Using Respondent-Driven Sampling (RDS) to Identify the Healthcare Needs among Women of Reproductive Age Who Migrated from Venezuela to Brazil, 2018–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. The RDS Method
2.2. The Survey
2.3. Fieldwork
2.4. Study Variables
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Migration Report 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Caraballo-Arias, Y.; Madrid, J.; Barrios, M.C. Working in Venezuela: How the Crisis Has Affected the Labor Conditions. Ann. Glob. Health 2018, 84, 512–522. [Google Scholar] [CrossRef]
- Hernández-Vásquez, A.; Vargas-Fernández, R.; Visconti-Lopez, F.J.; Aparco, J.P. Prevalence and Socioeconomic Determinants of Food Insecurity among Venezuelan Migrant and Refugee Urban Households in Peru. Front. Nutr. 2023, 10, 1187221. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, A.M.; Rozo, S.V.; Urbina, M.J. Forced Migration and the Spread of Infectious Diseases. J. Health Econ. 2021, 79, 102491. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; McCann, V.; Friesen, S.; Noriega, M.; Marisol, M.; Bartels, S.A.; Purkey, E. Experiences of Pregnant Venezuelan Migrants/Refugees in Brazil, Ecuador and Peru: A Qualitative Analysis. BMC Pregnancy Childbirth 2024, 24, 157. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.E.V.; Shimizu, H.E.; Monteiro, P.S. The Vulnerabilities of Venezuelan Immigrants in Brazil and Colombia from the Perspective of Intervention Bioethics *. Rev. Esc. Enferm. USP 2023, 57, e20230081. [Google Scholar] [CrossRef] [PubMed]
- Refugees and Migrants from Venezuela|R4V. Available online: https://www.r4v.info/en/refugeeandmigrants (accessed on 16 April 2024).
- Castro, C.; Mello, E.; Sousa, C. Operação Acolhida: UMA História Oral, 1st ed.; Editora FGV: Rio de Janeiro, Brazil, 2021; ISBN 6556521663. [Google Scholar]
- Abrams, M.P.; Wharton, T.; Cubillos-Novella, A.; Vargas-Monroy, A.M.; Riveros, M.A. Fractured Families and Social Networks: Identifying Risk and Resilience Factors for Supporting Positive Mental Health in Venezuelan Immigrant Groups. Fam. Syst. Health 2022, 40, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Sanabria, M.F.; Annicchiarico, W.; Alfieri, N.; Cortes, M.S. Maternal and Perinatal Health among Pregnant Patients in the Context of a Migratory Crisis. Int. J. Gynaecol. Obstet. 2023, 163, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Vásquez, A.; Bendezu-Quispe, G.; Azañedo, D. Migration Status and Utilization of Healthcare Services among Venezuelan Immigrants in Peru. J. Community Health 2023, 48, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Garnica-Rosas, L.; Granich-Armenta, A.; Guerra, Y.; Guerra, G.; Sánchez-Dominguez, M.; Lamadrid-Figueroa, H. Perinatal Outcomes among Venezuelan Immigrants in Colombia: A Cross-Sectional Study. J. Immigr. Minor. Health 2021, 23, 976–985. [Google Scholar] [CrossRef]
- Brasil-Presidência da República/Casa Civil. Lei 8080 de 19 de Setembro de 1990; Diário Oficial da União: Brasília, Brazil, 1990.
