Influence of Smoking on Periodontal and Implant Therapy: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Inclusion and Exclusion Criteria
3. Results
3.1. Smoking as a Risk Factor
3.2. Smoking and the Periodontal Microbiome
3.3. Smoking and Tooth Loss
3.4. Periodontal Treatment in Smokers
3.5. Nonsurgical Therapy
3.6. Nonsurgical Therapy in Combination with Local and Systemic Drug Delivery
3.7. Smoking and Antimicrobial Photodynamic Therapy
3.8. Surgical Treatment
3.9. Effect of Smoking on Bone Regeneration
3.10. Smoking Cessation and Periodontal Tissues
3.11. Smoking and the Peri-Implant Microbiome
3.12. Smoking and Dental Implants
3.13. Smoking and Peri-Implantitis
3.14. Smoking and Sinus Floor Elevation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bornstein, M.M.; Cionca, N.; Mombelli, A. Systemic conditions and treatments as risks for implant therapy. Int. J. Oral Maxillofac. Implant. 2009, 24, 12–27. [Google Scholar]
- Jiang, Y.; Zhou, X.; Cheng, L.; Li, M. The impact of smoking on subgingival microflora: From periodontal health to disease. Front. Microbiol. 2020, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Souto, M.L.; Rovai, E.S.; Villar, C.C.; Braga, M.M.; Pannuti, C.M. Effect of smoking cessation on tooth loss: A systematic review with meta-analysis. BMC Oral Health 2019, 19, 245. [Google Scholar] [CrossRef] [Green Version]
- Hanioka, T.; Ojima, M.; Tanaka, K.; Matsuo, K.; Sato, F.; Tanaka, H. Causal assessment of smoking and tooth loss: A systematic review of observational studies. BMC Public Health 2011, 11, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, T.; Walter, C.; Oluwagbemigun, K.; Bergmann, M.; Pischon, T.; Pischon, N.; Boeing, H. Smoking, smoking cessation, and risk of tooth loss: The EPIC-Potsdam study. J. Dent. Res. 2015, 94, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Similä1, T.; Auvinen, J.; Timonen, M.; Virtanen, J.I. Long-term effects of smoking on tooth loss after cessation among middle-aged Finnish adults: The Northern Finland Birth Cohort 1966 Study. BMC Public Health 2016, 16, 867. [Google Scholar] [CrossRef] [Green Version]
- Gurlek, O.; Gumus, P.; Buduneli, N. Smokers have a higher risk of inflammatory peri-implant disease than non-smokers. Oral Dis. 2018, 24, 30–32. [Google Scholar] [CrossRef]
- Chen, H.; Liu, N.; Xu, X. Smoking, radiotherapy, diabetes and osteoporosis as risk factors for dental implant failure: A meta-analysis. PLoS ONE 2013, 8, e71955. [Google Scholar] [CrossRef] [Green Version]
- Moraschini, V.; Porto Barboza, E. Success of dental implants in smokers and nonsmokers: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 205–215. [Google Scholar] [CrossRef]
- Casado, P.L.; Aguiar, T.; Pinheiro, M.P.F.; Machado, A.; Pinheiro, A.R. Smoking as a Risk Factor for the Development of Periimplant Diseases. Implant. Dent. 2019, 28, 120–124. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Cosola, S.; Marconcini, S.; Giammarinaro, E.; Poli, G.L.; Covani, U.; Barone, A. Oral health-related quality of life and clinical outcomes of immediately or delayed loaded implants in the rehabilitation of edentulous jaws: A retrospective comparative study. Minerva Stomatol. 2018, 67, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Al Kawas, S.; Al-Marzooq, F.; Rahman, B.; Shearston, J.A.; Saad, H.; Benzina, D.; Weitzman, M. The impact of smoking different tobacco types on the subgingival microbiome and periodontal health: A pilot study. Sci. Rep. 2021, 11, 1113. [Google Scholar] [CrossRef] [PubMed]
- Ata-Ali, J.; Flichy-Fernández, A.J.; Alegre-Domingo, T.; Ata-Ali, F.; Peñarrocha-Diago, M. Impact of heavy smoking on the clinical, microbiological and immunological parameters of patients with dental implants: A prospective cross-sectional study. Investig. Clin. Dent. 2016, 7, 401–409. [Google Scholar] [CrossRef]
- Meulman, T.; Casarin, R.C.; Peruzzo, D.C. Impact of supragingival therapy on subgingival microbial profile in smokers versus non-smokers with severe chronic periodontitis. J. Oral Microbiol. 2012, 4, 8640. [Google Scholar] [CrossRef]
- Feres, M.; Bernal, M.; Matarazzo, F.; Faveri, M.; Duarte, P.M.; Figueiredo, L.C. Subgingival bacterial recolonization after scaling and root planing in smokers with chronic periodontitis. Aust. Dent. J. 2015, 60, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.; Tang, L.; Bai, Y.; Ding, Q.; Wang, P.; Zhao, Y. Clinical efficacy of photodynamic therapy adjunctive to scaling and root planning in the treatment of chronic periodontitis: A systematic review and meta-analysis. Photodiagn. Photodyn. Ther. 2017, 18, 119–127. [Google Scholar] [CrossRef]
- Brothwell, D.J. Should the use of smoking cessation products be promoted by dental offices? An evidence-based report. J. Can. Dent. Assoc. 2001, 67, 149–155. [Google Scholar]
- Calsina, G.; Ramon, J.M.; Echeverria, J.J. Effects of smoking on periodontal tissues. J. Clin. Periodontol. 2002, 29, 771–776. [Google Scholar] [CrossRef]
- Linden, G.J.; Mullally, B.H. Cigarette smoking and periodontal destruction in young adults. J. Periodontol. 1994, 65, 718–723. [Google Scholar] [CrossRef]
