chemokines: up: CCL27/CTACK, CXCL1/Gro-α; growth factors: up: G-CSF, VEGF, TRIAL |
Morawska et al., 2020 [27] | HT | Whole saliva unstimulated (for 15 min) and stimulated (after a 5 min break, for 5 min), collected via the spitting method into plastic centrifuge tubes placed in ice containers, between 8 a.m. and 10 a.m.; participants advised to refrain from consuming meals and drinks other than clean water, performing oral hygiene procedures for 2 h and taking any medications for 8 h; the first-minute sample discarded; stimulation triggered by dripping 100 μL 2% citric acid under the tongue every 20 s; to avoid oxidation, 0.5 M BHT added | Centrifuged for 20 min at 4 °C, 10,000× g, and frozen at −80 °C for no longer than 6 months, until assayed | Spectrophotometry, ELISA, colorimetry | Flow rate (mL/min) measured with a pipette calibrated to 0.1 mL | Up: total protein, IL-1β, CAT, Px, AGE, AOPP, LOOH, MDA (p-value < 0.0001); down: amylase, GSH, UA (p-value < 0.0001), SOD (p-value < 0.05, only unstimulated) |
Pelewicz et al., 2020 [28] | GO | Using a Salivette® commercial device; at three time points: directly before administration of the 1st and 12th IVMP pulses and after the cessation of oral prednisone therapy, between 8:00 and 9:00 a.m. after fasting | Stored at −20 °C until analysis | A first-generation Elecsys® cortisol assay | NR | Cortisol (decreased after oral prednisone therapy) |
Rao et al., 2010 [29] | HT | Unstimulated whole saliva collected by passive drooling into an ice-chilled polypropylene vial to a volume about 2 mL, at least 2 h after any food intake | Stored below −20 °C until the analyses | ELISA | NR | C-reactive protein (ns) |
Tumilasci et al., 1996 [30] | GD, HT | Stimulated total parotid saliva obtained by use of a CarlsonCrittenden cannula after stimulation with a solution of citric acid 0.1 M for 3 min; between 08:00 and 09:00 a.m. after fasting | Frozen so the TRAb assay could be carried out monthly | TRAb receptor assay | Flow rate (mL/min) | TRAb |
Van Herle et al., 1989 [31] | GD, HT | Unstimulated saliva from 2 to 10 mL in a clean disposable plastic container, from 5 to 30 min; patients asked to discard first salivary discharge 1 min after rinsing with water | After the collection immediately centrifugated at 10,000 rpm (5 min) and stored at −20 °C; immediately before the assays thawed and recentrifuged at 3500 rpm at 4 °C | Radioimmunoassay | NR | Tg and TgAb |
Author, Year | Setting | Study Group (F/M); Age | Control Group (F/M); Age | AITD Diagnosis | Inclusion Criteria | Exclusion Criteria | Smoking Status | Pharmacological Treatment | Method of Salivation Assessment |
---|---|---|---|---|---|---|---|---|---|
Agha-Hosseini et al., 2016 [32] | Iran | 40 (40/0); 39.20 ± 13.8 | 40 (40/0); 38.95 ± 14.2 | HT | Diagnosed with HT; euthyroidism at the time of the study | Smoking; neurologic drugs; steroids therapy; pregnancy; breast feeding; taking xerogenic medical agents; oral candidiasis; unfavorable oral health conditions (PPD > 3 mm); history of head and neck radiation; diagnosis of an immunological disorder, diabetes, any infectious disease, any malignancy, or any other systemic disease | Non-smokers | LT4 | The flow rate calculated in milliliters per minute (under resting conditions in a quiet room between 8 a.m. and 9 a.m.); unstimulated (by expectoration without chewing movements) and stimulated (by chewing a piece of paraffin of identical size, after 60 s of pre-stimulation and swallowing the saliva present in the mouth) whole saliva collected over a period of 5 min in a calibrated and dry plastic tube |
Chang et al., 2003 [33] | Taiwan | 120 (67/53); 35–75 | 36 (13/23); 37–75 | HT | History of autoimmune thyroiditis for more than 10 years from the time of diagnosis | Smoking; bad blood sugar control; autonomic neuropathy; immunorheumatic, other endocrine, gastrointestinal, hepatobiliary, renal diseases | Non-smokers | NR | Quantitative salivary scintigraphy after intravenous injection of 5 mCi Tc-99m pertechnetate (including the bilateral parotid and submandibular glands) for 30 min; at 15 min, stimulation with a 200 mg ascorbic acid tablet placed on the dorsal surface of the tongue |