- do Carmo Leal, M.; de Carvalho, T.D.G.; Santos, Y.R.P.; de Queiroz, R.S.B.; Fonseca, P.A.M.; Szwarcwald, C.L.; Riggirozzi, P. Migration Process of Venezuelan Women to Brazil: Living Conditions and Use of Health Services in Manaus and Boa Vista, 2018–2021. BMC Public Health 2024, 24, 1051. [Google Scholar] [CrossRef]
- De Arruda-Barbosa, L.; da Silva Neta, E.L.M.; Teixeira, L.D.G.; Silva, S.M.; Brasil, C.O.; Leal, N.A.C. Aspectos gerais da vida de imigrantes em abrigos para refugiados. Rev. Bras. Promoção Saúde 2020, 33, 1–11. [Google Scholar] [CrossRef]
- Bahamondes, L.; Laporte, M.; Margatho, D.; de Amorim, H.S.F.; Brasil, C.; Charles, C.M.; Becerra, A.; Hidalgo, M.M. Maternal Health among Venezuelan Women Migrants at the Border of Brazil. BMC Public Health 2020, 20, 1771. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.C.; Massuda, A.; Almeida, G.; Menezes-Filho, N.A.; Andrade, M.V.; de Souza Noronha, K.V.M.; Rocha, R.; Macinko, J.; Hone, T.; Tasca, R.; et al. Brazil’s Unified Health System: The First 30 Years and Prospects for the Future. Lancet 2019, 394, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Stopa, S.R.; Malta, D.C.; Monteiro, C.N.; Szwarcwald, C.L.; Goldbaum, M.; Cesar, C.L.G. Use of and Access to Health Services in Brazil, 2013 National Health Survey. Rev. Saúde Pública 2017, 51, 3s. [Google Scholar] [CrossRef] [PubMed]
- Magnani, R.; Sabin, K.; Saidel, T.; Heckathorn, D. Review of Sampling Hard-to-Reach and Hidden Populations for HIV Surveillance. AIDS 2005, 19 (Suppl. S2), S67–S72. [Google Scholar] [CrossRef] [PubMed]
- Heckathorn, D.D.; Jeffri, J. Finding the Beat: Using Respondent-Driven Sampling to Study Jazz Musicians. Poetics 2001, 28, 307–329. [Google Scholar] [CrossRef]
- Heckathorn, D.D. Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations. Soc. Probl. 1997, 44, 174–199. [Google Scholar] [CrossRef]
- Salganik, M.J.; Heckathorn, D. Sampling and Estimation in Hidden Populations Using Respondent-Drive Sampling. Sociol. Methodol. 2004, 34, 193–239. [Google Scholar] [CrossRef]
- Heckathorn, D.D. Respondent-Driven Sampling II: Deriving Valid Population Estimates from Chain-Referral Samples of Hidden Populations. Soc. Probl. 2002, 49, 11–34. [Google Scholar] [CrossRef]
- Goel, S.; Salganik, M.J. Respondent-Driven Sampling as Markov Chain Monte Carlo. Stat. Med. 2009, 28, 2202–2209. [Google Scholar] [CrossRef]
- Szwarcwald, C.L.; Stopa, S.R.; Damacena, G.N.; da Almeida, W.d.S.; de Souza Júnior, P.R.B.; Vieira, M.L.F.P.; Pereira, C.A.; Sardinha, L.M.V.; Macário, E.M. Changes in the pattern of health services use in Brazil between 2013 and 2019. Cien Saude Colet. 2021, 26, 2515–2528. [Google Scholar] [CrossRef]
- RedCap—Research Eletronic Data Capture [Computer Program]. 2023. Available online: https://www.project-redcap.org/ (accessed on 16 June 2024).
- Avery, L.; Macpherson, A.; Flicker, S.; Rotondi, M. A Review of Reported Network Degree and Recruitment Characteristics in Respondent Driven Sampling Implications for Applied Researchers and Methodologists. PLoS ONE 2021, 16, e0249074. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Cao, M.; Kuhns, L.M.; Li, D.; Schneider, J.A. Statistical Adjustment of Network Degree in Respondent-Driven Sampling Estimators: Venue Attendance as a Proxy for Network Size among Young MSM—PMC. Soc. Netw. 2018, 54, 118–131. [Google Scholar] [CrossRef]
- Gonçalves, B.; Perra, N.; Vespignani, A. Modeling Users’ Activity on Twitter Networks: Validation of Dunbar’s Number. PLoS ONE 2011, 6, e22656. [Google Scholar] [CrossRef]
- Szwarcwald, C.L.; Damacena, G.N.; de Souza-Júnior, P.R.B.; Guimarães, M.D.C.; de Almeida, W.d.S.; de Souza Ferreira, A.P.; Ferreira-Júnior, O.d.C.; Dourado, I.; Brazilian FSW Group. Factors Associated with HIV Infection among Female Sex Workers in Brazil. Medicine 2018, 97, S54–S61. [Google Scholar] [CrossRef] [PubMed]
- Handcock, M.S.; Fellows, I.F.; Gile, K.J. RDS Analyst: Software for the Analysis of Respondent-Driven Sampling Data, Version 0.42. Available online: http://hpmrg.org (accessed on 4 July 2022).