- Hyman, J.J.; Reid, B.C. Epidemiologic risk factors for periodontal attachment loss among adults in the United States. J. Clin. Periodontol. 2003, 30, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Bergström, J. Tobacco smoking and risk for periodontal disease. J. Clin. Periodontol. 2003, 30, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Alawaji, Y.N.; Alshammari, A.; Mostafa, N.; Carvalho, R.M.; Aleksejuniene, J. Periodontal disease prevalence, extent, and risk associations in untreated individuals. Clin. Exp. Dent. Res. 2022, 8, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Ryder, M.I. The influence of smoking on host responses in periodontal infections. Periodontol. 2000 2007, 43, 267–277. [Google Scholar] [CrossRef]
- Borojevic, T. Smoking and periodontal disease. Mater. Socio-Med. 2012, 24, 274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; He, J.; He, B.; Huang, R.; Li, M. Effect of tobacco on periodontal disease and oral cancer. Tob. Induc. Dis. 2019, 17, 40. [Google Scholar] [CrossRef]
- Chaffee, B.W.; Couch, E.T.; Ryder, M.I. The tobacco-using periodontal patient: Role of the dental practitioner in tobacco ces sation and periodontal disease management. Periodontol. 2000 2016, 71, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Hajishengallis, G. Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications. Periodontol. 2000 2022, 89, 9–18. [Google Scholar] [CrossRef]
- Buduneli, N. Environmental factors and periodontal microbiome. Periodontol. 2000 2021, 85, 112–123. [Google Scholar] [CrossRef]
- Hutcherson, J.A.; Scott, D.A.; Bagaitkar, J. Scratching the surface-tobacco-induced bacterial biofilms. Tob. Induc. Dis. 2015, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Shchipkova, A.Y.; Nagaraja, H.N.; Kumar, P.S. Subgingival microbial profiles of smokers with periodontitis. J. Dent. Res. 2010, 89, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanioka, T.; Morita, M.; Yamamoto, T.; Inagaki, K.; Wang, P.L.; Ito, H.; Morozumi, T.; Takeshita, T.; Suzuki, N.; Shigeishi, H.; et al. Smoking and periodontal microorganisms. Jpn. Dent. Sci. Rev. 2019, 55, 88–94. [Google Scholar] [CrossRef]
- Matthews, C.R.; Joshi, V.; de Jager, M.; Aspiras, M.; Kumar, P.S. Host-bacterial interactions during induction and resolution of experimental gingivitis in current smokers. J. Periodontol. 2013, 84, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H.; Goldenberg, K.; Ratiner, K.; Elinav, E. Smoking-induced microbial dysbiosis in health and disease. Clin. Sci. 2022, 136, 1371–1387. [Google Scholar] [CrossRef]
- Joshi, V.; Matthews, C.; Aspiras, M. Smoking decreases structural and functional resilience in the subgingival ecosystem. J. Clin. Periodontol. 2014, 41, 1037–1047. [Google Scholar] [CrossRef]
- Mikhailova, E.S.; Koroleva, I.V.; Kolesnikova, P.A.; Ermolaeva, L.A.; Suvorov, A.N. The characteristics of microbiota of periodontal recesses in smoking patients with chronic generalized periodontitis. Klin. Lab. Diagn. 2017, 62, 107–111. [Google Scholar]
- Moon, J.H.; Lee, J.H.; Lee, J.Y. Subgingival microbiome in smokers and non-smokers in Korean chronic periodontitis patients. Mol. Oral Microbiol. 2015, 30, 227–241. [Google Scholar] [CrossRef]
- Signat, B.; Roques, C.; Poulet, P.; Duffaut, D. Fusobacterium nucleatum in periodontal health and disease. Curr. Issues Mol. Biol. 2011, 13, 25–36. [Google Scholar]
- Ganesan, S.M.; Joshi, V.; Fellows, M. A tale of two risks: Smoking, diabetes and the subgingival microbiome. ISME J. 2017, 11, 2075–2089. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S. Smoking and the subgingival ecosystem: A pathogen-enriched community. Future. microbiol. 2012, 7, 917–919. [Google Scholar] [CrossRef]
- Bizzarro, S.; Loos, B.G.; Laine, M.L.; Crielaard, W.; Zaura, E. Subgingival microbiome in smokers and non-smokers in periodontitis: An exploratory study using traditional targeted techniques and a next-generation sequencing. J. Clin. Periodontol. 2013, 40, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Nearing, J.T.; Douglas, G.M.; Comeau, A.M.; Langille, M.I. Denoising the denoisers: An independent evaluation of microbiome sequence error-correction approaches. PeerJ 2018, 6, e5364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Peters, B.A.; Dominianni, C. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016, 10, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Bagaitkar, J.; Williams, L.R.; Renaud, D.E. Tobacco-induced alterations to Porphyromonas gingivalis-host interactions. Environ. Microbiol. 2009, 11, 1242–1253. [Google Scholar] [CrossRef] [Green Version]
- Bagaitkar, J.; Daep, C.A.; Patel, C.K. Tobacco smoke augments Porphyromonas gingivalis-Streptococcus gordonii biofilm formation. PLoS ONE 2011, 6, e27386. [Google Scholar] [CrossRef]
- Bagaitkar, J.; Demuth, D.R.; Daep, C.A.; Renaud, D.E.; Pierce, D.L.; Scott, D.A. Tobacco upregulates P. gingivalis fimbrial proteins which induce TLR2 hyposensitivity. PLoS ONE 2010, 5, e9323. [Google Scholar] [CrossRef]
- Yanagita, M.; Mori, K.; Kobayashi, R. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. Eur. J. Oral Sci. 2012, 120, 408–414. [Google Scholar] [CrossRef]
