Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Critical Assessment
3.1.1. Higher BMI Does Not Necessarily Indicate Excessive Body Fat
3.1.2. Simplicity of BMI Does Not Ensure Its Validity for Screening in All Populations
Target Population | Underweight | Normal | Overweight | Obesity |
---|---|---|---|---|
Universal (1993 by NIH) [3] | * | * | ≥27.8 for men ≥27.3 for women | * |
Universal (1993 by WHO) [3] | * | 20–24.9 | 25–29.9 | ≥30 |
Chinese adults in China (2002) [36] | ≤18.5 | 18.6–23.9 | 24–27.9 | ≥28 |
Indians in India (2015) [37] | * | * | 23–24.9 | ≥25 |
South Asians (2023) [43,46] | ≤18.5 | 18.6–22.9 | ≥23 | * |
3.1.3. BMI Is Not an Adequate or Comprehensive Predictor of Higher Disease Risk
3.2. Comprehensive Macro-Nutritional Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADP | Air displacement plethysmography |
AMA | The American Medical Association |
BIA | Bioelectrical impedance analysis |
BIS | Bioimpedance spectroscopy |
BMI | Body mass index |
CDC | Centers of Disease Control and Prevention |
CT | Computed tomography |
DXA | Dual X-ray absorptiometry |
GLP-1 | Glucagon-like peptide-1 |
MRI | Magnetic resonance imaging |
NIH | National Institutes of Health |
PET | Positron emission tomography |
SPECT | Single-photon emission computed tomography |
VBC | Visual body composition |
WHO | World Health Organization |
3DPS | Three-dimensional photonic scanning |
References
- Eknoyan, G. Adolphe Quetelet (1796–1874)—The average man and indices of obesity. Nephrol. Dial. Transplant. 2008, 23, 47–51. [Google Scholar] [CrossRef] [PubMed]
- A Healthy Lifestyle—WHO Recommendations. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 6 May 2010).
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Butte, N.F.; Taveras, E.M.; Goodman, A.B.; Ogden, C.L.; Blanck, H.M. The Limitations of Transforming Very High Body Mass Indexes into z-Scores among 8.7 Million 2- to 4-Year-Old Children. J. Pediatr. 2017, 188, 50–56.e1. [Google Scholar] [CrossRef] [PubMed]
- Cuda, S.E.; Censani, M. Assessment, differential diagnosis, and initial clinical evaluation of the pediatric patient with obesity: An Obesity Medical Association (OMA) Clinical Practice Statement 2022. Obes. Pillars 2022, 1, 100010. [Google Scholar] [CrossRef]
- Southcombe, F.; Vivekanandarajah, S.; Krstic, S.; Lin, F.; Chay, P.; Williams, M.; Khan, J.R.; Hu, N.; Eapen, V.; Dennis, S.; et al. More than just body mass index: Using the Edmonton obesity staging system for pediatrics to define obesity severity in a multi-ethnic Australian pediatric clinical cohort. Obes. Sci. Pract. 2023, 9, 285–295. [Google Scholar] [CrossRef]
- Licenziati, M.R.; Ballarin, G.; Iannuzzo, G.; Lonardo, M.S.; Di Vincenzo, O.; Iannuzzi, A.; Valerio, G. A height-weight formula to measure body fat in childhood obesity. Ital. J. Pediatr. 2022, 48, 106. [Google Scholar] [CrossRef]
- Ryder, J.R.; Kelly, A.S.; Freedman, D.S. Metrics matter: Toward consensus reporting of BMI and weight-related outcomes in pediatric obesity clinical trials. Obesity 2022, 30, 571–572. [Google Scholar] [CrossRef]
- Freedman, D.S.; Woo, J.G.; Ogden, C.L.; Xu, J.H.; Cole, T.J. Distance and percentage distance from median BMI as alternatives to BMI z score. Br. J. Nutr. 2020, 124, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A. Beyond BMI. Nutrients 2023, 15, 2254. [Google Scholar] [CrossRef]
- Why Use BMI? Available online: https://www.hsph.harvard.edu/obesity-prevention-source/obesity-definition/obesity-definition-full-story/ (accessed on 27 May 2024).