- Spiller, M.W.; Gile, K.J.; Handcock, M.S.; Mar, C.M.; Wejnert, C. Evaluating Variance Estimators for Respondent-Driven Sampling. J. Surv. Stat. Methodol. 2017, 2017, smx018. [Google Scholar] [CrossRef]
- Pham, P.N.; Keegan, K.; Johnston, L.G.; Rodas, J.; Restrepo, M.A.; Wei, C.; Vinck, P. Assessing the Impact of the COVID-19 Pandemic among Venezuelan Refugees and Migrants in Colombia Using Respondent-Driven Sampling (RDS). BMJ Open 2022, 12, e054820. [Google Scholar] [CrossRef]
- Weinmann, T.; AlZahmi, A.; Schneck, A.; Mancera Charry, J.F.; Fröschl, G.; Radon, K. Population-Based Assessment of Health, Healthcare Utilisation, and Specific Needs of Syrian Migrants in Germany: What Is the Best Sampling Method? BMC Med. Res. Methodol. 2019, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Wangroongsarb, P.; Hwang, J.; Thwing, J.; Karuchit, S.; Kumpetch, S.; Rand, A.; Drakeley, C.; MacArthur, J.R.; Kachur, S.P.; Satimai, W.; et al. Using Respondent Driven Sampling to Identify Malaria Risks and Occupational Networks among Migrant Workers in Ranong, Thailand. PLoS ONE 2016, 11, e0168371. [Google Scholar] [CrossRef]
- Pham, P.N.; Johnston, L.G.; Keegan, K.; Wei, C.; Vinck, P. Innovative Strategies for Remotely Sampling Hard-to-Reach Populations: Assessing Phone Versus Internet Respondent-Driven Sampling Approaches Among Venezuelan Refugees and Migrants in Colombia. Am. J. Epidemiol. 2023, 192, 1613–1623. [Google Scholar] [CrossRef]
- Pascom, A.R.P.; Szwarcwald, C.L.; Barbosa Júnior, A. Sampling Studies to Estimate the HIV Prevalence Rate in Female Commercial Sex Workers. Braz. J. Infect. Dis. 2010, 14, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Sabin, K.M.; Johnston, L.G. Epidemiological Challenges to the Assessment of HIV Burdens among Key Populations: Respondent-Driven Sampling, Time-Location Sampling and Demographic and Health Surveys. Curr. Opin. HIV AIDS 2014, 9, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.; Malekinejad, M.; Kendall, C.; Iuppa, I.; Rutherford, G. Implementation Challenges to Using Respondent-Driven Sampling Methodology for HIV Biological and Behavioral Surveillance: Field Experiences in International Settings. AIDS Behav. 2008, 12, S131–S141. [Google Scholar] [CrossRef] [PubMed]
- Rose, C. Identification of Peer Effects through Social Networks Using Variance Restrictions. Econom. J. 2017, 20, S47–S60. [Google Scholar] [CrossRef]
- Stopa, S.R.; Szwarcwald, C.L.; Oliveira, M.M.D.; Gouvea, E.D.C.D.P.; Vieira, M.L.F.P.; Freitas, M.P.S.D.; Sardinha, L.M.V.; Macário, E.M.; Stopa, S.R.; Szwarcwald, C.L.; et al. Pesquisa Nacional de Saúde 2019: Histórico, Métodos e Perspectivas. Epidemiol. Serviços Saúde 2020, 29, e2020315. [Google Scholar] [CrossRef] [PubMed]
- Blank, N.; Diderichsen, F. The Prediction of Different Experiences of Longterm Illness: A Longitudinal Approach in Sweden. J. Epidemiol. Community Health 1996, 50, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhu, H.; Zhen, Z.; Gu, D. Self-Rated Health, Interviewer-Rated Health, and Their Predictive Powers on Mortality in Old Age. J. Gerontol. B Psychol. Sci. Soc. Sci. 2016, 71, 538–550. [Google Scholar] [CrossRef]