- Zhang, W.; Song, F.; Windsor, L.J. Effects of tobacco and P. gingivalis on gingival fibroblasts. J. Dent. Res. 2010, 89, 527–531. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shin, S.I.; Kang, K.L. Nicotine and lipopolysaccharide stimulate the production of MMPs and prostaglandin E2 by hypoxia-inducible factor-1alpha up-regulation in human periodontal ligament cells. J. Periodontal. Res. 2012, 47, 719–728. [Google Scholar] [CrossRef]
- Imamura, K.; Kokubu, E.; Kita, D. Cigarette smoke condensate modulates migration of human gingival epithelial cells and their interactions with Porphyromonas gingivalis. J. Periodontal. Res. 2015, 50, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Preshaw, P.M.; Hefti, A.F.; Bradshaw, M.H. Adjunctive subantimicrobial dose doxycycline in smokers and non-smokers with periodontitis. J. Clin. Periodontol. 2005, 32, 610–616. [Google Scholar] [CrossRef]
- Akinkugbe, A.A.; Slade, G.D.; Divaris, K. Systematic review and meta-analysis of the association between exposure to environmental tobacco smoke and periodontitis endpoints among nonsmokers. Nicotine Tob. Res. 2016, 18, 2047–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, J.D.; Salas Martinez, M.L.; Gerkovich, M.M. Environmental tobacco smoke and periodontitis in United States non-smokers, 2009 to 2012. J. Periodontol. 2017, 88, 565–574. [Google Scholar] [CrossRef]
- Umemori, S.; Aida, J.; Tsuboya, T. Does second-hand smoke associate with tooth loss among older Japanese? JAGES cross-sectional study. Int. Dent. J. 2020, 70, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Wong, K.Y.; Leung, W.K.; Corbet, E.F. Comparison of treatment response patterns following scaling and root planing in smokers and non-smokers with untreated adult periodontitis. J. Clin. Dent. 2000, 11, 35–41. [Google Scholar] [PubMed]
- Pucher, J.J.; Shibley, O.; Dentino, A.R.; Ciancio, S.G. Results of limited initial periodontal therapy in smokers and non-smokers. J. Periodontol. 1997, 68, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Zuabi, O.; Machtei, E.E.; Ben-Aryeh, H.; Ardekian, L.; Peled, M.; Laufer, D. The effect of smoking and periodontal treatment on salivary composition in patients with established periodontitis. J. Periodontol. 1999, 70, 1240–1246. [Google Scholar] [CrossRef]
- Queiroz, A.C.; Suaid, F.A.; de Andrade, P.F. Antimicrobial photodynamic therapy associated to nonsurgical periodontal treatment in smokers: Microbiological results. J. Photochem. Photobiol. B 2014, 141, 170–175. [Google Scholar] [CrossRef]
- Meinberg, T.A.; Canarsky-Handley, A.M.; McClenahan, A.K.; Poulsen, D.D.; Marx, D.B.; Reinhardt, R.A. Outcomes associated with supportive periodontal therapy in smokers and nonsmokers. J. Dent. Hyg. 2001, 75, 15–19. [Google Scholar]
- Darby, I.B.; Hodge, P.J.; Riggio, M.P.; Kinane, D.F. Clinical and microbiological effect of scaling and root planing in smoker and non-smoker chronic and aggressive periodontitis patients. J. Clin. Periodontol. 2005, 32, 200–206. [Google Scholar] [CrossRef]
- Williams, R.C.; Paquette, D.W.; Offenbacher, S. Treatment of periodontitis by local administration of minocycline microspheres: A controlled trial. J. Periodontol. 2001, 72, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Geisinger, M.L.; Holmes, C.M.; Geurs, N.C.; Vassilopoulos, P.J.; Reddy, M.S. Host modulation for smokers undergoing periodontal maintenance: A review of current evidence. Clin. Adv. Periodontics 2011, 1, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Theodoro, L.H.; Assem, N.Z.; Longo, M. Treatment of periodontitis in smokers with multiple sessions of antimicrobial photodynamic therapy or systemic antibiotics: A randomized clinical trial. Photo diagn. Photodyn. Ther. 2018, 22, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Baiju, C.S.; Khashu, H.; Bansal, S. Clinical effectiveness of indocyanine green mediated antimicrobial photodynamic therapy as an adjunct to scaling root planing in treatment of chronic periodontitis—A randomized controlled clinical trial. Photodiagn. Photodyn. Ther. 2020, 29, 101591. [Google Scholar] [CrossRef] [PubMed]
- Cadore, U.B.; Reis, M.L.; Martins, S.L. Multiple sessions of antimicrobial photodynamic therapy associated with surgical periodontal treatment in patients with chronic periodontitis. J. Periodontol. 2019, 90, 339–349. [Google Scholar] [CrossRef]
- Dalvi, S.; Benedicenti, S.; Sălăgean, T.; Bordea, I.R.; Hanna, R. Effectiveness of antimicrobial photodynamic therapy in the treatment of periodontitis: A systematic review and meta-analysis of in vivo human randomized controlled clinical trials. Pharmaceutics 2021, 13, 836. [Google Scholar] [CrossRef]
- AlAhmari, F.; Ahmed, H.B.; Al-Kheraif, A.A.; Javed, F.; Akrame, Z. Effectiveness of scaling and root planning with and without adjunct antimicrobial photodynamic therapy in the treatment of chronic periodontitis among cigarette-smokers and never-smokers: A randomized controlled clinical trial. Photodiagn. Photodyn. Ther. 2019, 25, 247–252. [Google Scholar] [CrossRef]
