Diarrhoeagenic Escherichia coli and Salmonella spp. Contamination of Food and Water Consumed by Children with Diarrhoea in Maputo, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Population
2.2. Interviews with Caregivers
2.3. Food and Water Samples Collected from Households
2.4. Bacteriological Analysis of Food and Water Samples
2.4.1. Detection of Salmonella spp., Shigella spp., and E. coli
2.4.2. MALDI-TOF MS Confirmation of Bacterial Isolates
2.4.3. DNA Extraction and Diarrhoeagenic Escherichia coli PCR
2.5. Data Analysis
3. Results
3.1. The Sociodemographic Characteristics of the Caregivers and Children under Five Years Old
3.2. The Caregiver’s Perception of the Cause of Diarrhoea in Children under Five Years Old
3.3. One-Week Food Consumption Recall for Children under Five with Diarrhoea
3.4. Prevalence of Foodborne Pathogens in Food and Water Samples
3.5. Prevalence of Diarrhoeagenic E. coli in Food and Water Samples
3.6. Associated Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Children: Improving Survival and Well-Being. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality (accessed on 12 February 2020).
- Havelaar, A.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef]
- Grace, D. Food safety in low and middle income countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef]
- Bick, S.; Perieres, L.; D’Mello-Guyett, L.; Baker, K.K.; Brown, J.; Muneme, B.; Nala, R.; Dreibelbis, R.; Cumming, O. Risk factors for child food contamination in low-income neighbourhoods of Maputo, Mozambique: An exploratory, cross-sectional study. Matern. Child Nutr. 2020, 16, e12991. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Abugo, D.G.; Angong, J.; Lamwaka, N.G.; Gallandat, K.; Hassan, J.L.; Deng, L.; Save, D.; Braun, L.; Gose, M.; et al. Risk factors for food contamination among children discharged from community management of acute malnutrition programmes in South Sudan: A cross-sectional study and hazard analysis critical control point approach. Matern. Child Nutr. 2024, 20, e13612. [Google Scholar] [CrossRef]
- UN. In Mozambique, More than 500,000 People Suffered Illnesses Caused by Consuming Unsafe Food. 2019. Available online: https://news.un.org/pt/story/2019/06/1675251 (accessed on 27 April 2020).
- Chissaque, A.; de Deus, N.; Vubil, D.; Mandomando, I. The Epidemiology of Diarrhea in Children under 5 Years of Age in Mozambique. Curr. Trop. Med. Rep. 2018, 5, 115–124. [Google Scholar] [CrossRef]
- Machava, N.E.; Mulaudzi, F.M.; Salvador, E.M. Household Factors of Foodborne Diarrhea in Children under Five in Two Districts of Maputo, Mozambique. Int. J. Environ. Res. Public Health 2022, 19, 15600. [Google Scholar] [CrossRef] [PubMed]
- Dall, C. Study Finds Highly Resistant Diarrheal Pathogens in Mozambique. 2023. Available online: https://www.cidrap.umn.edu/antimicrobial-stewardship/study-finds-highly-resistant-diarrheal-pathogens-mozambique#:~:text=An%20analysis%20of%20stool%20samples,week%20in%20BMC%20Infectious%20Diseases (accessed on 18 November 2023).
- Andrews, J.R.; Yu, A.T.; Saha, S.; Shakya, J.; Aiemjoy, K.; Horng, L.; Qamar, F.; Garrett, D.; Baker, S.; Saha, S.; et al. Environmental surveillance as a tool for identifying high-risk settings for typhoid transmission. Clin. Infect. Dis. 2020, 71, S71–S78. [Google Scholar] [CrossRef] [PubMed]
- FDA. Bacteriological Analytical Manual Online: Escherichia coli and the Coliform Bacteria [Internet]. 2001. Available online: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (accessed on 12 November 2020).
- MISAU. Manual de Microbiologia Alimentar; Ministry of Health: Maputo, Mozambique, 1997; pp. 37–38. [Google Scholar]
- Rychert, J. Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J Infect. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. Epi InfoTM for Windows: Version 7.2.5.0. 2021. Available online: https://www.cdc.gov/epiinfo/support/downloads.html (accessed on 15 July 2023).