- Blukacz, A.; Carreño Calderon, A.; Obach, A.; Cabieses, B.; Peroncini, J.; Oliva, A. Perceptions of Health Needs among Venezuelan Women Crossing the Border in Northern Chile during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 15175. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.; Guillén, J.R.; Bevilacqua, K.G.; Arciniegas, S.; Ortíz, J.; López, J.J.; Ramírez, J.F.; Talero, M.B.; Quijano, C.; Vela, A.; et al. Qualitative Assessment of the Impacts of the COVID-19 Pandemic on Migration, Access to Healthcare, and Social Wellbeing among Venezuelan Migrants and Refugees in Colombia. J. Migr. Health 2023, 7, 100187. [Google Scholar] [CrossRef]
- de Lima, M.M.; Rodrigues, G.A.; de Lima, M.R. Evaluation of Emerging Infectious Disease and the Importance of SINAN for Epidemiological Surveillance of Venezuelans Immigrants in Brazil. Braz. J. Infect. Dis. 2019, 23, 307–312. [Google Scholar] [CrossRef]
- Dias, S.; Gama, A.; Martins, M.O. Health Status and Preventative Behaviors of Immigrants by Gender and Origin: A Portuguese Cross-Sectional Study. Nurs. Health Sci. 2013, 15, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, S.; Kharel, M.; Koto-Shimada, K.; Hashimoto, M.; Kiyohara, H.; Iwamoto, A.; Nishihara, M.; Fujita, M. Access to Health-Related Information, Health Services, and Welfare Services among South and Southeast Asian Immigrants in Japan: A Qualitative Study. Int. J. Environ. Res. Public Health 2022, 19, 12234. [Google Scholar] [CrossRef] [PubMed]
- Chaves-González, D.; Amaral, J.; Mora, M.J. Socioeconomic Integration of Venezuelan Migrants and Refugees: The Cases of Brazil, Chile, Colombia, Ecuador, and Peru. Washington, DC and Panama City: Migration Policy Institute and International Organization for Migration. 2021. Available online: https://www.r4v.info/sites/default/files/2021-07/mpi-iom_socioeconomic-integration-venezuelans_2021_final.pdf (accessed on 7 June 2024).
- Boschiero, M.N.; Palamim, C.V.C.; Ortega, M.M.; Mauch, R.M.; Marson, F.A.L. One Year of Coronavirus Disease 2019 (COVID-19) in Brazil: A Political and Social Overview. Ann. Glob. Health 2021, 87, 44. [Google Scholar] [CrossRef] [PubMed]
- Makuch, M.Y.; Osis, M.J.D.; Becerra, A.; Brasil, C.; de Amorim, H.S.F.; Bahamondes, L. Narratives of Experiences of Violence of Venezuelan Migrant Women Sheltered at the Northwestern Brazilian Border. PLoS ONE 2021, 16, e0260300. [Google Scholar] [CrossRef] [PubMed]
Manaus | Boa Vista | ||||||||
---|---|---|---|---|---|---|---|---|---|
Recruiter | Recruit | Recruiter | Recruit | ||||||
Age Group (Years) | Age Group (Years) | ||||||||
15–24 | 25–34 | 35+ | Total | 15–24 | 25–34 | 35+ | Total | ||
15 to24 | 34.6 | 33.0 | 32.3 | 100.0 | 15 to 24 | 38.0 | 35.1 | 26.9 | 100.0 |
25 to34 | 35.2 | 39.1 | 25.7 | 100.0 | 25 to 34 | 41.0 | 36.4 | 22.6 | 100.0 |
35+ | 40.2 | 32.0 | 27.9 | 100.0 | 35+ | 35.2 | 37.9 | 26.9 | 100.0 |
Total | 36.7 | 35.1 | 28.1 | 100.0 | Total | 38.2 | 36.4 | 25.4 | 100.0 |
p-value * | NS | p-value * | NS | ||||||
Educational level | Educational level | ||||||||
Elementary | High School | College | Total | Elementary | High School | College | Total | ||
Elementary | 17.4 | 59.1 | 23.5 | 100.0 | Elementary | 19.2 | 73.6 | 7.2 | 100.0 |