- De Melo, M.S.; D’Almeida, B.C.; de Mendonça, I.M. Antimicrobial photodynamic therapy as adjunct to non-surgical periodontal treatment in smokers: A randomized clinical trial. Clin. Oral Investig. 2019, 23, 3173–3182. [Google Scholar] [CrossRef]
- Trombelli, L.; Cho, K.S.; Kim, C.K.; Scapoli, C.; Scabbia, A. Impaired healing response of periodontal furcation defects following flap debridement surgery in smokers. A controlled clinical trial. J. Clin. Periodontol. 2003, 30, 81–87. [Google Scholar] [CrossRef]
- Boström, L.; Linder, L.E.; Bergström, J. Influence of smoking on the outcome of periodontal surgery. A 5-year follow-up. J. Clin. Periodontol. 1998, 25, 194–201. [Google Scholar] [CrossRef]
- Scabbia, A.; Cho, K.S.; Sigurdsson, T.J.; Kim, C.K.; Trombelli, L. Cigarette smoking negatively affects healing response following flap debridement surgery. J. Periodontol. 2001, 72, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hellström, M.K.; McClain, P.K.; Schallhorn, R.G.; Bellis, L.; Hanlon, A.L.; Ramberg, P. Local minocycline as an adjunct to surgical therapy in moderate to severe, periodontitis. J. Clin. Periodontol. 2008, 35, 525–531. [Google Scholar] [CrossRef]
- Johnson, G.K.; Guthmiller, J.M. The impact of cigarette smoking on periodontal disease and treatment. Periodontol. 2000 2007, 44, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.A.; Javed, F.; Hinrichs, J.E.; Karoussis, I.K.; Romanos, G.E. Impact of cigarette smoking on clinical outcomes of periodontal flap surgical procedures: A systematic review and meta-analysis. J. Periodontol. 2015, 86, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Pini Prato, G.; Cortellini, P. Effect of cigarette smoking on periodontal healing following GTR in infrabony defects. A preliminary retrospective study. J. Clin. Periodontol. 1995, 22, 229–234. [Google Scholar] [CrossRef]
- Ehmke, B.; Rüdiger, S.G.; Hommens, A.; Karch, H.; Flemmig, T.F. Guided tissue regeneration using a polylactic acid barrier. J. Clin. Periodontol. 2003, 30, 368–374. [Google Scholar] [CrossRef]
- Heden, G. A case report study of 72 consecutive Emdogain-treated intrabony periodontal defects: Clinical and radiographic findings after 1 year. Int. J. Periodontics Restor. Dent. 2000, 20, 127–139. [Google Scholar]
- Loos, B.G.; Louwerse, P.H.; Van Winkelhoff, A.J. Use of barrier membranes and systemic antibiotics in the treatment of intraosseous defects. J. Clin. Periodontol. 2002, 29, 910–921. [Google Scholar] [CrossRef]
- Yilmaz, S.; Cakar, G.; Ipci, S.D.; Kuru, B.; Yildirim, B. Regenerative treatment with platelet-rich plasma combined with a bovine-derived xenograft in smokers and non-smokers: 12-month clinical and radiographic results. J. Clin. Periodontol. 2010, 37, 80–87. [Google Scholar] [CrossRef]
- Nevins, M.; Giannobile, W.V.; McGuire, M.K. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. J. Periodontol. 2005, 76, 2205–2215. [Google Scholar] [CrossRef]
- Trombelli, L.; Bottega, S.; Zucchelli, G. Supracrestal soft tissue preservation with enamel matrix proteins in the treatment of deep intrabony defects. J. Clin. Periodontol. 2002, 29, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Domagala-Kulawik, J. Effects of cigarette smoke on the lung and systemic immunity. J. Physiol. Pharmacol. 2008, 59, 19–24. [Google Scholar]
- Bouloukaki, I.; Tsoumakidou, M.; Vardavas, C.I.; Mitrouska, I.; Koutala, E.; Siafakas, N.M. Maintained smoking cessation for 6 months equilibrates the percentage of sputum CD8+ lymphocyte cells with that of nonsmokers. Mediat. Inflamm. 2009, 2009, 812102. [Google Scholar] [CrossRef] [Green Version]
- Duarte, P.M.; Nogueira, C.P.; Silva, S.M.; Pannuti, C.M.; Schey, K.C.; Miranda, T.S. Impact of smoking cessation on periodontal tissues. Int. Dent. J. 2022, 72, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Preshaw, P.M.; Rosa, E.F. Effects of smoking cessation on the outcomes of non-surgical periodontal therapy: A systematic review and individual patient data meta-analysis. J. Clin. Periodontol. 2013, 40, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, T.; Musskopf, M.L.; Oppermann, R.V. Is there a positive effect of smoking cessation on periodontal health? A systematic review. J. Periodontol. 2014, 85, 83–91. [Google Scholar] [CrossRef]
- Leite, F.M.; Nascimento, G.G.; Baake, S.; Pedersen, L.D.; Scheutz, F.; Lopez, R. Impact of smoking cessation on periodontitis: A systematic review and meta-analysis of prospective longitudinal observational and interventional studies. Nicotine Tob. Res. 2018, 21, 1600–1608. [Google Scholar] [CrossRef]
- Ramseier, C.A.; Woelber, J.P.; Kitzmann, J.; Detzen, L.; Carra, M.C.; Bouchard, P. Impact of risk factor control interventions for smoking cessation and promotion of healthy lifestyles in patients with periodontitis: A systematic review. J. Clin. Periodontol. 2020, 47, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Eick, S.; Ramseier, C.A.; Rothenberger, K.; Bragger, U.; Buser, D.; Salvi, G.E. Microbiota at teeth and implants in partially edentulous patients. A 10-year retrospective study. Clin. Oral Implant. Res. 2016, 27, 218–225. [Google Scholar] [CrossRef]