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D. Package ‘MASS’; Springer: New York, NY, USA, 2024; pp. 1–162. [Google Scholar]
- Saha, J.; Mondal, S.; Chouhan, P.; Hussain, M.; Yang, J.; Bibi, A. Occurrence of Diarrheal Disease among Under-Five Children and Associated Sociodemographic and Household Environmental Factors: An Investigation Based on National Family Health Survey-4 in Rural India. Children 2022, 9, 658. [Google Scholar] [CrossRef]
- INE. Estatísticas do Distrito de Ka Maxaqueni; National Institute of Statistics: Maputo, Mozambique, 2013; pp. 1–32. [Google Scholar]
- Desta, B.K.; Assimamaw, N.T.; Ashenafi, T.D. Knowledge, Practice, and Associated Factors of Home-Based Management of Diarrhea among Caregivers of Children Attending Under-Five Clinic in Fagita Lekoma District, Awi Zone, Amhara Regional State, Northwest Ethiopia, 2016. Nurs. Res. Pract. 2017, 2017, 8084548. [Google Scholar] [CrossRef]
- Rich, K.M.; Schaefer, K.A.; Thapa, B.; Hagerman, A.D.; Shear, H.E. An Overview of Meat Processing in Africa. Nairobi, Kenya. 2022, pp. 1–11. Available online: https://ebrary.ifpri.org/digital/collection/p15738coll2/id/136413/ (accessed on 18 July 2024).
- Faife, S.L.; Zimba, T.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Simonsen, G.S.; Sundsfjord, A.; Essack, S.Y. β-lactam and fluoroquinolone resistance in Enterobacteriaceae from imported and locally-produced chicken in Mozambique. J. Infect. Dev. Ctries 2020, 14, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-Tenório, A.; Silva, N.B.; Rodrigues, V.; Cadavez, V.; Gonzales-Barron, U. Prevalence of pathogens in poultry meat: A meta-analysis of European published surveys. Foods 2018, 7, 69. [Google Scholar] [CrossRef]
- Bakare, A.A.; Uchendu, O.C.; Omotayo, O.E.; King, C. Feeding Practices and Nutritional Status of Under-Five Children in a Peri-Urban Setting in Ibadan, Southwest Nigeria: A Comparative Cross-Sectional Study. Ann. Ib. Postgrad Med. 2023, 21, 50–62. [Google Scholar] [PubMed]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef] [PubMed]
- Jongen, W.M.F. Improving the Safety of Fresh Fruit and Vegetables; Woodhead publishing in food science and technology; CRC Press: Cambridge, UK, 2005; p. 639. [Google Scholar]
- Salamandane, A.; Vila-Boa, F.; Malfeito-Ferreira, M.; Brito, L. High fecal contamination and high levels of antibiotic-resistant enterobacteriaceae in water consumed in the city of Maputo, Mozambique. Biology 2021, 10, 558. [Google Scholar] [CrossRef]
- Khabo-Mmekoa, C.M.; Genthe, B.; Momba, M.N. Enteric Pathogens Risk Factors Associated with Household Drinking Water: A Case Study in Ugu District Kwa-Zulu Natal Province, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 4431. [Google Scholar] [CrossRef]
- Potgieter, N.; Obi, C.L.; Bessong, P.O.; Igumbor, E.O.; Samie, A.; Nengobela, R. Bacterial contamination of Vhuswa—A local weaning food and stored drinking-water in impoverished households in the Venda region of South Africa. J. Health Popul. Nutr. 2005, 23, 150–155. [Google Scholar]
