Digital Eye Strain among Peruvian Nursing Students: Prevalence and Associated Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Duration, and Approval
2.2. Population, Sample and Selection Criteria
2.3. Measurement Tools
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Conditions of Using Electronic Devices
3.3. Prevalence of Digital Eye Strain
3.4. Bivariate Analysis
3.5. Factors Associated with Digital Eye Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dash, S.; Chakraborty, C.; Giri, S.K.; Pani, S.K. Intelligent computing on time-series data analysis and prediction of COVID-19 pandemics. Pattern Recognit. Lett. 2021, 151, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.K.; Al Raddadi, R.; AlDarmasi, M.; Al Ghamdi, A.; Gaddoury, M.; AlBar, H.M.; Ramadan, I.K. Medical students’ acceptance and perceptions of e-learning during the COVID-19 closure time in King Abdulaziz University, Jeddah. J. Infect. Public Health 2021, 14, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Torras Virgili, M.E. Bienestar tecnológico: La relevancia de la educación en la propaganda de la era digital. Rev. Electrón. Investig. Educ. 2021, 23, 23. [Google Scholar] [CrossRef]
- Lakshmi, V. Progress of medical undergraduates to an era of computer vision syndrome and insomnia as an aftermath of increased digitalization during COVID-19 pandemic. Eur. J. Mol. Clin. Med. 2020, 7, 8225–8233. [Google Scholar]
- Alghamdi, A.A. Impact of the COVID-19 pandemic on the social and educational aspects of Saudi university students’ lives. PLoS ONE 2021, 16, e0250026. [Google Scholar] [CrossRef]
- Gupta, R.; Chauhan, L.; Varshney, A. Impact of e-schooling on digital eye strain in coronavirus disease era: A survey of 654 students. J. Curr. Ophthalmol. 2021, 33, 158–164. [Google Scholar] [CrossRef]
- Abudawood, G.A.; Ashi, H.M.; Almarzouki, N.K. Computer Vision Syndrome among Undergraduate Medical Students in King Abdulaziz University, Jeddah, Saudi Arabia. J. Ophthalmol. 2020, 2020, e2789376. [Google Scholar] [CrossRef] [Green Version]
- Ganne, P.; Najeeb, S.; Chaitanya, G.; Sharma, A.; Krishnappa, N.C. Digital Eye Strain Epidemic amid COVID-19 Pandemic—A Cross-sectional Survey. Ophthalmic Epidemiol. 2021, 28, 285–292. [Google Scholar] [CrossRef]
- Cantó-Sancho, N.; Sánchez-Brau, M.; Ivorra-Soler, B.; Seguí-Crespo, M. Computer vision syndrome prevalence according to individual and video display terminal exposure characteristics in Spanish university students. Int. J. Clin. Pract. 2021, 75, e13681. [Google Scholar] [CrossRef]
- Moldovan, H.R.; Voidazan, S.T.; Moldovan, G.; Vlasiu, M.A.; Moldovan, G.; Panaitescu, R. Accommodative asthenopia among Romanian computer-using medical students—A neglected occupational disease. Arch. Environ. Occup. Health 2020, 75, 235–241. [Google Scholar] [CrossRef]
- Al Tawil, L.; Aldokhayel, S.; Zeitouni, L.; Qadoumi, T.; Hussein, S.; Ahamed, S.S. Prevalence of self-reported computer vision syndrome symptoms and its associated factors among university students. Eur. J. Ophthalmol. 2020, 30, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Suwarsi, S.; Rizqi, J.; Wahyuningsih, M. The Frequency of Gadget Usage or Monitor Exposure and Eyestrain. J. Keperawatan Respati Yogyakarta 2020, 7, 121–125. [Google Scholar] [CrossRef]
- Altalhi, A.; Khayyat, W.; Khojah, O.; Alsalmi, M.; Almarzouki, H. Computer vision syndrome among health sciences students in Saudi Arabia: Prevalence and risk factors. Cureus 2020, 12, e7060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wei, X.; Deng, Y. Computer vision syndrome during SARS-CoV-2 outbreak in university students: A comparison between online courses and classroom lectures. Front. Public Health 2021, 9, 696036. [Google Scholar] [CrossRef] [PubMed]
