A Study Examining the Impact of County-Level Demographic, Socioeconomic, and Political Affiliation Characteristics on COVID-19 Vaccination Patterns in Indiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Variables of Interest
2.2.1. Demographic Variables
2.2.2. Socioeconomic and Political Variables
2.2.3. Geographic Variables
2.2.4. Summary of the Variables
2.3. Methodology
3. Results
4. Discussion
4.1. Impact of the Predictor Variables on Vaccine Uptake
Variable | January 2021 | February 2021 | March 2021 | April 2021 | May 2021 | June 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | |
Intercept | 4755.2 (1915.7) | 0.0151 | 21,167.1 (8998.2) | 0.02102 | 98,626.9 (37,812.1) | 0.010831 | 107,785.0 (40,205.2) | 0.00889 | 60,267 (7047) | <0.001 | 9017 (6478) | 0.167666 |
% Male | −28,948.4 (17,821.3) | 0.10809 | −37,228.6 (23,014.5) | 0.109634 | ||||||||
% Below Poverty | −16,359.5 (6151.9) | 0.00940 | −27,321.4 (8118.7) | 0.001171 | −29,446.0 (10,116.6) | 0.00465 | −27,442 (8760) | 0.002384 | −19,698 (9969) | 0.051491 | ||
% College Educated | 2390.6 (1132.1) | 0.0378 | 3516.7 (2433.0) | 0.15210 | 11,022.7 (3234.9) | 0.00102 | 15,729 (2988) | <0.001 | 16,476 (3578) | <0.001 | ||
% Republican | −42,423.7 (6170.2) | <0.001 | −47,448 (5254) | <0.001 | ||||||||
% Democratic | 2287.4 (1433.4) | 0.1144 | 12,718.6 (4532.4) | 0.00625 | 33,529.6 (5248.9) | <0.001 | 52,725 (5948) | <0.001 | ||||
% Other Party | ||||||||||||
% Non-Hispanic White | −61,787.2 (38,481.5) | 0.112246 | −57,210.2 (41,317.4) | 0.16996 | ||||||||
% Other Race | −11,037.3 (4553.3) | 0.01752 | −88,528.6 (39,481.6) | 0.027677 | −87,647.8 (42,282.8) | 0.04136 | −28,369 (5100) | <0.001 | −25,159 (5575) | <0.001 | ||
% Age 18–39 | −5296 (3447.1) | 0.1283 | −16,072.2 (9604.8) | 0.098116 | ||||||||
% Age 40–59 | 38,476.9 (20,369.8) | 0.06248 | 45,087 (18284) | 0.015703 | 76,473 (19,955) | 0.000246 | ||||||
% Age over 60 | −7226.2 (4994.3) | 0.1517 | ||||||||||
RUCC-Nonmetro/Nonrural | 208.0 (211.5) | 0.3281 | 840.7 (509.3) | 0.10255 | 1569.7 (647.7) | 0.017604 | 1330.1 (710.8) | 0.06492 | ||||
RUCC-Rural | 571.9 (248.2) | 0.0237 | 1379.0 (569.1) | 0.01756 | 1428.6 (705.6) | 0.046190 | 1467.4 (799.1) | 0.06998 | ||||
% Non-English | −2879.5 (1732.5) | 0.1003 | −10,141.6 (3598.6) | 0.00604 | −18,735.4 (4609.0) | 0.000111 | −18,898.6 (5850.8) | 0.00179 | ||||
% Unemployment | −11,807 (7201.9) | 0.1050 | −34,495.4 (21,695.9) | 0.115742 | −49,767.2 (24,267.1) | 0.04352 | −55,751 (21,883) | 0.012665 | −85,916 (25,315) | 0.001059 | ||
% Uninsured | −25,464 (6378) | <0.001 | −18,978 (7513) | 0.013439 | ||||||||
% Non-Internet | −2935.5 (2020.4) | 0.1501 | −10,338 (6964) | 0.141457 | ||||||||
% Disability | ||||||||||||
Model Adj. R2 value | 0.301 | 0.3079 | 0.5179 | 0.7241 | 0.8541 | 0.8675 | ||||||
Moran Test p-value | 0.5528 | 0.8612 | 0.6254 | 0.6002 | 0.8309 | 0.7104 | ||||||
Linear Model AIC | 1227.1 | 1385.88 | 1425.63 | 1441.52 | 1424.46 | 1438 | ||||||