- Podolak, R.; Enache, E.; Stone, W.; Black, D.G.; Elliott, P.H. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. J. Food Prot. 2010, 73, 1919–1936. [Google Scholar] [CrossRef] [PubMed]
- Dong, F. Urban-rural divide in foodborne illness in China: What can we learn from the socioeconomic factors? J. Glob. Health Rep. 2020, 4, e2020077. [Google Scholar] [CrossRef]
- Parvez, S.M.; Kwong, L.; Rahman, M.J.; Ercumen, A.; Pickering, A.J.; Ghosh, P.K.; Rahman, M.Z.; Das, K.K.; Luby, S.P.; Unicomb, L. Escherichia coli contamination of child complementary foods and association with domestic hygiene in rural Bangladesh. Trop. Med. Int. Health 2017, 22, 547–557. [Google Scholar] [CrossRef]
- Ekici, G.; Dumen, E. Escherichia coli and Food Safety. In The Universe of Escherichia coli; IntechOpen: Rijeka, Croatia, 2019; pp. 1–16. [Google Scholar]
- López-Mendoza, M.C.; Lozano, M.; García-Romero, E.; Ruiz-García, P.; Gormaz, M.; Jordano, R.; Medina, L.M.; Ramón-Beltrán, A.; Silvestre, D. Growth of Escherichia coli in Human Milk and Powdered Infant Formula under Various Treatments and Feeding Conditions in Neonatal Units. Appl Sci. 2023, 13, 8978. [Google Scholar] [CrossRef]
- Momtaz, H.; Dehkordi, F.S.; Rahimi, E.; Asgarifar, A. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran. BMC Public Health 2013, 13, 556. [Google Scholar] [CrossRef] [PubMed]
- Hamad, A.A.; Sharaf, M.; Hamza, M.A.; Selim, S.; Hetta, H.F.; El-Kazzaz, W. Investigation of the Bacterial Contamination and Antibiotic Susceptibility Profile of Bacteria Isolated from Bottled Drinking Water. Microbiol Spectr. 2022, 10, e0151621. [Google Scholar] [CrossRef] [PubMed]
Collected Samples | Sampling Site | |
---|---|---|
Urban Area No (%) | Rural Area No (%) | |
Cereal | 57 (21.3) | 36 (13.5) |
Combined food | 30 (11.2) | 24 (9.0) |
Milk and milk product | 8 (3.0) | 3 (1.1) |
Vegetable (cooked) | 5 (1.9) | 2 (0.7) |
Other food (fish and fruit puree) | 2 (0.7) | 0 |
Water | 42 (15.7) | 58 (21.7) |
Diarrheagenic Pathogen | Steps for Strain Identification | Media | References |
---|---|---|---|
Salmonella spp./Shigella spp. | Pre-enrichment | BPW and mTSB broth | [10,11] |
Enrichment | |||
Strain identification | XLD agar, HE agar, MAC agar, TSI agar, and MIO | ||
Escherichia coli | Enrichment | BPW | [12,13] |
Strins identification | MAC agar, TSI agar, and MIO |
Variable | Category | Urban Area (n = 102) | Rural Area (n = 84) | p-Value for X2 |
---|---|---|---|---|
n (%) | n (%) | |||
Child gender | Female | 42 (41.2) | 43 (51.2) | 0.22 |
Male | 60 (58.8) | 41 (48.8) | ||
Caregiver gender | Female | 97 (95.1) | 78 (92.9) | 0.74 |
Male | 5 (4.9) | 6 (7.1) | ||
Child age (months) | ≤6 months | 11 (10.8) | 22 (26.2) | 0.02 |
7 to 24 months | 60 (58.8) | 39 (46.4) | ||
>24 months | 31 (30.4) | 22 (26.2) | ||
Not disclosed | 0 | 1 (1.2) | ||
Caregiver (age years) | 18 to 25 years | 50 (49.0) | 42 (50) | 0.94 |
26 to 35 years | 33 (32.4) | 31 (36.9) | ||
>35 years | 10 (9.8) | 9 (10.7) | ||