- Stokman, M.A.; Van Winkelhoff, A.J.; Vissink, A.; Spijkervet, F.K.; Raghoebar, G.M. Bacterial colonization of the peri-implant sulcus in dentate patients: A prospective observational study. Clin. Oral Investig. 2017, 21, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, S.P.; Fontes, M.; Ribeiro, F.V. Smoking habit modulates peri-implant microbiome: A case-control study. J. Periodontal Res. 2018, 53, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Tsigarida, A.A.; Dabdoub, S.M.; Nagaraja, H.N.; Kumar, P.S. The influence of smoking on the peri-implant microbiome. J. Dent. Res. 2015, 94, 1202–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amerio, E.; Blasi, G.; Valles, C.; Blanc, V.; Àlvarez, G.; Arredondo, A.; Nart, J.; Monje, A. Impact of smoking on peri-implant bleeding on probing. Clin. Implant. Dent. Relat. Res. 2022, 24, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Shenava, S.; Singh, P.; Sharath, B.C.; Kumar, V.; Jyoti, B.; Sharma, S. Co-relation between smoking and bone healing around dental implants: A clinical study. J. Int. Oral Health 2016, 8, 1–3. [Google Scholar]
- Takamiya, A.S.; Goiato, M.C.; Gennari, F.H. Effect of smoking on the survival of dental implants. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2014, 158, 650–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, C.A.; Moy, P.K. The association between the failure of dental implants and cigarette smoking. Int. J. Oral Maxillofac. Implant. 1993, 8, 609–615. [Google Scholar]
- Twito, D.; Sade, P. The effect of cigarette smoking habits on the outcome of dental implant treatment. PeerJ 2014, 2, e546. [Google Scholar] [CrossRef] [Green Version]
- Naseri, R.; Yaghini, J.; Feizi, A. Levels of smoking and dental implants failure: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 518–528. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.; Huynh-Ba, G. History of treated periodontitis and smoking as risks for implant therapy. Int. J. Oral Maxillofac. Implant. 2009, 24, 39–68. [Google Scholar]
- DeLuca, S.; Habsha, E.; Zarb, G.A. The effect of smoking on osseointegrated dental implants. Part I: Implant survival. Int. J. Prosthodont. 2006, 19, 491–498. [Google Scholar]
- Zitzmann, N.U.; Berglundh, T. Definition and prevalence of periimplant diseases. J. Clin. Periodontol. 2008, 35, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.; Haimböck, W.; Mailath, G.; Watzek, G. The relationship of smoking on periimplant tissue: A retrospective study. J. Prosthet. Dent. 1996, 76, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Hirsch, J.M.; Lekholm, U.; Thomsen, P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur. J. Oral Sci. 1998, 106, 721–764. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, A.; Dahlen, G.; Renvert, S. Five-year clinical, microbiological and radiological outcome following treatment of peri-implantitis in man. J. Periodontol. 2003, 74, 1415–1422. [Google Scholar] [CrossRef]
- Swierkot, K.; Lottholz, P.; Flores-de-Jacoby, L.; Mengel, R. Mucositis, peri-implantitis, implant success, and survival of implants in patients with treated generalized aggressive periodontitis: 3- to 16-year results of a prospective long-term cohort study. J. Periodontol. 2012, 83, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Roos-Jansåker, A.M.; Renvert, H.; Lindahl, C.; Renvert, S. Nine- to fourteen-year follow-up of implant treatment. Part III: Factors associated with peri-implant lesions. J. Clin. Periodontol. 2006, 33, 296–301. [Google Scholar] [CrossRef]
- Sgolastra, F.; Petrucci, A.; Severino, M.; Gatto, R.; Monaco, A. Smoking and the risk of peri-implantitis. A systematic review and meta-analysis. Clin. Oral Implant. Res. 2015, 26, e62–e67. [Google Scholar] [CrossRef]
- Koldsland, C.; Scheie, A.; Aass, M. Prevalence of implant loss and the influence of associated factors. J. Periodontol. 2009, 80, 1069–1075. [Google Scholar] [CrossRef]
- Peleg, M.; Garg, A.K.; Mazor, Z. Healing in smokers versus nonsmokers: Survival rates for sinus floor augmentation with simultaneous implant placement. Int. J. Oral Maxillofac. Implant. 2006, 21, 551–559. [Google Scholar]
- Ghasemi, S.; Fotouhi, A.; Moslemi, N.; Chinipardaz, Z.; Kolahi, J.; Paknejad, M. Intra-and Postoperative Complications of Lateral Maxillary Sinus Augmentation in Smokers vs Nonsmokers: A Systematic Review and Meta-Analysis. Int. J. Oral. Maxillofac. Implant. 2017, 1, 32. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Preshaw, P.M.; Ferreira, J.D.; Rodrigues, J.A.; Cassoni, A.; Shibli, J.A. Effects of tobacco smoking on the survival rate of dental implants placed in areas of maxillary sinus floor augmentation: A systematic review. Clin. Oral Implant. Res. 2014, 25, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Katranji, A.; Fotek, P.; Wang, H.L. Sinus augmentation complications: Etiology and treatment. Implant. Dent. 2008, 17, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.; Schiebel, V.; Hof, M.; Ulm, C.; Watzek, G.; Pommer, B. Risk factors of membrane perforation and postoperative complications in sinus floor elevation surgery: Review of 407 augmentation procedures. J. Oral. Maxillofac. Surg. 2015, 73, 1275–1282. [Google Scholar] [CrossRef]