High school | 12.6 | 65.7 | 21.6 | 100.0 | High School | 18.5 | 70.8 | 10.8 | 100.0 |
College | 9.6 | 70.8 | 19.6 | 100.0 | College | 12.6 | 75.9 | 11.5 | 100.0 |
Total | 12.2 | 66.5 | 21.2 | 100.0 | Total | 17.9 | 71.8 | 10.3 | 100.0 |
p-value * | NS | p-value * | NS | ||||||
Migratory status | Migratory status | ||||||||
Asylum seeker | Resident 1 | Irregular | Total | Asylum seeker | Resident 1 | Irregular | Total | ||
Asylum seeker | 31.8 | 43.9 | 24.3 | 100.0 | Asylum seeker | 55.8 | 40.5 | 3.7 | 100.0 |
Resident 1 | 28.6 | 46.2 | 25.1 | 100.0 | Resident | 48.4 | 45.7 | 5.9 | 100.0 |
Irregular | 27.5 | 41.7 | 30.8 | 100.0 | Irregular | 43.3 | 37.7 | 19.0 | 100.0 |
Total | 29.4 | 44.7 | 26.0 | 100.0 | Total | 52.1 | 42.9 | 5.1 | 100.0 |
p-value * | NS | p-value * | <1% | ||||||
Use of health services in the last 15 days | Use of health services in the last 15 days | ||||||||
No | Yes | Total | No | Yes | Total | ||||
No | 70.3 | 29.7 | 100.0 | No | 67.6 | 32.4 | 100.0 | ||
Yes | 66.5 | 33.5 | 100.0 | Yes | 68.7 | 31.3 | 100.0 | ||
Total | 68.9 | 31.1 | 100.0 | Total | 68.0 | 32.0 | 100.0 | ||
p-value * | NS | p-value * | NS |
Manaus | Boa Vista | p-Value * | |||||
---|---|---|---|---|---|---|---|
Age Group | % | 95% CI | % | 95% CI | |||
LL | UL | LL | UL | ||||
15–24 | 36.7 | 32.8 | 40.6 | 38.2 | 34.7 | 41.6 | NS |
25–34 | 35.1 | 31.0 | 39.2 | 36.4 | 33.1 | 39.7 | |
35–49 | 28.1 | 24.6 | 31.6 | 25.4 | 22.4 | 28.4 | |
Educational level | % | 95% CI | % | 95% CI | <1% | ||
LL | UL | LL | UL | ||||
Elementary | 12.2 | 9.5 | 14.9 | 17.9 | 15.3 | 20.5 | |
High school | 66.5 | 62.8 | 70.2 | 71.8 | 68.6 | 74.9 | |
College | 21.2 | 18.0 | 24.4 | 10.3 | 8.1 | 12.5 | |
Pregnancy 1 | % | 95% CI | % | 95% CI | NS | ||
LL | UL | LL | UL | ||||
Yes | 5.6 | 4.1 | 7.7 | 6.4 | 4.9 | 8.4 | |
No | 94.4 | 92.3 | 95.9 | 93.6 | 92.5 | 95.1 | |
Self-Rated Health | % | 95% CI | % | 95% CI | <1% | ||
LL | UL | LL | UL | ||||
Good | 66.4 | 62.4 | 70.1 | 74.9 | 69.3 | 77.9 | |
Fair | 31.1 | 27.4 | 35.1 | 23.6 | 20.8 | 26.6 | |
Poor | 2.5 | 1.6 | 4.0 | 1.5 | 0.8 | 2.6 | |
Migratory Status | % | 95% CI | % | 95% CI | <1% | ||
LL | UL | LL | UL | ||||
Asylum seeker | 29.4 | 25.7 | 33.0 | 52.1 | 48.4 | 55.8 | |
Resident 2 | 44.7 | 40.6 | 48.7 | 42.9 | 39.2 | 46.6 | |
Irregular | 26.0 | 22.0 | 30.0 | 5.1 | 3.2 | 7.0 | |
Use of health services 2 | % | 95% CI | % | 95% CI | NS | ||
LL | UL | LL | UL | ||||
No | 68.9 | 65.2 | 72.6 | 68.0 | 64.6 | 71.3 | |
Yes | 31.1 | 27.5 | 34.7 | 32.0 | 28.7 | 35.3 |
Healthcare Needs | Prevalence (%) | |
---|---|---|
Manaus | Boa Vista | |
Main reasons for health service use | ||
Illness or ongoing treatment of a disease | 20.1 | 25.1 |
Prenatal care | 12.9 | 13.2 |
Vaccination | 19.5 | 15.2 |
Prevention, medical check-up or childcare | 22.5 | 17.6 |
Complementary diagnostic exams (blood, urine, imaging, etc.) | 8.0 | 7.6 |
Dental problem | 2.4 | 4.4 |
At least one chronic disease | 18.9 | 16.5 |
Fair/poor self-rated health | 33.6 | 25.1 |
Pregnant at the time of the survey | 5.6 | 6.4 |
Variables | Manaus | Boa Vista | ||
---|---|---|---|---|
Prevalence (%) | p-Value * | Prevalence (%) | p-Value * | |
Age group | ||||
15–24 | 27.1 | NS | 28.4 | NS |