Not disclosed | 9 (8.8) | 2 (2.4) | ||
Marital status | Single but lives with someone | 75 (73.5) | 67 (79.8) | 0.26 |
Single and living alone | 10 (9.8) | 3 (3.5) | ||
Married | 17 (16.7) | 13 (15.5) | ||
Widow | 0 | 1 (1.2) | ||
Relation to the child | Mother | 91 (89.2) | 76 (90.5) | 0.42 |
Father | 5 (4.9) | 6 (7.1) | ||
Grandmother/Parents | 6 (5.9) | 2 (2.4) | ||
Monthly income (USA Dollar) | 0 to 70.00 $ | 6 (5.9) | 7 (8.3) | 0.85 |
71.00–140.00$ | 9 (8.8) | 8 (9.5) | ||
>140.00$ | 2 (2.0) | 2 (2.4) | ||
Don’t know the income | 34 (33.3) | 24 (28.6) | ||
Not disclosed | 51 (50.0) | 43 (51.2) | ||
Water source | Home pipe water | 101 (99.0) | 68 (81.0) | <0.05 |
Public/community wells | 0 | 12 (14.3) | ||
Not disclosed | 1 (0.5) | 4 (4.8) | ||
Water treatment | Boiling | 11 (10.8) | 7 (8.3) | 0.37 |
Other treatment methods | 1 (1.0) | 1 (1.2) | ||
Not disclosed | 90 (88.2) | 76 (90.5) | ||
Toilet system | Pit latrine with covering slab | 28 (27.5) | 12 (14.3) | <0.05 |
Pit latrine without covering slab | 3 (2.9) | 13 (15.5) | ||
Flush or pour toilet with septic tank, including squat toilet | 58 (56.9) | 27 (32.1) | ||
Flush or pour toilet connected to sewer pipe | 1 (1.0) | 19 (22.6) | ||
Other toilet system | 0 | 3 (3.6) | ||
Not disclosed | 12 (11.8) | 10 (11.9) |
Variable | Categories | Urban Area (102) | Rural Area (84) | p-Value for X2 |
---|---|---|---|---|
n (%) | n (%) | |||
Cause of diarrhoea in children under five years old | Vegetables | 2 (2.0) | 5 (6.0) | <0.05 |
Cereals | 2 (2.0) | 3 (3.6) | ||
Cookies/cake/popcorn | 3 (2.9) | 5 (6.0) | ||
Fruit/Juice | 3 (2.9) | 9 (10.7) | ||
Other food (peanut and fish) | 1 (1.0) | 1 (1.2) | ||
Food not specified | 4 (4.0) | 2 (2.4) | ||
Dentition | 6 (5.9) | 14 (16.7) | ||
Weaning/Infant formula | 5 (4.9) | 15 (17.9) | ||
Water | 2 (2.9) | 2 (2.4) | ||
Other causes | 2 (2.0) | 3 (3.5) | ||
Don’t know the reason | 53 (52.0) | 21 (25.0) | ||
Not disclosed | 19 (18.6) | 4 (4.8) |
Variables | Categories | Urban Area (n = 102) | Rural Area (n = 84) | p-Value for X2 | ||
---|---|---|---|---|---|---|
Consumed n (%) | Not Consumed n (%) | Consumed n (%) | Not Consumed n (%) | |||
Source of animal protein | Beef | 23 (22.5) | 78 (76.5) | 64 (76.2) | 19 (22.6) | <0.05 |
Pork | 11 (10.8) | 90 (88.2) | 45 (53.6) | 38 (45.2) | <0.05 | |
Lamb | 1 (1.0) | 100 (98.0) | 3 (3.6) | 80 (95.2) | 0.48 | |
Goat | 3 (2.9) | 98 (96.1) | 27 (32.1) | 56 (66.7) | <0.05 | |
Chicken | 37 (36.3) | 64 (62.7) | 76 (90.5) | 7 (8.3) | <0.05 | |
Egg | 23 (22.5) | 78 (76.5) | 64 (76.2) | 19 (22.6) | <0.05 | |
Not disclosed | 1 (1.0) | 1 (1.2) | N/A | |||
Fish | 30 (29.4) | 72 (70.6) | 69 (82.1) | 15 (17.9) | <0.05 | |
Other sources of animal protein | Milk (pasteurised) | 13 (12.7) | 88 (86.3) | 11 (13.1) | 72 (85.7) | 1.00 |
Yoghurt | 6 (5.9) | 95 (93.1) | 25 (29.8) | 58 (6.9.0) | <0.05 | |
Cheese | 3 (2.9) | 98 (96.1) | 0 | 83 (98.8) | 0.32 | |
Not disclosed | 1 (1.0) | 1 (1.2) | N/A | |||
Vegetables | Lettuce | 6 (5.9) | 40 (39.2) | 9 (10.7) | 13 (15.5) | <0.05 |