- Bunaes, D.F.; Lie, S.A.; Enersen, M.; Aastrom, A.N.; Mustafa, K.; Leknes, K.N. Site-specific treatment outcome in smokers following non-surgical and surgical periodontal therapy. J. Clin. Periodontol. 2015, 42, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Wennström, J.L. Locally delivered doxycycline improves the healing following non-surgical periodontal therapy in smokers. J. Clin. Periodontol. 2004, 31, 589–595. [Google Scholar] [CrossRef]
- Javed, F.; Bashir Ahmed, H.; Romanos, G.E. Association between environmental tobacco smoke and periodontal disease: A systematic review. Environ. Res. 2014, 133, 117–122. [Google Scholar] [CrossRef]
- César Neto, J.B.; Rosa, E.F.; Pannuti, C.M.; Romito, G.A. Smoking and periodontal tissues: A review. Braz. Oral Res. 2012, 26, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Al Hulami, H.; Babay, N.; Awartani, F.; Anil, S. The effect of locally delivered doxycycline as an adjunctive therapy to scaling and root planing in smokers. Saudi Dent. J. 2011, 23, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Sandhya, Y.P.; Prabhuji, M.L.; Chandra, R.V. Comparative evaluation of the efficacy of 10% doxycycline hyclate in the periodontal treatment of smokers: A clinical and microbiological study. Oral Health Prev. Dent. 2011, 9, 59–65. [Google Scholar]
- Kaldahl, B.; Johnson, K.; Patil, D.; Kalkwarf, L. Levels of cigarette consumption and response to periodontal therapy. J. Periodontol. 1996, 67, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Ah, K.; Johnson, K.; Kaldahl, B.; Patil, D.; Kalkwarf, L. The effect of smoking on the response to periodontal therapy. J. Clin. Periodontol. 1994, 21, 91–97. [Google Scholar] [PubMed]
- Kim, S.; Schenk, A.; Lungeanu, D.; Reitmeir, P.; Eickholz, P. Nonsurgical and surgical periodontal therapy in single-rooted teeth. Clin. Oral Investig. 2007, 11, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orbak, R.; Erciyas, K.; Kaya, H. Flow-cytometric analysis of T-lymphocyte subsets after different treatment methods in smokers and non-smokers with periodontitis. Int. Dent. J. 2003, 53, 159–164. [Google Scholar] [CrossRef]
- Noda, K.; Arakawa, H.; Kimura-Ono, A. A longitudinal retrospective study of the analysis of the risk factors of implant failure by the application of generalized estimating equations. J. Prosthodont. Res. 2015, 59, 178–184. [Google Scholar] [CrossRef]
- Urban, T.; Kostopoulos, L.; Wenzel, A. Immediate implant placement in molar regions: Risk factors for early failure. Clin. Oral Implant. Res. 2012, 23, 220–227. [Google Scholar] [CrossRef]
- Olmedo-Gaya, V.; Manzano-Moreno, J.; Cañaveral-Cavero, E.; de Dios Luna-del Castillo, J.; Vallecillo-Capilla, M. Risk factors associated with early implant failure: A 5-year retrospective clinical study. J. Prosthet. Dent. 2016, 115, 150–155. [Google Scholar] [CrossRef]
- Baqain, H.; Moqbel, Y.; Sawair, A. Early dental implant failure: Risk factors. Br. J. Oral Maxillofac. Surg. 2012, 50, 239–243. [Google Scholar] [CrossRef]
- Roccuzzo, M.; Bonino, L.; Dalmasso, P.; Aglietta, M. Long-term results of a three arms prospective cohort study on implants in periodontally compromised patients: 10-year data around sandblasted and acid-etched (SLA) surface. Clin. Oral Implant. Res. 2014, 25, 1105–1112. [Google Scholar] [CrossRef]
- Cavalcanti, R.; Oreglia, F.; Manfredonia, M.F.; Gianserra, R.; Esposito, M. The influence of smoking on the survival of dental implants: A 5-year pragmatic multicenter retrospective cohort study of 1727 patients. Eur. J. Oral Implantol. 2011, 4, 39–45. [Google Scholar]
- Derks, J.; Håkansson, J.; Wennström, L.; Tomasi, C.; Larsson, M.; Berglundh, T. Effectiveness of implant therapy ana-lyzed in a Swedish population: Early and late implant loss. J. Dent. Res. 2015, 94, 44S–51S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannizzaro, G.; Felice, P.; Lazzarini, M. Immediate loading of two flapless placed mandibular implants supporting cross-arch fixed prostheses: A 5-year follow-up prospective single cohort study. Eur. J. Oral Implantol. 2016, 9, 165–177. [Google Scholar] [PubMed]
- Jemt, T.; Karouni, M.; Abitbol, J.; Zouiten, O.; Antoun, H. A retrospective study on 1592 consecutively performed operations in one private referral clinic. Part II: Peri-implantitis and implant failures. Clin. Implant. Dent. Relat. Res. 2017, 19, 413–422. [Google Scholar] [CrossRef] [PubMed]
Studies | Findings |
---|---|
Jiang et al. 2020. [2] Shchipkova et al. 2010. [31] Joshi et al. 2014. [35] Mikhailova et al. 2017. [36] Moon et al. 2015. [37] Bizzarro et al. 2013. [41] Nearing et al. 2018. [42] | Bacterial diversity Different results have been reported in various studies regarding microbial diversity. Significant differences have been found in the prevalence and abundance of disease-associated and health-compatible bacteria. Smokers’ subgingival bacteria are more diverse during and after naturally occurring gingivitis and subgingival microbial communities may be less diverse than those of nonsmokers. Fusobacterium nucleatum has been found to be more abundant in smokers than in nonsmokers, and detection rates of Tannerella forsythia, P. gingivalis, and Prevotella intermedia have been found to be higher in smokers than in nonsmokers in periodontitis patients. |