SAR Model AIC | 1492 | 1648.7 | 1690.3 | 1706.3 | 1688.1 | 1702.5 | ||||||
CAR Model AIC | 1492.1 | 1648.9 | 1690.3 | 1706.3 | 1688.1 | 1702.5 |
Variable | July 2021 | August 2021 | September 2021 | October 2021 | November 2021 | December 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | |
Intercept | 8956 (6767) | 0.189307 | 7651 (7108) | 0.284849 | 7709 (7654) | 0.316772 | 8138 (7919) | 0.30708 | 8816 (8030) | 0.275409 | 13,298 (9217) | 0.152949 |
% Male | ||||||||||||
% Below Poverty | −18,996 (10,413) | 0.071711 | −17,785 (10,937) | 0.107723 | −16,986 (11,778) | 0.153011 | −16,538 (12,186) | 0.17843 | −17,139 (12,357) | 0.169154 | −25,956 (13,804) | 0.063665 |
% College Educated | 16,764 (3738) | <0.001 | 15,751 (3926) | 0.000131 | 13,921 (4227) | 0.001458 | 13,505 (4374) | 0.00274 | 14,048 (4435) | 0.002152 | 15,774 (5073) | 0.002589 |
% Republican | ||||||||||||
% Democratic | 53,015 (6212) | <0.001 | 56,044 (6525) | <0.001 | 58,386 (7027) | <0.001 | 57,832 (7270) | <0.001 | 57,507 (7372) | <0.001 | 59,651 (7642) | <0.001 |
% Other Party | ||||||||||||
% Non-Hispanic White | ||||||||||||
% Other Race | −22,265 (5824) | 0.000254 | −21,706 (6117) | 0.000640 | −22,109 (6587) | 0.001193 | −20,647 (6815) | 0.00326 | −19,536 (6910) | 0.005888 | −21,319 (7478) | 0.005531 |
% Age 18–39 | ||||||||||||
% Age 40–59 | 82,553 (20,844) | 0.000157 | 95,296 (21,893) | <0.001 | 106,544 (23,575) | <0.001 | 110,856 (24,393) | <0.001 | 112,017 (24,734) | <0.001 | 111,838 (26,320) | <0.001 |
% Age over 60 | −25,567 (17,192) | 0.140867 | ||||||||||
RUCC-Nonmetro/Nonrural | ||||||||||||
RUCC-Rural | ||||||||||||
% Non-English | ||||||||||||
% Unemployment | −90,428 (26,442) | 0.000974 | −100,227 (27,773) | 0.000525 | −114,616 (29,907) | 0.000246 | −115,929 (30,944) | 0.00033 | −118,990 (31,377) | 0.000282 | −125,459 (32,961) | 0.000273 |
% Uninsured | −18,884 (7848) | 0.018338 | −19,096 (8243) | 0.022986 | −22,220 (8876) | 0.014263 | −24,148 (9184) | 0.01019 | −25,635 (9312) | 0.007256 | −28,140 (10,330) | 0.007895 |
% Non-Internet | −12,175 (7274) | 0.097945 | −14,090 (7640) | 0.068725 | −14,150 (8227) | 0.089168 | −13,509 (8512) | 0.11633 | −12,884 (8632) | 0.139320 | −12,826 (9288) | 0.171080 |
% Disability | 24,251 (17,986) | 0.181308 | ||||||||||
Model Adj. R2 value | 0.8652 | 0.8622 | 0.8473 | 0.8385 | 0.8388 | 0.8454 | ||||||
Moran Test p-value | 0.5528 | 0.4870 | 0.3593 | 0.3678 | 0.3612 | 0.5293 | ||||||
Linear Model AIC | 1446.01 | 1455.05 | 1468.67 | 1474.94 | 1477.5 | 1484.85 | ||||||
SAR Model AIC | 1702.5 | 1720.1 | 1733.7 | 1740 | 1742.5 | 1749.8 | ||||||
CAR Model AIC | 1702.5 | 1720.1 | 1733.7 | 1740 | 1742.6 | 1749.8 |
4.2. Potential Methods to Improve Vaccine Uptake in the Future
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. COVID-19 Epidemiological Update—19 January 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update---19-january-2024 (accessed on 4 April 2024).
