Should We Use the Men Load–Velocity Profile for Women in Deadlift and Hip Thrust?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Testing Procedures
2.4. Statistical Analysis
3. Results
3.1. 1RM Strength
3.2. Comparison of the Load–Velocity Relationship between Sexes in Hip Thrust and Deadlift
3.3. Predicting Load (%1RM) from Velocity Data in the Hip Thrust and Deadlift
(R² = 0.894; N = 16; SEE = 0.078)
(R² = 0.880; N = 16; SEE = 0.077)
(R² = 0.938; N = 16; SEE = 0.086)
(R² = 0.947; N = 16; SEE = 0.065)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA champions league injury study. Br. J. Sport. Med. 2013, 47, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Fuller, C.W.; Sheerin, K.; Targett, S. Rugby world cup 2011: International rugby board injury surveillance study. Br. J. Sport. Med. 2013, 47, 1184–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, C.; Hawkins, R.; Hulse, M.; Hodson, A. The football association medical research programme: An audit of injuries in professional football-analysis of preseason injuries. Br. J. Sport. Med. 2002, 36, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumps, E.; Verhagen, E.; Annemans, L.; Meeusen, R. Injury rate and socioeconomic costs resulting from sports injuries in Flanders: Data derived from sports insurance statistics 2003. Br. J. Sports Med. 2008, 42, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.; Shield, A.J.; Williams, M.D.; Opar, D.A. The financial cost of hamstring strain injuries in the australian football league. Br. J. Sport. Med. 2014, 48, 729–730. [Google Scholar] [CrossRef] [Green Version]
- Verrall, G.M.; Kalairajah, Y.; Slavotinek, J.P.; Spriggins, A.J. Assessment of player performance following return to sport after hamstring muscle strain injury. J. Sci. Med. Sport. 2006, 9, 87–90. [Google Scholar] [CrossRef]
- Podlog, L.; Buhler, C.F.; Pollack, H.; Hopkins, P.N.; Burgess, P.R. Time trends for injuries and illness, and their relation to performance in the national basketball association. J. Sci. Med. Sport. 2015, 18, 278–282. [Google Scholar] [CrossRef]
- Drew, M.K.; Raysmith, B.P.; Charlton, P.C. Injuries impair the chance of successful performance by sportspeople: A systematic review. Br. J. Sport. Med. 2017, 51, 1209–1214. [Google Scholar] [CrossRef]
- Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randoloph, C.; et al. A systematic review of potential long-term effects of sport-related concussion. Br. J. Sport. Med. 2017, 51, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Askling, C.M.; Tengvar, M.; Saartok, T.; Thorstensson, A. Acute first-time hamstring strains during high-speed running: A longitudinal study including clinical and magnetic resonance imaging findings. Am. J. Sport. Med. 2007, 35, 197–206. [Google Scholar] [CrossRef]
- Kujala, U.M.; Orava, S.; Järvinen, M. Hamstring injuries. Current trends in treatment and prevention. Sport. Med. 1997, 23, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.; Best, T.M.; Verrall, G.M. Return to play following muscle strains. Clin. J. Sport Med. 2005, 15, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite club injury study from 2001/02 to 2021/22. Br. J. Sports Med. 2022, 57, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Ishøi, L.; Krommes, K.; Husted, R.S.; Juhl, C.B.; Thorborg, K. Diagnosis, prevention and treatment of common lower extremity muscle injuries in sport—Grading the evidence: A statement paper commissioned by the nanish society of sports physical therapy (DSSF). Br. J. Sports Med. 2020, 54, 528–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sport. Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Wright, S.; Bruce-Low, S.; Nanni, G.; Sturdy, T.; Gross, A.S.; Bowen, L.; Styles, B.; Della Villa, S.; Davison, M.; et al. Recommendations for hamstring injury prevention in elite football: Translating research into practice. Br. J. Sport. Med. 2019, 53, 449–456. [Google Scholar] [CrossRef]