Changlai et al., 2002 [34] | Taiwan | 40 (17/23); 41–70 | Xerostomia (−): 36 (13/23); 37–75; Xerostomia (+): 25 (7/18); 35–76 | HT | History of autoimmune thyroiditis for more than 10 years | Smoking; bad blood sugar control; autonomic neuropathy; immunorheumatic, other endocrine, gastrointestinal, hepatobiliary, renal diseases | Non-smokers | NR | Quantitative salivary scintigraphy after intravenous injection of 5 mCi Tc-99 m pertechnetate (including the four major salivary glands) for 30 min; at 15 min, stimulation with a 200 mg ascorbic acid tablet given orally |
Coll et al., 1997 [35] | Spain | 176 (152/24); 18–85 (49.3) | NA | GD, HT | Diagnosed with AITD | NR | NR | NR | Salivary gland scintigraphy |
Jung et al., 2017 [36] | Republic of Korea | 173 (144/29); 53.3 ± 13.3 | NA | GD, HT | Symptoms of xerostomia | Drug-induced xerostomia; history of radiation therapy, surgery for head and neck tumors (including thyroid cancer) | NR | NR | Salivary gland scintigraphy after the intravenous injection of 370 MBq Tc-99 m pertechnetate (including the major salivary glands and the thyroid gland) over a 20-min period; then 10 min after the stimulation with a sialagogue the same acquisition time |
Pang et al., 2021 [37] | China | 32 (32/0); 36 ± 12 | 28 (28/0); 40 ± 12 | HT accompanied by DTC. | Undergone thyroidectomy for differentiated thyroid cancer; no history of radioiodine treatment; xerostomia symptoms; hypothyroidism at the time of the study | Sjogren’ syndrome or other immunopathy; external radiotherapy to the head and neck; smoking; intake of medications that may cause xerostomia | Non-smokers | Radioiodine treatment preparation with LT4 medication (discontinued for at least one month) | Salivary gland scintigraphy after the intravenous injection of 185 MBq (5mCi) Tc-99 m pertechnetate (including the parotid glands, submandibular glands, and upper neck) over a 15-min period; at 10 min, stimulation with a 300 mg vitamin C tablet placed on the dorsal surface of the tongue |
Warfvinge et al., 1992 [38] | Sweden | 19 (16/3); 46–61 (54.5) | 12 (8/4); 56–73 (66.8) | HT | Diagnosed with autoimmune thyroiditis | NR | NR | NR | Unstimulated whole sialometry (abnormal if ≤1.5 mL saliva in 15 min); salivary gland scintigraphy |
Study | AITD Diagnosis | Type of Saliva | Saliva Flow Rate (mL/min) | ||
---|---|---|---|---|---|
Study Group | Control Group | p-Value | |||
Ford et al., 1997 [24] | GD | Stimulated | 1.4 (0.3–3.7) | 1.2 (0.02–4.5) | <0.05 |
Morawska et al., 2021 [26] | HT | Unstimulated | 0.27 (0.1–0.61) | 0.67 (0.46–0.89) | <0.0001 |
Morawska et al., 2020 [27] | HT | Unstimulated | 0.32 (0.07–0.77) | 0.51 (0.27–0.96) | 0.02 |
Stimulated | 0.90 (0.20–2.00) | 1.01 (0.90–2.00) | ns | ||
Agha-Hosseini et al., 2016 [32] | HT | Unstimulated | 1.25 (0.90) | 2.00 (2.14) | 0.018 |
Stimulated | 2.87 (3.29) | 3.50 (3.37) | 0.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortarzewska, M.; Nijakowski, K.; Kolasińska, J.; Gruszczyński, D.; Ruchała, M.A.; Lehmann, A.; Surdacka, A. Salivary Alterations in Autoimmune Thyroid Diseases: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4849. https://doi.org/10.3390/ijerph20064849
Ortarzewska M, Nijakowski K, Kolasińska J, Gruszczyński D, Ruchała MA, Lehmann A, Surdacka A. Salivary Alterations in Autoimmune Thyroid Diseases: A Systematic Review. International Journal of Environmental Research and Public Health. 2023; 20(6):4849. https://doi.org/10.3390/ijerph20064849
Chicago/Turabian StyleOrtarzewska, Martyna, Kacper Nijakowski, Julia Kolasińska, Dawid Gruszczyński, Marek A. Ruchała, Anna Lehmann, and Anna Surdacka. 2023. "Salivary Alterations in Autoimmune Thyroid Diseases: A Systematic Review" International Journal of Environmental Research and Public Health 20, no. 6: 4849. https://doi.org/10.3390/ijerph20064849