- Christie, A.; Henley, S.J.; Mattocks, L.; Fernando, R.; Lansky, A.; Ahmad, F.B.; Adjemian, J.; Anderson, R.N.; Binder, A.M.; Carey, K.; et al. Decreases in COVID-19 Cases, Emergency Department Visits, Hospital Admissions, and Deaths among Older Adults Following the Introduction of COVID-19 Vaccine—United States, 6 September 2020–1 May 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Agaku, I.T.; Adeoye, C.; Long, T.G. Geographic, Occupational, and Sociodemographic Variations in Uptake of COVID-19 Booster Doses among Fully Vaccinated US Adults, 1 December 2021, to 10 January 2022. JAMA Netw. Open 2022, 5, e2227680. [Google Scholar] [CrossRef] [PubMed]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Cuadros, D.F.; Moreno, C.M.; Musuka, G.; Miller, F.D.; Coule, P.; MacKinnon, N.J. Association Between Vaccination Coverage Disparity and the Dynamics of the COVID-19 Delta and Omicron Waves in the US. Front. Med. 2022, 9, 898101. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.; Astley, C.M.; Sewalk, K.; Delamater, P.L.; Cordiano, K.; Wronski, L.; Rivera, J.M.; Hallberg, K.; Pera, M.F.; Cantor, J.; et al. Spatial modeling of vaccine deserts as barriers to controlling SARS-CoV-2. Commun. Med. 2022, 2, 141. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Monnat, S.M. Rural-urban and within-rural differences in COVID-19 vaccination rates. J. Rural Health 2022, 38, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Mofleh, D.; Almohamad, M.; Osaghae, I.; Bempah, S.; Zhang, Q.; Tortolero, G.; Ebeidat, A.; Ramphul, R.; Sharma, S.V. Spatial Patterns of COVID-19 Vaccination Coverage by Social Vulnerability Index and Designated COVID-19 Vaccine Sites in Texas. Vaccines 2022, 10, 574. [Google Scholar] [CrossRef]
- Hernandez, I.; Dickson, S.; Tang, S.; Gabriel, N.; Berenbrok, L.A.; Guo, J. Disparities in distribution of COVID-19 vaccines across US counties: A geographic information system–based cross-sectional study. PLoS Med. 2022, 19, e1004069. [Google Scholar] [CrossRef]
- Mollalo, A.; Tatar, M. Spatial Modeling of COVID-19 Vaccine Hesitancy in the United States. Int. J. Environ. Res. Public Health 2021, 18, 9488. [Google Scholar] [CrossRef]
- Callender, R.; Canales, J.M.; Avendano, C.; Craft, E.; Ensor, K.B.; Miranda, M.L. Economic and mental health impacts of multiple adverse events: Hurricane Harvey, other flooding events, and the COVID-19 pandemic. Environ. Res. 2022, 214, 114020. [Google Scholar] [CrossRef]
- Miranda, M.L.; Callender, R.; Canales, J.M.; Craft, E.; Ensor, K.B.; Grossman, M.; Hopkins, L.; Johnston, J.; Shah, U.; Tootoo, J. The Texas flood registry: A flexible tool for environmental and public health practitioners and researchers. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Medcalfe, S.K.; Slade, C.P. Racial residential segregation and COVID-19 vaccine uptake: An analysis of Georgia USA county-level data. BMC Public Health 2023, 23, 1392. [Google Scholar] [CrossRef] [PubMed]
- Andraska, E.A.; Alabi, O.; Dorsey, C.; Erben, Y.; Velazquez, G.; Franco-Mesa, C.; Sachdev, U. Health care disparities during the COVID-19 pandemic. Semin. Vasc. Surg. 2021, 34, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.; Hart, L.H.; Katz, M.H. Racial and Ethnic Health Disparities Related to COVID-19. JAMA 2021, 325, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Alang, S.; Blackstock, O. Health Justice: A Framework for Mitigating the Impacts of HIV and COVID-19 on Disproportionately Affected Communities. Am. J. Public Health 2023, 113, 194–201. [Google Scholar] [CrossRef]
- Lowcock, E.C.; Rosella, L.C.; Foisy, J.; McGeer, A.; Crowcroft, N. The Social Determinants of Health and Pandemic H1N1 2009 Influenza Severity. Am. J. Public Health 2012, 102, e51–e58. [Google Scholar] [CrossRef]
- Mena, G.E.; Martinez, P.P.; Mahmud, A.S.; Marquet, P.A.; Buckee, C.O.; Santillana, M. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science 2021, 372, eabg5298. [Google Scholar] [CrossRef]
- El-Sadr, W.M.; Vasan, A.; El-Mohandes, A. Facing the New COVID-19 Reality. N. Engl. J. Med. 2023, 388, 385–387. [Google Scholar] [CrossRef]
- Bilal, U.; Mullachery, P.H.; Schnake-Mahl, A.; Rollins, H.; McCulley, E.; Kolker, J.; Barber, S.; Roux, A.V.D. Heterogeneity in Spatial Inequities in COVID-19 Vaccination Across 16 Large US Cities. Am. J. Epidemiol. 2022, 191, 1546–1556. [Google Scholar] [CrossRef]
- Lin, Q.; Paykin, S.; Halpern, D.; Martinez-Cardoso, A.; Kolak, M. Assessment of Structural Barriers and Racial Group Disparities of COVID-19 Mortality with Spatial Analysis. JAMA Netw. Open 2022, 5, e220984. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. CDC/ATSDR Social Vulnerability Index (CDC/ATSDR SVI): Overview. Available online: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html (accessed on 11 June 2024).