- Why BMI Is a Flawed Health Standard, Especially for People of Color. Available online: https://www.washingtonpost.com/lifestyle/wellness/healthy-bmi-obesity-race-/2021/05/04/655390f0-ad0d-11eb-acd3-24b44a57093a_story.html (accessed on 5 May 2021).
- Darbandi, M.; Pasdar, Y.; Moradi, S.; Mohamed, H.J.J.; Hamzeh, B.; Salimi, Y. Discriminatory Capacity of Anthropometric Indices for Cardiovascular Disease in Adults: A Systematic Review and Meta-Analysis. Prev. Chronic Dis. 2020, 17, E131. [Google Scholar] [CrossRef]
- Health Effects of Overweight and Obesity. Available online: https://www.cdc.gov/healthy-weight-growth/about/index.html. (accessed on 20 February 2024).
- Ma, Y.; Yang, Y.; Wang, F.; Zhang, P.; Shi, C.; Zou, Y.; Qin, H. Obesity and risk of colorectal cancer: A systematic review of prospective studies. PLoS ONE 2013, 8, e53916. [Google Scholar] [CrossRef] [PubMed]
- Sohn, W.; Lee, H.W.; Lee, S.; Lim, J.H.; Lee, M.W.; Park, C.H.; Yoon, S.K. Obesity and the risk of primary liver cancer: A systematic review and meta-analysis. Clin. Mol. Hepatol. 2021, 27, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Rathore, S.S.; Khan, H.; Karale, S.; Chawla, Y.; Iqbal, K.; Bhurwal, A.; Tekin, A.; Jain, N.; Mehra, I.; et al. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front. Endocrinol. 2022, 13, 780872. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Puhl, R.M.; Himmelstein, M.S.; Pearl, R.L. Weight stigma as a psychosocial contributor to obesity. Am. Psychol. 2020, 75, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Rohde, K.; Keller, M.; la Cour Poulsen, L.; Blüher, M.; Kovacs, P.; Böttcher, Y. Genetics and epigenetics in obesity. Metabolism 2019, 92, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bakshi, A.; Zhu, Z.; Hemani, G.; Vinkhuyzen, A.A.E.; Lee, S.H.; Robinson, M.R.; Perry, J.R.B.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 2015, 47, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, K.; Konttinen, H. Obesity and eating behavior from the perspective of twin and genetic research. Neurosci. Biobehav. Rev. 2020, 109, 150–165. [Google Scholar] [CrossRef] [PubMed]
- AMA Adopts New Policy Clarifying Role of BMI as a Measure in Medicine. Available online: https://www.ama-assn.org/press-center/press-releases/ama-adopts-new-policy-clarifying-role-bmi-measure-medicine#:~:text=Under%20the%20newly%20adopted%20policy,of%20non%2DHispanic%20white%20populations (accessed on 14 June 2023).
- Tanne, J.H. Obesity: Avoid using BMI alone when evaluating patients, say US doctors’ leaders. BMJ 2023, 381, 1400. [Google Scholar] [CrossRef]
- Rubino, F.; Batterham, R.L.; Koch, M.; Mingrone, G.; le Roux, C.W.; Farooqi, I.S.; Farpour-Lambert, N.; Gregg, E.W.; Cummings, D.E. Lancet Diabetes & Endocrinology Commission on the Definition and Diagnosis of Clinical Obesity. Lancet Diabetes Endocrinol. 2023, 11, 226–228. [Google Scholar]
- Gray, L.J.; Yates, T.; Davies, M.J.; Brady, E.; Webb, D.R.; Sattar, N.; Khunti, K. Defining obesity cut-off points for migrant South Asians. PLoS ONE 2011, 6, e26464. [Google Scholar] [CrossRef]
- Body Mass Index: Considerations for Practitioners. Available online: https://stacks.cdc.gov/view/cdc/25368 (accessed on 2 August 2011).