- Croisier, J.L.; Crielaard, J.M. Hamstring muscle tear with recurrent complaints: An isokinetic profile. Isokinet. Exerc. Sci. 2000, 8, 175–180. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-Injury. Sport Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Letafatkar, A.; Rajabi, R.; Tekamejani, E.E.; Minoonejad, H. Effects of perturbation training on knee flexion angle and quadriceps to hamstring cocontraction of female athletes with quadriceps dominance deficit: Pre-post intervention study. Knee 2015, 22, 230–236. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J. Athl. Train. 2004, 39, 352–364. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Freitas, T.T.; Bishop, C.; Pareja-Blanco, F.; McGuigan, M.R. Maximum strength, relative strength, and strength deficit: Relationships with performance and differences between elite sprinters and professional rugby union players. Int. J. Sport. Physiol. Perform. 2021, 16, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Duca, M.; Trecroci, A.; Perri, E.; Formenti, D.; Alberti, G. Kinematics and kinetics of bulgarian-bag-overloaded sprints in young athletes. Life 2020, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The effectiveness of resisted sled training (RST) for sprint performance: A systematic review and meta-analysis. Sport Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sport. 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Wright, S.; Virgile, A.; Gimpel, M. Infographic. Recommendations for hamstring injury prevention in elite football: Translating research into practice. Br. J. Sport. Med. 2021, 55, 699–700. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2016, 7, 677. [Google Scholar] [CrossRef] [Green Version]
- González-Badillo, J.J.; Marques, M.C.; Sánchez-Medina, L. The importance of movement velocity as a measure to control resistance training intensity. J. Hum. Kinet. 2011, 29, 15–19. [Google Scholar] [CrossRef]
- García Ramos, A.; Pestaña Melero, F.; Pérez Castilla, A.; Rojas, F.; Haff, G. Mean velocity vs. mean propulsive velocity vs. peak velocity: Which variable determines press relative load with higher reliability? J. Strength Cond. Res. 2017, 32, 1273–1279. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sport Biomech. 2021, 20, 693–705. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sport. Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sport. Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sport. Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.L.; Neiva, H.P.; Marinho, D.A.; Nunes, C.; Marques, M.C. Load-velocity relationship in the horizontal leg-press exercise in older women and men. Exp. Gerontol. 2021, 151, 111391. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of using velocity to estimate intensity in resistance exercises in men and women. Int. J. Sport. Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; García Ramos, A.; Jimenez-Reyes, P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sport. Sci Coach. 2017, 13, 743–750. [Google Scholar] [CrossRef]
- Jones, M.T.; Jagim, A.R.; Haff, G.G.; Carr, P.J.; Martin, J.; Oliver, J.M. Greater strength drives difference in power between sexes in the conventional deadlift exercise. Sports 2016, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Antunes, J.P.; Oliveira, R.; Reis, V.M.; Romero, F.; Moutão, J.; Brito, J.P. Comparison between olympic weightlifting lifts and derivatives for external load and fatigue monitoring. Healthcare 2022, 10, 2499. [Google Scholar] [CrossRef]
- Neto, W.K.; Vieira, T.L.; Gama, E.F. Barbell hip thrust, muscular activation and performance: A systematic review. J. Sport. Sci. Med. 2019, 18, 198–206. [Google Scholar]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprint running. A review. Sport. Med. 1992, 13, 376–392. [Google Scholar] [CrossRef]
- World Medical Association. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Hoyo, M.; Núñez, F.J.; Sañudo, B.; Gonzalo-Skok, O.; Muñoz-López, A.; Romero-Boza, S.; Otero-Esquina, C.; Sánchez, H.; Nimphius, S. Predicting loading intensity measuring velocity in barbell hip thrust exercise. J. Strength Cond. Res. 2021, 35, 2075–2081. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Martínez-Cava, A.; Escribano-Peñas, P.; Courel-Ibáñez, J. Load-velocity relationship of the deadlift exercise. Eur. J. Sport Sci. 2021, 21, 678–684. [Google Scholar] [CrossRef]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sport. Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sport. Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Piepoli, A.; Garrido-Blanca, G.; Delgado-García, G.; Balsalobre-Fernández, C.; García-Ramos, A. Precision of 7 commercially available devices for predicting bench-press 1-repetition maximum from the individual load-velocity relationship. Int. J. Sport. Physiol. Perform. 2019, 14, 1442–1446. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.; Naworynsky, D.; Duncan, F.; Jackson, M. Comparison of different minimal velocity thresholds to establish deadlift one repetition maximum. Sports 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Chéry, C.; Ruf, L. Reliability of the load-velocity relationship and validity of the Push to measure velocity in the deadlift. J. Strength Cond. Res. 2019, 33, 2370–2380. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Narrative Rreview of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries and neuromuscular adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex differences in body composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [PubMed]
- Thomas, G.A.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Anderson, J.M.; Maresh, C.M. Maximal power at different percentages of one repetition maximum: Influence of resistance and gender. J. Strength Cond. Res. 2007, 21, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Mookerjee, S.; Ratamess, N. Comparison of strength differences and joint action durations between full and partial range-of-motion bench press exercise. J. Strength Cond. Res. 1999, 13, 76–81. [Google Scholar]
- Martínez-Cava, A.; Morán-Navarro, R.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; González-Badillo, J.J.; Pallarés, J.G. Range of motion and sticking region effects on the bench press load-velocity relationship. J. Sport. Sci. Med. 2019, 18, 645–652. [Google Scholar]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sport Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Braith, R.W.; Graves, J.E.; Leggett, S.H.; Pollock, M.L. Effect of training on the relationship between maximal and submaximal strength. Med. Sci. Sport. Exerc. 1993, 25, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Brzycki, M. Strength testing—Predicting a one-rep max from reps-to-fatigue. J. Phys. Educ. Recreat. Danc. 2013, 64, 88–90. [Google Scholar] [CrossRef]
Load (%1RM) | Hip Thrust | Deadlift | ||
---|---|---|---|---|
Men | Women | Men | Women | |
30 | 0.93 ± 0.10 | 0.86 ± 0.07 | 1.19 ± 0.13 *** | 1.07 ± 0.07 |
35 | 0.88 ± 0.09 | 0.82 ± 0.07 | 1.12 ± 0.12 ** | 1.01 ± 0.07 |
40 | 0.84 ± 0.08 | 0.78 ± 0.07 | 1.05 ± 0.11 ** | 0.95 ± 0.06 |
45 | 0.79 ± 0.08 | 0.73 ± 0.6 | 0.99 ± 0.10 * | 0.89 ± 0.06 |
50 | 0.75 ± 0.07 | 0.69 ± 0.06 | 0.92 ± 0.09 * | 0.83 ± 0.06 |
55 | 0.71 ± 0.07 | 0.65 ± 0.06 | 0.85 ± 0.08 | 0.77 ± 0.05 |
60 | 0.66 ± 0.06 | 0.60 ± 0.06 | 0.79 ± 0.08 | 0.71 ± 0.05 |
65 | 0.62 ± 0.06 | 0.56 ± 0.06 | 0.72 ± 0.07 | 0.65 ± 0.05 |
70 | 0.58 ± 0.06 | 0.52 ± 0.06 | 0.65 ± 0.06 | 0.60 ± 0.04 |
75 | 0.53 ± 0.05 | 0.47 ± 0.06 | 0.60 ± 0.06 | 0.54 ± 0.04 |
80 | 0.49 ± 0.05 | 0.43 ± 0.06 | 0.52 ± 0.05 | 0.48 ± 0.04 |
85 | 0.44 ± 0.05 | 0.39 ± 0.06 | 0.46 ± 0.05 | 0.42 ± 0.04 |
90 | 0.40 ± 0.06 | 0.34 ± 0.06 | 0.39 ± 0.05 | 0.36 ± 0.05 |
95 | 0.36 ± 0.06 | 0.30 ± 0.07 | 0.32 ± 0.05 | 0.30 ± 0.05 |
100 | 0.31 ± 0.06 | 0.25 ± 0.07 | 0.26 ± 0.05 | 0.24 ± 0.05 |
Mean | 0.72 ± 0.07 ** | 0.65 ± 0.05 | 0.62 ± 0.06 ** | 0.56 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Acevedo, R.; Romero-Moraleda, B.; Montalvo-Pérez, A.; Valdés-Álvarez, A.; García-Sánchez, C.; Mon-López, D. Should We Use the Men Load–Velocity Profile for Women in Deadlift and Hip Thrust? Int. J. Environ. Res. Public Health 2023, 20, 4888. https://doi.org/10.3390/ijerph20064888
Nieto-Acevedo R, Romero-Moraleda B, Montalvo-Pérez A, Valdés-Álvarez A, García-Sánchez C, Mon-López D. Should We Use the Men Load–Velocity Profile for Women in Deadlift and Hip Thrust? International Journal of Environmental Research and Public Health. 2023; 20(6):4888. https://doi.org/10.3390/ijerph20064888
Chicago/Turabian StyleNieto-Acevedo, Raúl, Blanca Romero-Moraleda, Almudena Montalvo-Pérez, Agustín Valdés-Álvarez, Carlos García-Sánchez, and Daniel Mon-López. 2023. "Should We Use the Men Load–Velocity Profile for Women in Deadlift and Hip Thrust?" International Journal of Environmental Research and Public Health 20, no. 6: 4888. https://doi.org/10.3390/ijerph20064888
APA StyleNieto-Acevedo, R., Romero-Moraleda, B., Montalvo-Pérez, A., Valdés-Álvarez, A., García-Sánchez, C., & Mon-López, D. (2023). Should We Use the Men Load–Velocity Profile for Women in Deadlift and Hip Thrust? International Journal of Environmental Research and Public Health, 20(6), 4888. https://doi.org/10.3390/ijerph20064888