Jiang et al. 2020. [2] Hanioka et al. 2019. [32] Shapiro et al. 2022. [34] Bagaitkar et al. 2009. [44] Bagaitkar et al. 2011. [45] Bagaitkar et al. 2010. [46] Yanagita et al. 2012. [47] Zhang et al. 2010. [48] Kim et al. 2012. [49] | Bacterial virulence Smoking-induced alterations of microbial functions include the increase of virulence genes in pathogenic bacteria and reduces the host’s response to periodontal pathogens. Cigarette smoke extract (CSE) exposure regulates the DNA repair genes as well as the virulence genes of P. gingivalis. This can induce changes in the P. gingivalis phenotype which enables P. gingivalis to subsequently neutralize the proinflammatory responses to Toll-like receptor 2 stimulation. The biofilms of P. gingivalis grown in the presence of CSE showed lower pro-inflammatory capacity (involving cytokines TNF-alpha, IL-6, and IL-12) than control biofilms. Nicotine and P. gingivalis lipopolysaccharide (LPS) treatment of dendritic cells (DCs) modulates the immunopathogenesis of periodontal diseases. Nicotine combined with P. gingivalis or P. gingivalis LPS causes collagen degradation and bone resorption by tipping the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Smoking may compromise the immune response of patients with periodontitis against P. gingivalis antibodies, thereby increasing P. gingivalis infectivity. |
Jiang et al. 2020. [2] Al Kawas et al. 2021. [13] Hanioka et al. 2019. [32] Imamura et al. 2015. [50] | Host cell invasion Conflicting results have been reported. Low concentrations of cigarette smoke condensate have been shown to increase the invasion of human gingival epithelial cells by P. gingivalis. The invasion of gingival epithelial cells was shown to increase near the wound area, and low concentrations of CSE and P. gingivalis can cause the inhibition of wound closure. |
Studies | Methods | Findings |
---|---|---|
Leonhardt et al. (2003) [104] | A 5-year follow-up period of 26 implants with peri-implantitis following surgical and antimicrobial treatment. | Despite these therapies and a significant reduction in the presence of plaque and gingival bleeding, seven implants (26.9%) were lost. The authors considered smoking to be a negative risk factor for treatment success. |
Roos-Jansåker et al. (2006) [106] | The effects of several potentially explanatory variables were analyzed in 218 patients treated with titanium implants for a period of 9–14 years after initial therapy. | Smoker patients were found to be more likely to develop peri-implantitis (univariate analysis: OR: 7.7, [98% CI: 2.5–14, p < 0.001); multivariate analysis: OR: 4.6 [98% CI: 1.1–19]) than nonsmokers (OR: 1.0 for both). On the patient level, smoking was associated with mucositis, bone level, and peri-implantitis (p = 0.02, < 0.001 and 0.002, respectively). |
Sgolastra et al. (2015) [107] | A systematic review and meta-analysis study that assessed the role of smoking as a risk factor for peri-implantitis. | The implant-based meta-analysis revealed a higher and significant risk of peri-implantitis in smokers (RR: 2.1, 95% CI: 1.34–3.29, p = 0.001) compared with nonsmokers. The patient-based meta-analysis did not reveal any significant differences for risk of peri-implantitis in smokers (RR: 1.17, 95% CI: 0.78–1.75, p = 0.46). |
Koldsland et al. (2009) [108] | This study assessed the outcome of dental implants inserted over a 16-year period. | The mean time from implant loading to the time of study was 8.4 years (range, 1.1 to 16.0 years). A total of 18 implants (4.8%) were lost out of 374 implants in 109 patients. The loss of oral implants was significantly associated with a history of smoking and periodontitis (p < 0.05). |
Study | Participant Group | Intervention | Results |
---|---|---|---|
Trombelli et al. (2003) [69] | 19 smokers 12 nonsmokers | Periodontal parameters were assessed immediately before and 6 months following flap debridement surgery (FDS) surgery for Class I or II molar furcation defects. | Significantly more improvement was observed in nonsmokers than in smokers. v-CAL and h-CAL gain: Smokers: 1.07 ± 1.3 and 0.67 ± 1.0 mm Nonsmokers: 1.37 ± 1.1 and 1.37 ± 1.1 mm Class II furcation improved to Class I: Smokers: 27.6% Nonsmokers: 38.5% Class I furcation defects that completely healed: Smokers: 3.4% Nonsmokers: 27.8% |
Boström et al. (1998) [70] | 20 smokers 20 former smokers 17 nonsmokers | The 5-year outcome following periodontal surgery. | Periodontal probing depth (PPD) difference between follow-up and baseline (mean and SEM): Smokers: −1.0 (0.38) mm Former smokers: −1.6 (0.41) mm Nonsmokers: −1.2 (0.34) mm Periodontal bone height (PBH)% difference between follow-up and baseline (mean and SEM): Smokers: 1.7 (1.53) % Former smokers: 3.9 (1.67) % Nonsmokers: 7.7 (2.03) % Level of tumor necrosis factor alpha (TNF-a) in gingival crevicular fluid: Smokers: 71.7 (98.97) pg/mL Former smokers: 23.5 (23.19) pg/mL Nonsmokers: 15.7 (19.99) pg/mL |