- Liu, R.; Li, G.M. Hesitancy in the time of coronavirus: Temporal, spatial, and sociodemographic variations in COVID-19 vaccine hesitancy. SSM—Popul. Health 2021, 15, 100896. [Google Scholar] [CrossRef] [PubMed]
- Momplaisir, F.M.; Kuter, B.J.; Ghadimi, F.; Browne, S.; Nkwihoreze, H.; Feemster, K.A.; Frank, I.; Faig, W.; Shen, A.K.; Offit, P.A.; et al. Racial/Ethnic Differences in COVID-19 Vaccine Hesitancy Among Health Care Workers in 2 Large Academic Hospitals. JAMA Netw. Open 2021, 4, e2121931. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Huang, Y. COVID-19 Vaccine Hesitancy: The Role of Socioeconomic Factors and Spatial Effects. Vaccines 2022, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Fridman, A.; Gershon, R.; Gneezy, A. COVID-19 and vaccine hesitancy: A longitudinal study. PLoS ONE 2021, 16, e0250123. [Google Scholar] [CrossRef] [PubMed]
- Grossman, G.; Kim, S.; Rexer, J.M.; Thirumurthy, H. Political partisanship influences behavioral responses to governors’ recommendations for COVID-19 prevention in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 24144–24153. [Google Scholar] [CrossRef] [PubMed]
- Neelon, B.; Mutiso, F.; Mueller, N.T.; Pearce, J.L.; Benjamin-Neelon, S.E. Associations between Governor Political Affiliation and COVID-19 Cases, Deaths, and Testing in the US. Am. J. Prev. Med. 2021, 61, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Cutter, S.L. Spatial-temporal differences of COVID-19 vaccinations in the US. Urban Inform. 2022, 1, 19. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, L.Y.; Franz, B. A meta-analysis of COVID-19 vaccine attitudes and demographic characteristics in the United States. Public Health 2022, 207, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.L.; Ferranti, J.; Strauss, B.; Neelon, B.; Califf, R.M. Geographic Health Information Systems: A Platform to Support The ‘Triple Aim’. Health Aff. 2013, 32, 1608–1615. [Google Scholar] [CrossRef]
- Franch-Pardo, I.; Napoletano, B.M.; Rosete-Verges, F.; Billa, L. Spatial analysis and GIS in the study of COVID-19. A review. Sci. Total Environ. 2020, 739, 140033. [Google Scholar] [CrossRef]
- Mollalo, A.; Mohammadi, A.; Mavaddati, S.; Kiani, B. Spatial Analysis of COVID-19 Vaccination: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 12024. [Google Scholar] [CrossRef] [PubMed]
- Seto, E.; Min, E.; Ingram, C.; Cummings, B.J.; Farquhar, S.A.; Cummings, B.J. Community-Level Factors Associated with COVID-19 Cases and Testing Equity in King County, Washington. Int. J. Environ. Res. Public Health 2020, 17, 9516. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.F.; Wadhera, R.K.; Lee, D.; Yeh, R.W.; Sommers, B.D. Community-Level Factors Associated with Racial And Ethnic Disparities In COVID-19 Rates In Massachusetts. Health Aff. 2020, 39, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Lieberman-Cribbin, W.; Tuminello, S.; Flores, R.M.; Taioli, E. Disparities in COVID-19 Testing and Positivity in New York City. Am. J. Prev. Med. 2020, 59, 326–332. [Google Scholar] [CrossRef]
- Juhn, Y.J.; Wheeler, P.; Wi, C.; Bublitz, J.; Ryu, E.; Ristagno, E.H.; Patten, C. Role of Geographic Risk Factors in COVID-19 Epidemiology: Longitudinal Geospatial Analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 916–927. [Google Scholar] [CrossRef]
- Cuadros, D.F.; Miller, F.D.; Awad, S.; Coule, P.; MacKinnon, N.J. Analysis of Vaccination Rates and New COVID-19 Infections by US County, July–August 2021. JAMA Netw. Open 2022, 5, e2147915. [Google Scholar] [CrossRef]
- Indiana State Department of Health. COVID-19 County-Wide Test, Case, and Death Trends; Indiana State Department of Health: Indianapolis, IN, USA, 2022. [Google Scholar]
- U.S. Census Bureau. 2016–2020 American Community Survey 5-Year Estimates; U.S. Census Bureau: Suitland, MD, USA, 2022. [Google Scholar]
- Indiana Elections Results. 2020. Available online: https://enr.indianavoters.in.gov/archive/2020General/index.html (accessed on 1 July 2022).