- Seguí, M.M.; Cabrero-García, J.; Crespo, A.; Verdú, J.; Ronda, E. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace. J. Clin. Epidemiol. 2015, 68, 662–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabdulkader, B. Effect of digital device use during COVID-19 on digital eye strain. Clin. Exp. Optom. 2021, 104, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Wangsan, K.; Upaphong, P.; Assavanopakun, P.; Sapbamrer, R.; Sirikul, W.; Kitro, A.; Sirimajaraj, N.; Kuanprasert, S.; Saenpo, M.; Saetiao, S.; et al. Self-Reported Computer Vision Syndrome among Thai University Students in Virtual Classrooms during the COVID-19 Pandemic: Prevalence and Associated Factors. Int. J. Environ. Res. Public Health 2022, 19, 3996. [Google Scholar] [CrossRef]
- Zayed, H.A.M.; Saied, S.M.; Younis, E.A.; Atlam, S.A. Digital eye strain: Prevalence and associated factors among information technology professionals, Egypt. Environ. Sci. Pollut. Res. Int. 2021, 28, 25187–25195. [Google Scholar] [CrossRef]
- Zenbaba, D.; Sahiledengle, B.; Bonsa, M.; Tekalegn, Y.; Azanaw, J.; Kumar Chattu, V. Prevalence of Computer Vision Syndrome and Associated Factors among Instructors in Ethiopian Universities: A Web-Based Cross-Sectional Study. Sci. World J. 2021, 2021, e3384332. [Google Scholar] [CrossRef]
- Hernández-Sampieri, R.; Fernández Collado, C.; Baptista Lucio, P. Metodología de la Investigación, 6th ed.; McGraw-Hill Interamericana: Mexico City, Mexico, 2018. [Google Scholar]
- Dessie, A.; Adane, F.; Nega, A.; Wami, S.D.; Chercos, D.H. Computer Vision Syndrome and Associated Factors among Computer Users in Debre Tabor Town, Northwest Ethiopia. J. Environ. Public Health 2018, 2018, e4107590. [Google Scholar] [CrossRef]
- Gondol, B.N.; Areba, A.S.; Kanno, G.G.; Mamo, T.T. Prevalence of visual and posture related symptoms of computer vision syndrome among computer user workers of Ethiopian Roads Authority. J. Environ. Occup. Health 2020, 10, 73–78. [Google Scholar]
- Gammoh, Y. Digital Eye Strain and Its Risk Factors Among a University Student Population in Jordan: A Cross-Sectional Study. Cureus 2021, 13, e13575. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, A.H.; Alemayehu, M.; Abere, G.; Mekonnen, T.H. Prevalence and Associated Factors of Computer Vision Syndrome Among Academic Staff in the University of Gondar, Northwest Ethiopia: An Institution-Based Cross-Sectional Study. Environ. Health Insights 2022, 16, 11786302221111864. [Google Scholar] [CrossRef] [PubMed]
- Touma Sawaya, R.I.; El Meski, N.; Saba, J.B.; Lahoud, C.; Saab, L.; Haouili, M.; Shatila, M.; Aidibe, Z.; Musharrafieh, U. Asthenopia Among University Students: The Eye of the Digital Generation. J. Fam. Med. Prim. Care 2020, 9, 3921–3932. [Google Scholar] [CrossRef]
- Setyowati, D.L.; Nuryanto, M.K.; Sultan, M.; Sofia, L.; Gunawan, S.; Wiranto, A. Computer Vision Syndrome Among Academic Community In Mulawarman University, Indonesia During Work From Home In COVID-19 Pandemic. Ann. Trop. Med. Public Health 2021, 24, 24–187. [Google Scholar] [CrossRef]
- Singh, A.; Acharya, M.; Sangwan, V.S. Commentary: Impact of COVID-19 on ocular surface health. Indian J. Ophthalmol. 2021, 69, 1066–1067. [Google Scholar] [CrossRef]
- Zalat, M.M.; Amer, S.M.; Wassif, G.A.; El Tarhouny, S.A.; Mansour, T.M. Computer vision syndrome, visual ergonomics and amelioration among staff members in a Saudi medical college. Int. J. Occup. Saf. Ergon. 2022, 28, 1033–1041. [Google Scholar] [CrossRef]
- Olivo Torres, R.E.; Cocha Chicaiza, E.S.; Romero Paredes, G.C. Use of electronic computers as a factor in the development of asthenopia. Univ. Soc. 2022, 14, 118–126. [Google Scholar]
Digital Eye Strain | p Value * | ||
---|---|---|---|
Absence | Presence | ||
n (%) | n (%) | ||
Device most used | |||
Computer | 76 (76.77) | 551 (79.05) | 0.716 |
Tablet | 2 (2.02) | 8 (1.15) | |