25–34 | 34.0 | 29.8 | ||
35–49 | 31.1 | 33.7 | ||
Educational level | ||||
Elementary | 30.4 | 0.014 | 32.9 | NS |
High School | 27.5 | 29.0 | ||
College Education | 41.3 | 34.1 | ||
Pregnancy 1 | ||||
Yes | 67.4 | p < 1% | 45.0 | 0.020 |
No | 28.5 | 29.1 | ||
Self-Reported Health | ||||
Good | 27.1 | 0.021 | 27.6 | 0.019 |
Fair | 37.4 | 37.8 | ||
Poor | 42.1 | 42.1 | ||
Migratory Status | ||||
Asylum Seeker | 32.9 | NS | 30.0 | NS |
Resident 2 | 32.7 | 31.9 | ||
Irregular | 25.9 | 24.6 |
Manaus | ||||
---|---|---|---|---|
Model Variables | OR * | 95% CI | p-Value ** | |
LL | UL | |||
Age Group | NS | |||
15–24 | 0.85 | 0.58 | 1.26 | |
25+ | 1.00 | - | - | |
College Education | p < 1% | |||
Yes | 1.72 | 1.14 | 2.60 | |
No | 1.00 | - | - | |
Pregnancy 1 | p < 1% | |||
Yes | 5.57 | 2.57 | 12.04 | |
No | 1.00 | - | - | |
Self-Rated Health | 0.029 | |||
Fair/Poor | 1.52 | 1.04 | 2.20 | |
Good | 1.00 | - | - | |
Migratory Status | NS | |||
Irregular | 0.76 | 0.49 | 1.18 | |
Not irregular 2 | 1.00 | - | - | |
Boa Vista | ||||
Model Variables | OR* | 95% CI | p-value ** | |
LL | UL | |||
Age Group | NS | |||
15–24 | 0.90 | 0.64 | 1.25 | |
25+ | 1.00 | - | - | |
College Education | NS | |||
Yes | 1.20 | 0.73 | 1.97 | |
No | 1.00 | - | - | |
Pregnancy 1 | 0.018 | |||
Yes | 2.04 | 1.13 | 3.68 | |
No | 1.00 | - | - | |
Self-Rated Health | p < 1% | |||
Fair/Poor | 1.62 | 1.16 | 2.27 | |
Good | 1.00 | - | - | |
Migratory status | NS | |||
Irregular | 0.80 | 0.33 | 1.93 | |
Not irregular 2 | 1.00 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwarcwald, C.L.; de Souza Junior, P.R.B.; de Carvalho, T.D.G.; de Queiroz, R.S.B.; de Castilho, E.A.; Leal, M.d.C. Using Respondent-Driven Sampling (RDS) to Identify the Healthcare Needs among Women of Reproductive Age Who Migrated from Venezuela to Brazil, 2018–2021. Int. J. Environ. Res. Public Health 2024, 21, 811. https://doi.org/10.3390/ijerph21060811
Szwarcwald CL, de Souza Junior PRB, de Carvalho TDG, de Queiroz RSB, de Castilho EA, Leal MdC. Using Respondent-Driven Sampling (RDS) to Identify the Healthcare Needs among Women of Reproductive Age Who Migrated from Venezuela to Brazil, 2018–2021. International Journal of Environmental Research and Public Health. 2024; 21(6):811. https://doi.org/10.3390/ijerph21060811
Chicago/Turabian StyleSzwarcwald, Celia Landmann, Paulo Roberto Borges de Souza Junior, Thaiza Dutra Gomes de Carvalho, Rita Suely Bacuri de Queiroz, Euclides Ayres de Castilho, and Maria do Carmo Leal. 2024. "Using Respondent-Driven Sampling (RDS) to Identify the Healthcare Needs among Women of Reproductive Age Who Migrated from Venezuela to Brazil, 2018–2021" International Journal of Environmental Research and Public Health 21, no. 6: 811. https://doi.org/10.3390/ijerph21060811
APA StyleSzwarcwald, C. L., de Souza Junior, P. R. B., de Carvalho, T. D. G., de Queiroz, R. S. B., de Castilho, E. A., & Leal, M. d. C. (2024). Using Respondent-Driven Sampling (RDS) to Identify the Healthcare Needs among Women of Reproductive Age Who Migrated from Venezuela to Brazil, 2018–2021. International Journal of Environmental Research and Public Health, 21(6), 811. https://doi.org/10.3390/ijerph21060811