- Sung, B. A spatial analysis of the effect of neighborhood contexts on cumulative number of confirmed cases of COVID-19 in U.S. Counties through 20 October 2020. Prev. Med. 2021, 147, 106457. [Google Scholar] [CrossRef]
- Williams, A.M.; Clayton, H.B.; Singleton, J.A. Racial and Ethnic Disparities in COVID-19 Vaccination Coverage: The Contribution of Socioeconomic and Demographic Factors. Am. J. Prev. Med. 2022, 62, 473–482. [Google Scholar] [CrossRef]
- Ehlert, A. The socio-economic determinants of COVID-19: A spatial analysis of German county level data. Socio-Econ. Plan. Sci. 2021, 78, 101083. [Google Scholar] [CrossRef]
- Andersen, L.M.; Harden, S.R.; Sugg, M.M.; Runkle, J.D.; Lundquist, T.E. Analyzing the spatial determinants of local Covid-19 transmission in the United States. Sci. Total Environ. 2021, 754, 142396. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Economic Research Service. Rural-Urban Commuting Codes. Available online: https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/documentation/ (accessed on 11 April 2024).
- Saelee, R.; Zell, E.; Murthy, B.P.; Castro-Roman, P.; Fast, H.; Meng, L.; Shaw, L.; Gibbs-Scharf, L.; Chorba, T.; Harris, L.Q.; et al. Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties—United States, 14 December 2020–31 January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 335–340. [Google Scholar] [CrossRef]
- Guo, Y.; Kaniuka, A.R.; Gao, J.; Sims, O.T. An Epidemiologic Analysis of Associations between County-Level Per Capita Income, Unemployment Rate, and COVID-19 Vaccination Rates in the United States. Int. J. Environ. Res. Public Health 2022, 19, 1755. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, V.; Facchini, A.; Riccaboni, M. COVID-19 vaccination and unemployment risk: Lessons from the Italian crisis. Sci. Rep. 2021, 11, 18538. [Google Scholar] [CrossRef]
- Donadio, G.; Choudhary, M.; Lindemer, E.; Pawlowski, C.; Soundararajan, V. Counties with Lower Insurance Coverage and Housing Problems Are Associated with Both Slower Vaccine Rollout and Higher COVID-19 Incidence. Vaccines 2021, 9, 973. [Google Scholar] [CrossRef]
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef]
- Njoku, A.; Joseph, M.; Felix, R. Changing the Narrative: Structural Barriers and Racial and Ethnic Inequities in COVID-19 Vaccination. Int. J. Environ. Res. Public Health 2021, 18, 9904. [Google Scholar] [CrossRef]
- Keegan, G.; Zhu, M.; Paz, M.; Kang, H.; Patel, A.; Baig, A.A. Neighborhood-level factors associated with COVID-19 vaccination rates: A case study in Chicago. BMC Public Health 2024, 24, 889. [Google Scholar] [CrossRef]
- Brown, C.C.; Young, S.G.; Pro, G.C. COVID-19 vaccination rates vary by community vulnerability: A county-level analysis. Vaccine 2021, 39, 4245–4249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, Y.Y.; Wu, B. Racial/Ethnic Disparities in Getting COVID-19 Vaccine: Do Age, Gender, and Education Matter? Health Equity 2022, 6, 500–507. [Google Scholar] [CrossRef]
- Kim, D. Associations of race/ethnicity and socioeconomic factors with vaccination among US adults during the COVID-19 pandemic, January to March 2021. Prev. Med. Rep. 2023, 31, 102021. [Google Scholar] [CrossRef]
- Ye, X. Exploring the relationship between political partisanship and COVID-19 vaccination rate. J. Public Health 2023, 45, 91–98. [Google Scholar] [CrossRef]