Cassava leaves | 12 (11.8) | 34 (33.3) | 10 (11.9) | 12 (14.3) | 0.19 | |
Pumpkin leaves | 8 (7.8) | 38 (37.2) | 7 (8.3) | 15 (17.9) | 0.30 | |
Cowpea leaves | 13 (12.7) | 33 (32.4) | 12 (14.3) | 10 (11.9) | 0.10 | |
Green cabbage | 38 (37.3) | 8 (7.8) | 16 (19.0) | 6 (7.1) | 0.53 | |
Sweet potato leaves | 6 (5.9) | 40 (39.2) | 3 (3.6) | 19 (22.6) | 1.00 | |
Cacana | 0 | 46 (45.1) | 7 (8.3) | 15 (17.9) | <0.05 | |
Other vegetables | 8 (7.8) | 38 (37.3) | 5 (6.0) | 17 (20.2) | 0.85 | |
Not disclosed | 56 (54.9) | 62 (73.8) | N/A | |||
Fruits | Fruits | 0 | 0 | 6 (7.1) | 0 | N/A |
Not disclosed | 102 (100.0) | 78 (92.9) | ||||
Food consumed by children <2 years | Milk breastfeeding | 25 (24.5) | 77 (75.4) | 19 (22.6) | 65 (77.4) | 0.90 |
Infant formula | 15 (14.7) | 87 (85.3) | 6 (7.1) | 78 (92.9) | 0.16 | |
Fermented cereals | 22 (21.6) | 80 (78.4) | 28 (33.3) | 56 (66.7) | 0.10 | |
Ready-to-eat meals | 7 (6.9) | 95 (93.1) | 8 (9.5) | 76 (90.5) | 0.69 | |
Fruit puree | 12 (11.8) | 90 (88.2) | 11 (13.1) | 73 (87.0) | 0.96 | |
Biscuits/rusks/cookies | 34 (33.3) | 68 (66.7) | 20 (23.8) | 64 (76.2) | 0.21 | |
Fruit/vegetable/juices | 28 (27.5) | 69 (67.6) | 20 (23.8) | 63 (75.0) | 0.58 | |
Not disclosed | 5 (4.9) | 1 (1.2) | N/A | |||
Baby bottle | 22 (21.6) | 53 (52.0) | 25 (29.8) | 50 (59.5) | 0.72 | |
Not disclosed | 27 (26.5) | 9 (10.7) | N/A | |||
Bottled water | 22 (21.6) | 79 (77.5) | 23 (27.4) | 61 (72.6) | 0.48 | |
Not disclosed | 1 (1.0) | 0 | N/A | |||
Boiled water | 1 (1.0) | 91 (89.2) | 5 (6.0) | 71 (84.5) | 0.14 | |
Not disclosed | 10 (9.8) | 8 (9.5) | N/A | |||
Water not boiled | 31 (30.4) | 61 (59.8) | 26 (31.0) | 50 (59.5) | 1.00 | |
Not disclosed | 10 (9.8) | 8 (9.5) | N/A |
Samples | Total number of isolates No (%) | Urban Area (n = 144) | Rural Area (n = 123) | ||
---|---|---|---|---|---|
DEC | Salmonella spp. | DEC | Salmonella spp. | ||
No (%) | No (%) | No (%) | No (%) | ||
Cereal | 9 (6.7) | 4 (2.8) | 1 (0.7) | 3 (2.4) | 1 (0.8) |
Combined food | 3 (2.4) | ND | ND | 3 (2.4) | ND |
Milk and Milk Products | 1 (0.7) | 1 (0.7) | ND | ND | ND |
Vegetable (cooked) | ND | ND | ND | ND | ND |
Other food (fish and fruit puree) | ND | ND | ND | ND | ND |
Water | 7 (5.4) | 2 (1.4) | 1 (0.7) | 4 (3.3) | ND |
Total | 20 (15.2) | 7 (4.9) | 2 (1.4) | 10 (8.1) | 1 (0.8) |
Samples | Number of Isolates No (%) | Urban Area (n = 144) | Rural Area (n = 123) | ||||
---|---|---|---|---|---|---|---|
ETEC No (%) | EPEC No (%) | EIEC No (%) | ETEC No (%) | EPEC No (%) | EIEC No (%) | ||
Cereal | 7 (5.2) | 4 (2.8) | ND | ND | 2 (1.6) | ND | 1 (0.8) |
Combined food | 3 (2.4) | ND | ND | ND | 3 (2.4) | ND | ND |
Yoghurt | 1 (0.7) | 1 (0.7) | ND | ND | ND | ND | ND |
Vegetable (cooked) | ND | ND | ND | ND | ND | ND | ND |
Other food (fish and fruit puree) | ND | ND | ND | ND | ND | ND | ND |
Water | 6 (4.7) | 1 (0.7) | 1 (0.7) | ND | 4 (3.3) | ND | ND |
Total | 17 (13.0) | 6 (4.2) | 1 (0.7) | 0 | 9 (7.3) | 0 | 1 (0.8) |
Variable Group | Category | B (SE) | 95% CI for Odds Ratio | ||