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 March 2024).
- Held, C.; Hadziosmanovic, N.; Aylward, P.E.; Hagström, E.; Hochman, J.S.; Stewart, R.A.H.; White, H.D.; Wallentin, L. Body Mass Index and Association With Cardiovascular Outcomes in Patients With Stable Coronary Heart Disease—A STABILITY Substudy. J. Am. Heart Assoc. 2022, 11, e023667. [Google Scholar] [CrossRef]
- Liu, C.; Wong, P.Y.; Chung, Y.L.; Chow, S.K.; Cheung, W.H.; Law, S.W.; Chan, J.C.N.; Wong, R.M.Y. Deciphering the “obesity paradox” in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obes. Rev. 2023, 24, e13534. [Google Scholar] [CrossRef]
- Kıskaç, M.; Soysal, P.; Smith, L.; Capar, E.; Zorlu, M. What is the Optimal Body Mass Index Range for Older Adults? Ann. Geriatr. Med. Res. 2022, 26, 49–57. [Google Scholar] [CrossRef]
- Smalley, K.J.; Knerr, A.N.; Kendrick, Z.V.; Colliver, J.A.; Owen, O.E. Reassessment of body mass indices. Am. J. Clin. Nutr. 1990, 52, 405–408. [Google Scholar] [CrossRef]
- Shah, N.R.; Braverman, E.R. Measuring adiposity in patients: The utility of body mass index (BMI), percent body fat, and leptin. PLoS ONE 2012, 7, e33308. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-ray absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Pi-Sunyer, F.X.; Becker, D.M.; Bouchard, C.; Carleton, R.A.; Colditz, G.A.; Dietz, W.H.; Foreyt, J.P.; Garrison, R.J.; Grundy, S.M.; Hansen, B.C.; et al. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults—The Evidence Report. Obes. Res. 1998, 6 (Suppl. S2), 51s–209s. [Google Scholar]
- Zhou, B.F. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases-report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed. Environ. Sci. 2002, 15, 245–252. [Google Scholar] [PubMed]
- Misra, A. Ethnic-Specific Criteria for Classification of Body Mass Index: A Perspective for Asian Indians and American Diabetes Association Position Statement. Diabetes Technol. Ther. 2015, 17, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg-Yap, M.; Schmidt, G.; van Staveren, W.A.; Deurenberg, P. The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int. J. Obes. 2000, 24, 1011–1017. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Barber, T.M.; Mohammed, N.I.; Cappuccio, F.P.; Hardy, R.; Mathur, R.; Banerjee, A.; Gill, P. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2021, 9, 419–426. [Google Scholar] [CrossRef]
- Raji, A.; Seely, E.W.; Arky, R.A.; Simonson, D.C. Body Fat Distribution and Insulin Resistance in Healthy Asian Indians and Caucasians. J. Clin. Endocrinol. Metab. 2001, 86, 5366–5371. [Google Scholar] [CrossRef]
- Carvalho, V.; Moreira, L.B.; Luft, V.C.; Fuchs, S.C. Waist-to-Height Ratio: A Sensitive Tool for Assessing the Need for Nutritional Risk Management in Elderly Populations from Brazil. Healthcare 2023, 11, 2406. [Google Scholar] [CrossRef]
- Tirthani, E.; Said, M.S.; Rehman, A. Genetics and Obesity. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2024. [Google Scholar]
- BMI Values for South Asians. Available online: https://www.diabetes.co.uk/south-asian/bmi-values-for-south-asians.html (accessed on 29 October 2023).