Scabbia et al. (2001) [71] | 28 smokers 29 nonsmokers | Treatment outcome 6 months after flap debridement surgery for moderated to severe periodontitis patients. | Significantly more improvement was observed in nonsmokers than in smokers. Periodontal probing depth (PPD) reduction Smokers: 1.9 ± 0.7 Nonsmokers: 2.4 ± 0.9 Clinical attachment level CAL gain Smokers: 1.2 ± 0.7 Nonsmokers: 1.6 ± 0.7 |
Hellström et al. (2008) [72] | Control group (MWF): 17 smokers 13 nonsmokers Test group (M + MWF): 17 smokers 11 nonsmokers | The effects of minocycline microspheres (M) on periodontal probing depth reduction when used in combination with modified Widman flap (MWF) surgery in adults with moderate to severe chronic periodontitis. | Smokers in the test group had a significantly greater probing depth reduction (2.30 mm) than smokers in the control group (2.05 mm). PD reduction (mm) from baseline to weeks 13 and 25: Control group: Smokers: 2.17 ± 0.11 and 2.05 ± 0.09 Nonsmokers: 2.41 ± 0.16 and 2.37 ± 0.22 Test group: Smokers: 2.40 ± 0.11 and 2.30 ± 0.09 Nonsmokers: 2.55 ± 0.18 and 2.77 ± 0.24 Bleeding on probing (BoP) (%) reductions from baseline to weeks 13 and 25: Control group: Smokers: 64 ± 5 and 54 ± 4 Nonsmokers: 60 ± 7 and 59 ± 6 Test group: Smokers: 70 ± 5 and 66 ± 4 Nonsmokers: 53 ± 7 and 62 ± 6 |
Kaldahl et al. (1996) [120] | 31 heavy smokers (HS) 15 light smokers (LS) 10 past smokers (PS) 18 nonsmokers (NS) | A total of 7 years of clinical outcomes of four treatment modalities (coronal scaling, root planing (RP), modified Widman surgery (MW), and flap with osseous resection surgery (OS)) for moderate to advanced periodontitis patients. | Following all phases of therapy, past smokers and nonsmokers consistently exhibited a significantly greater reduction in probing depth and clinical attachment gains. Mean reduction in probing depth and clinical attachment gain: HS: 1 mm, 0.2 mm LS: 0.8 mm, 0.4 mm PS: 2 mm, 0.2 mm NS: 1.9 mm, 1 mm |
Ah et al. (1994) [121] | 46 smokers 28 nonsmokers | A total of 6 years of clinical responses to nonsurgical and surgical periodontal therapy (coronal scaling, root planing (RP), modified Widman surgery (MW), and flap with osseous resection surgery (OS)) for moderate to advanced periodontitis patients. | CAL gain and recession level were less favorable in smokers than in nonsmokers. Mean clinical attachment gain and recession level reduction: Smokers: 0.5 mm and 0.8 mm Nonsmokers: 1 mm and 0.9 mm |
Kim et al. (2007) [122] | 19 smokers 22 nonsmokers | Assessed the effect of tooth-related and patient-related factors on the success of scaling and root planing (SRP) and access flap (AF) surgery in untreated and/or recurrent periodontitis patients. | RAL-V gain and PPD reduction were less favorable in current smokers. Backward multilevel linear regression analysis—dependent variable: RAL-V reduction 6 months after therapy: Smokers: −0.2875 (Estimate) 0.1106 (SE) Backward multilevel linear regression analysis—dependent variable: PPD reduction 6 months after therapy: Smokers: −0.3312 (Estimate) 0.1055 (SE) Multilevel linear regression analysis—dependent variable: RAL-V reduction 6 months after therapy: Smokers: −0.3758 (Estimate) 0.1334 (SE) |
Orbak et al. (2003) [123] | 25 smokers 25 nonsmokers | Gingival biopsies were taken from the pocket wall of chronic periodontitis patients and tested for CD4+, CD8+ lymphocyte, and CD4/ CD8 ratio values before treatment, after initial treatment, after curettage, and after flap operation. | Despite the use of different treatment methods, smokers had lower lymphocyte values than nonsmokers and a weaker local immune response. CD4+ and CD8+ lymphocyte values and CD4/CD8 ratio after curettage: Smokers: 27.00 ± 6.28, 13.69 ± 3.95, 2.02 ± 0.26 Nonsmokers: 33.55 ± 6.46, 17.36 ± 4.20, 1.97 ± 0.36 CD4+ and CD8+ lymphocyte values and CD4/CD8 ratio after flap surgery: Smokers: 28.85 ± 4.83, 15.85 ± 2.76, 1.83 ± 0.20 Nonsmokers: 33.73 ± 6.61, 18.36 ± 3.11, 1.84 ± 8.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madi, M.; Smith, S.; Alshehri, S.; Zakaria, O.; Almas, K. Influence of Smoking on Periodontal and Implant Therapy: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 5368. https://doi.org/10.3390/ijerph20075368
Madi M, Smith S, Alshehri S, Zakaria O, Almas K. Influence of Smoking on Periodontal and Implant Therapy: A Narrative Review. International Journal of Environmental Research and Public Health. 2023; 20(7):5368. https://doi.org/10.3390/ijerph20075368
Chicago/Turabian StyleMadi, Marwa, Steph Smith, Sami Alshehri, Osama Zakaria, and Khalid Almas. 2023. "Influence of Smoking on Periodontal and Implant Therapy: A Narrative Review" International Journal of Environmental Research and Public Health 20, no. 7: 5368. https://doi.org/10.3390/ijerph20075368
APA StyleMadi, M., Smith, S., Alshehri, S., Zakaria, O., & Almas, K. (2023). Influence of Smoking on Periodontal and Implant Therapy: A Narrative Review. International Journal of Environmental Research and Public Health, 20(7), 5368. https://doi.org/10.3390/ijerph20075368