Smartphone | 21 (21.21) | 138 (19.8) | |
Daily hours of using device | |||
Between 1 and 4 | 27 (27.27) | 98 (14.06) | 0.001 |
More than 4 | 72 (72.73) | 599 (85.94) | |
Distance of the device from the eyes (cm) | |||
Less than 30 | 34 (34.34) | 281 (40.32) | 0.104 |
Between 30 and 50 | 56 (56.57) | 385 (55.24) | |
More than 50 | 9 (9.09) | 31 (4.45) | |
Posture when using the device | |||
Sitting bent over | 44 (44.44) | 470 (67.43) | <0.001 |
Sitting upright | 52 (52.53) | 210 (30.13) | |
Laying down | 3 (3.03) | 17 (2.44) | |
Screen brightness | |||
Dull | 29 (29.29) | 148 (21.23) | 0.011 |
Bright | 66 (66.67) | 454 (65.14) | |
Very bright | 4 (4.04) | 95 (13.63) | |
Frequency of breaks | |||
Every 30 min | 22 (22.22) | 203 (29.12) | 0.335 |
Every 1 h | 17 (17.17) | 105 (15.06) | |
Every 2 h | 28 (28.28) | 152 (21.81) | |
Every more than 2 h | 32 (32.32) | 237 (34.00) | |
Duration of breaks (min) | |||
Between 1 and 5 | 26 (26.26) | 214 (30.70) | 0.585 |
Between 6 and 10 | 37 (37.37) | 250 (35.87) | |
Between 11 and 19 | 24 (24.24) | 174 (24.96) | |
More than 20 | 12 (12.12) | 59 (8.46) | |
Use of monitor filters | |||
No | 68 (68.69) | 525 (75.32) | 0.058 |
Sometimes | 14 (14.14) | 107 (15.35) | |
Yes | 17 (17.17) | 65 (9.33) | |
Use of glasses | |||
Yes | 36 (36.36) | 349 (50.07) | 0.014 |
No | 63 (63.64) | 348 (49.93) | |
Awareness of the 20-20-20 rule | |||
Yes | 20 (20.20) | 85 (12.20) | 0.041 |
No | 79 (79.80) | 612 (87.80) | |
Observance of the 20-20-20 rule | |||
Yes | 14 (14.14) | 36 (5.16) | 0.001 |
No | 85 (85.86) | 661 (4.84) |
b | SE | p | OR [95% IC] | |
---|---|---|---|---|
Intercept | 1.17 | 0.49 | 0.02 | 3.23 [1.27–8.58] |
Posture (sitting upright) (*) | −0.76 | 0.23 | <0.01 | 0.47 [0.30–0.74] |
Posture (laying down) | −0.59 | 0.68 | 0.39 | 0.56 [0.17–2.59] |
Hours of usage (over 4 h) (†) | 0.55 | 0.26 | 0.04 | 1.73 [1.02–2.86] |
Observance of the 20-20-20 (no) (‡) | 0.95 | 0.36 | 0.01 | 2.60 [1.25–5.20] |
Brightness (bright) (§) | 0.05 | 0.25 | 0.85 | 1.05 [0.63–1.71] |
Brightness (very bright) | 1.21 | 0.56 | 0.03 | 3.36 [1.23–11.8] |
Glasses (no) (||) | −0.52 | 0.23 | 0.03 | 0.59 [0.37–0.93] |
Filters (sometimes) (¶) | 0.35 | 0.33 | 0.29 | 1.42 [0.76–2.81] |
Filters (yes) | −0.64 | 0.32 | 0.05 | 0.53 [0.29–1.01] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huyhua-Gutierrez, S.C.; Zeladita-Huaman, J.A.; Díaz-Manchay, R.J.; Dominguez-Palacios, A.B.; Zegarra-Chapoñan, R.; Rivas-Souza, M.A.; Tejada-Muñoz, S. Digital Eye Strain among Peruvian Nursing Students: Prevalence and Associated Factors. Int. J. Environ. Res. Public Health 2023, 20, 5067. https://doi.org/10.3390/ijerph20065067
Huyhua-Gutierrez SC, Zeladita-Huaman JA, Díaz-Manchay RJ, Dominguez-Palacios AB, Zegarra-Chapoñan R, Rivas-Souza MA, Tejada-Muñoz S. Digital Eye Strain among Peruvian Nursing Students: Prevalence and Associated Factors. International Journal of Environmental Research and Public Health. 2023; 20(6):5067. https://doi.org/10.3390/ijerph20065067
Chicago/Turabian StyleHuyhua-Gutierrez, Sonia Celedonia, Jhon Alex Zeladita-Huaman, Rosa Jeuna Díaz-Manchay, Albila Beatriz Dominguez-Palacios, Roberto Zegarra-Chapoñan, María Angélica Rivas-Souza, and Sonia Tejada-Muñoz. 2023. "Digital Eye Strain among Peruvian Nursing Students: Prevalence and Associated Factors" International Journal of Environmental Research and Public Health 20, no. 6: 5067. https://doi.org/10.3390/ijerph20065067
APA StyleHuyhua-Gutierrez, S. C., Zeladita-Huaman, J. A., Díaz-Manchay, R. J., Dominguez-Palacios, A. B., Zegarra-Chapoñan, R., Rivas-Souza, M. A., & Tejada-Muñoz, S. (2023). Digital Eye Strain among Peruvian Nursing Students: Prevalence and Associated Factors. International Journal of Environmental Research and Public Health, 20(6), 5067. https://doi.org/10.3390/ijerph20065067