- Jih, J.; Mukherjea, A.; Vittinghoff, E.; Nguyen, T.T.; Tsoh, J.Y.; Fukuoka, Y.; Bender, M.S.; Tseng, W.; Kanaya, A.M. Using appropriate body mass index cut points for overweight and obesity among Asian Americans. Prev. Med. 2014, 65, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, C.M.; Dhana, K.; Schoufour, J.D.; Ikram, M.A.; Kavousi, M.; Franco, O.H. Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The Rotterdam Study. Eur. J. Prev. Cardiol. 2017, 24, 934–941. [Google Scholar] [CrossRef]
- Jin, K. The fat but fit paradox: What do we know in women with heart disease. Eur. J. Prev. Cardiol. 2022, 29, 1605–1607. [Google Scholar] [CrossRef]
- Jae, S.Y.; Kim, H.J.; Lee, K.H.; Kunutsor, S.K.; Heffernan, K.S.; Choi, Y.H.; Kang, M. Joint Associations of Obesity and Cardiorespiratory Fitness with Coronary Artery Calcium Composition: Is There Evidence For Fat-But-Fit? J. Cardiopulm. Rehabil. Prev. 2022, 42, 202–207. [Google Scholar] [CrossRef]
- Alcazar, J.; Navarrete-Villanueva, D.; Mañas, A.; Gómez-Cabello, A.; Pedrero-Chamizo, R.; Alegre, L.M.; Villa, G.; Gusi, N.; González-Gross, M.; Casajús, J.A.; et al. ‘Fat but powerful’ paradox: Association of muscle power and adiposity markers with all-cause mortality in older adults from the EXERNET multicentre study. Br. J. Sports Med. 2021, 55, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Yerrakalva, D.; Mullis, R.; Mant, J. The associations of “fatness”, “fitness”, and physical activity with all-cause mortality in older adults: A systematic review. Obesity 2015, 23, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Peng, Y.; Wang, Z.; Adegbija, O.; Hu, J.; Ma, J.; Ma, Y.H. Joint association between body fat and its distribution with all-cause mortality: A data linkage cohort study based on NHANES (1988–2011). PLoS ONE 2018, 13, e0193368. [Google Scholar] [CrossRef]
- Stanford, F.C.; Lee, M.; Hur, C. Race, Ethnicity, Sex, and Obesity: Is It Time to Personalize the Scale? Mayo Clin. Proc. 2019, 94, 362–363. [Google Scholar] [CrossRef]
- Tomiyama, A.J.; Hunger, J.M.; Nguyen-Cuu, J.; Wells, C. Misclassification of cardiometabolic health when using body mass index categories in NHANES 2005–2012. Int. J. Obes. 2016, 40, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.; Mejía-Guevara, I.; Estrada, K.; Liu, S.Y.; Glymour, M.M. Association of a Genetic Risk Score With Body Mass Index Across Different Birth Cohorts. JAMA 2016, 316, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.S.; Stanforth, P.R.; Gagnon, J.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C.; Wilmore, J.H. The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 789–796. [Google Scholar] [CrossRef]
- Vermund, S.; Scott, M.; Humphries, D. Public Health and Clinical Implications of Nutrition-Infection Interactions. In Nutrition and Infectious Diseases Shifting the Clinical Paradigm: Shifting the Clinical Paradigm; Humana Press/Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 459–481. [Google Scholar]
- Wang, J.; Thornton, J.C.; Bari, S.; Williamson, B.; Gallagher, D.; Heymsfield, S.B.; Horlick, M.; Kotler, D.; Laferrère, B.; Mayer, L.; et al. Comparisons of waist circumferences measured at 4 sites. Am. J. Clin. Nutr. 2003, 77, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hao, X.; Liu, M.; Hu, Y.; Wang, X.; Liu, Y. The prevalence of obesity and relationship between obesity indicators and chronic diseases in Northern Shaanxi, China. Endokrynol. Pol. 2024, 75, 71–82. [Google Scholar] [CrossRef]
- Vári, B.; Győri, F.; Katona, Z.; Berki, T. The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary. Int. J. Environ. Res. Public Health 2023, 20, 5976. [Google Scholar] [CrossRef]