- Albrecht, D. Vaccination, politics and COVID-19 impacts. BMC Public Health 2022, 22, 96. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, W.B.; Saw, H.; Goldman, D.P. Political polarization in US residents’ COVID-19 risk perceptions, policy preferences, and protective behaviors. J. Risk Uncertain. 2020, 61, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Bayati, M.; Noroozi, R.; Ghanbari-Jahromi, M.; Jalali, F.S. Inequality in the distribution of COVID-19 vaccine: A systematic review. Int. J. Equity Health 2022, 21, 122. [Google Scholar] [CrossRef] [PubMed]
- Jean-Jacques, M.; Bauchner, H. Vaccine Distribution—Equity Left Behind? JAMA J. Am. Med. Assoc. 2021, 325, 829–830. [Google Scholar] [CrossRef]
- Michaels, I.H.; Pirani, S.J.; Carrascal, A. Disparities in Internet Access and COVID-19 Vaccination in New York City. Prev. Chronic Dis. 2021, 18, E83. [Google Scholar] [CrossRef]
RUCC | Original Description | Reclassification |
---|---|---|
1 | Metro: Counties in metro areas of 1 million population or more | Metro |
2 | Metro: Counties in metro areas of 250,000 to 1 million population | Metro |
3 | Metro: Counties in metro areas of fewer than 250,000 population | Metro |
4 | Non-Metro: Urban population of 20,000 or more, adjacent to a metro area | Nonmetro/Nonrural |
5 | Non-Metro: Urban population of 20,000 or more, not adjacent to a metro area | Rural |
6 | Non-Metro: Urban population of 5000 to 20,000, adjacent to a metro area | Nonmetro/Nonrural |
7 | Non-Metro: Urban population of 5000 to 20,000, not adjacent to a metro area | Rural |
8 | Rural: Urban population of fewer than 5000, adjacent to a metro area | Rural |
9 | Rural: Urban population of fewer than 5000, not adjacent to a metro area | Rural |
Variable | Mean | SD |
---|---|---|
COVID Vaccinations per 100,000 | 46,516/100,000 | 7686 |
% Non-Hispanic White | 0.8975 | 0.0794 |
% Other Race | 0.0827 | 0.0750 |
18–39 | 0.2663 | 0.0376 |
40–59 | 0.2604 | 0.0189 |
Above 60 | 0.2448 | 0.0285 |
% College Educated | 0.2817 | 0.1226 |
% Republican | 0.6796 | 0.0962 |
% Democratic | 0.2880 | 0.0965 |
% Other Party | 0.0324 | 0.0124 |
% Non-English Speakers | 0.0557 | 0.0590 |
% Unemployed | 0.0425 | 0.0128 |
% Uninsured | 0.0817 | 0.0479 |
% Non-Internet | 0.1890 | 0.0545 |
% Disability | 0.1533 | 0.0290 |
% Below Poverty | 0.1218 | 0.0386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pangan, G.; Woodard, V. A Study Examining the Impact of County-Level Demographic, Socioeconomic, and Political Affiliation Characteristics on COVID-19 Vaccination Patterns in Indiana. Int. J. Environ. Res. Public Health 2024, 21, 892. https://doi.org/10.3390/ijerph21070892
Pangan G, Woodard V. A Study Examining the Impact of County-Level Demographic, Socioeconomic, and Political Affiliation Characteristics on COVID-19 Vaccination Patterns in Indiana. International Journal of Environmental Research and Public Health. 2024; 21(7):892. https://doi.org/10.3390/ijerph21070892
Chicago/Turabian StylePangan, Giuseppe, and Victoria Woodard. 2024. "A Study Examining the Impact of County-Level Demographic, Socioeconomic, and Political Affiliation Characteristics on COVID-19 Vaccination Patterns in Indiana" International Journal of Environmental Research and Public Health 21, no. 7: 892. https://doi.org/10.3390/ijerph21070892
APA StylePangan, G., & Woodard, V. (2024). A Study Examining the Impact of County-Level Demographic, Socioeconomic, and Political Affiliation Characteristics on COVID-19 Vaccination Patterns in Indiana. International Journal of Environmental Research and Public Health, 21(7), 892. https://doi.org/10.3390/ijerph21070892