---|---|---|---|---|---|
Lower | Odds Ratio | Upper | |||
Diarrheagenic E. coli | |||||
18 to 25 years | −3.15 (0.45) | ||||
Caregiver age | 26 to 35 years | −0.51 (0.67) | 0.14 | 0.60 | 2.07 |
>35 years | −0.42 (0.90) | 0.83 | 0.66 | 3.28 | |
Food consumed by children < 2 years | Fruit puree | 1.50 (0.61) * | 1.31 | 4.50 | 14.70 |
Infant formula | 1.33 (0.68) * | 0.91 | 3.81 | 13.90 | |
Milk breastfeeding | −1.44 (0.08) | 0.01 | 0.24 | 1.32 | |
Ready-to-eat meal | 1.17 (0.68) | 0.77 | 3.24 | 11.80 | |
Salmonella spp. | |||||
Intercept | −4.60 (1.16) *** | ||||
Caregiver age | 26 to 35 years | −17.9 (>100) | N/A | <0.01 | >100 |
Source of animal protein | Pork | −0.77 (1.43) | 0.02 | 0.46 | 7.01 |
Food consumed by children < 2 years | Baby bottle | −0.03 (1.40) | 0.13 | 0.97 | 14.5 |
Bottled water | 0.02 (1.32) | 0.04 | 1.02 | 12.6 | |
Ready-to-eat meal | 3.20 (1.31) * | 2.03 | 24.6 | >100 | |
Kamakeni (Urban area) | |||||
Caregiver age | 18 to 25 years | −3.32 (0.69) *** | |||
26 to 35 years | −1.04 (1.36) | 0.01 | 0.3 | 3.71 | |
>35 years | 0.09 (1.31) | 0.04 | 1.09 | 11.5 | |
Food consumed by children < 2 years | Bottled water | −18.67 (>100) | NA | <0.01 | >100 |
Infant formula | 2.24 (1.08) * | 0.04 | 9.38 | 83.4 | |
Ready-to-eat meal | 2.03 (1.04) * | 0.84 | 7.64 | 60.7 | |
Marracuene (Rural area) | |||||
Male | −3.84 (1.41) ** | ||||
Caregiver gender | Female | −1.16 (1.33) | 0.02 | 0.31 | 7.58 |
Food consumed by children < 2 years | Bottled water | 3.04 (1.22) * | 2.79 | 20.80 | >100 |
Baby bottle | −0.45 (1.21) | 0.03 | 0.64 | 5.78 | |
Fruit puree | 2.18 (0.87)* | 1.65 | 0.80 | 56.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faife, S.; Macuamule, C.; Gichure, J.; Hald, T.; Buys, E. Diarrhoeagenic Escherichia coli and Salmonella spp. Contamination of Food and Water Consumed by Children with Diarrhoea in Maputo, Mozambique. Int. J. Environ. Res. Public Health 2024, 21, 1122. https://doi.org/10.3390/ijerph21091122
Faife S, Macuamule C, Gichure J, Hald T, Buys E. Diarrhoeagenic Escherichia coli and Salmonella spp. Contamination of Food and Water Consumed by Children with Diarrhoea in Maputo, Mozambique. International Journal of Environmental Research and Public Health. 2024; 21(9):1122. https://doi.org/10.3390/ijerph21091122
Chicago/Turabian StyleFaife, Sara, Custódia Macuamule, Josphat Gichure, Tine Hald, and Elna Buys. 2024. "Diarrhoeagenic Escherichia coli and Salmonella spp. Contamination of Food and Water Consumed by Children with Diarrhoea in Maputo, Mozambique" International Journal of Environmental Research and Public Health 21, no. 9: 1122. https://doi.org/10.3390/ijerph21091122
APA StyleFaife, S., Macuamule, C., Gichure, J., Hald, T., & Buys, E. (2024). Diarrhoeagenic Escherichia coli and Salmonella spp. Contamination of Food and Water Consumed by Children with Diarrhoea in Maputo, Mozambique. International Journal of Environmental Research and Public Health, 21(9), 1122. https://doi.org/10.3390/ijerph21091122