- Phillips, A.; Clements, J.N. Clinical review of subcutaneous semaglutide for obesity. J. Clin. Pharm. Ther. 2022, 47, 184–193. [Google Scholar] [CrossRef]
- Chao, A.M.; Tronieri, J.S.; Amaro, A.; Wadden, T.A. Clinical Insight on Semaglutide for Chronic Weight Management in Adults: Patient Selection and Special Considerations. Drug Des. Dev. Ther. 2022, 16, 4449–4461. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Papathakis, P.C.; Rollins, N.C.; Brown, K.H.; Bennish, M.L.; Van Loan, M.D. Comparison of isotope dilution with bioimpedance spectroscopy and anthropometry for assessment of body composition in asymptomatic HIV-infected and HIV-uninfected breastfeeding mothers. Am. J. Clin. Nutr. 2005, 82, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.K.; Liu, Y.E.; Wang, W.; Kelly, T.L.; Wilson, K.E.; Schoeller, D.A.; Heymsfield, S.B.; Shepherd, J.A. Validation of rapid 4-component body composition assessment with the use of dual-energy X-ray absorptiometry and bioelectrical impedance analysis. Am. J. Clin. Nutr. 2018, 108, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Majmudar, M.D.; Chandra, S.; Yakkala, K.; Kennedy, S.; Agrawal, A.; Sippel, M.; Ramu, P.; Chaudhri, A.; Smith, B.; Criminisi, A.; et al. Smartphone camera based assessment of adiposity: A validation study. NPJ Digit. Med. 2022, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.J.; Greig, C.A.; Baracos, V. The advantages and limitations of cross-sectional body composition analysis. Curr. Opin. Support. Palliat. Care 2011, 5, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, P.; Rowe, S.P.; Solnes, L.B.; Quainoo, B.; Ahima, R.S. A systematic review of imaging studies of human brown adipose tissue. Ann. N. Y. Acad. Sci. 2021, 1495, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, W.; Atthakomol, P. High body fat percentage is associated with primary aldosteronism: A cross-sectional study. BMC Endocr. Disord. 2020, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C. Waist circumference, waist-to-hip ratio and body mass index as predictors of adipose tissue compartments in men. QJM 2003, 96, 441–447. [Google Scholar] [CrossRef]
- Roubenoff, R.; Kehayias, J.J. The meaning and measurement of lean body mass. Nutr. Rev. 1991, 49, 163–175. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Gidding, S.S.; Nehgme, R.; Sidney, S.; Jacobs, D.R., Jr.; Liu, K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA 2003, 290, 3092–3100. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.A.; Hamer, M.; Sabia, S.; Singh-Manoux, A.; Batty, G.D.; Kivimaki, M. The natural course of healthy obesity over 20 years. J. Am. Coll. Cardiol. 2015, 65, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; Netterstrøm, M.K.; Johansen, N.B.; Rønn, P.F.; Vistisen, D.; Husemoen, L.L.N.; Jørgensen, M.E.; Rod, N.H.; Færch, K. Metabolically Healthy Obesity and Ischemic Heart Disease: A 10-Year Follow-Up of the Inter99 Study. J. Clin. Endocrinol. Metab. 2017, 102, 1934–1942. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. https://doi.org/10.3390/ijerph21060757
Wu Y, Li D, Vermund SH. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. International Journal of Environmental Research and Public Health. 2024; 21(6):757. https://doi.org/10.3390/ijerph21060757
Chicago/Turabian StyleWu, Yilun, Dan Li, and Sten H. Vermund. 2024. "Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity" International Journal of Environmental Research and Public Health 21, no. 6: 757. https://doi.org/10.3390/ijerph21060757
APA StyleWu, Y., Li, D., & Vermund, S. H. (2024). Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. International Journal of Environmental Research and Public Health, 21(6), 757. https://doi.org/10.3390/ijerph21060757