Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Collection
2.2. Bacterial Isolation and Confirmation with PCR
2.3. Antimicrobial Susceptibility Testing
3. Results and Discussion
Discussion
4. Conclusions
Acknowledgments
References and Notes
- Bodey, GP; Bolivar, R; Fainstein, V; Jadeja, L. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis 2008, 5, 279–313. [Google Scholar]
- Kato, K; Iwai, S; Kumasaka, K; Horikoshi, A; Inada, S; Inamatsu, T; Ono, Y; Nishiya, H; Hanatani, Y; Narita, T; Sekino, H; Hayashi, I. Survey of antibiotic resistance in Pseudomonas aeruginosa by the Tokyo Johoku Association of Pseudomonas Studies. J. Infect. Chemother 2001, 7, 258–262. [Google Scholar]
- Aeschlimann, J. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Pharmacotherapy 2003, 23, 916–924. [Google Scholar]
- Lister, PD; Wolter, DJ; Hanson, ND. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev 2009, 22, 582–610. [Google Scholar]
- Strateva, T; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial resistance. J. Med. Microbiol 2009, 58, 1133–1148. [Google Scholar]
- Gales, AC; Jones, RN; Turnidge, J; Rennie, R; Ramphal, R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis 2001, 32, S146–S155. [Google Scholar]
- Carmeli, Y; Troillet, N; Karchmer, AW; Samore, MH. Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch. Intern. Med 1999, 159, 1127–1132. [Google Scholar]
- Zichichi, L; Asta, G; Noto, G. Pseudomonas aeruginosa folliculitis after shower/bath exposure. Int. J. Dermatol 2000, 39, 270–273. [Google Scholar]
- Berrouane, YF; McNutt, LA; Buschelman, BJ; Rhomberg, PR; Sanford, MD; Hollis, RJ; Pfaller, MA; Herwaldt, LA. Outbreak of severe Pseudomonas aeruginosa infections caused by a contaminated drain in a whirlpool bathtub. Clin. Infect. Dis 2000, 31, 1331–1337. [Google Scholar]
- Sakurai-Komada, N; Hirano, M; Nagata, I; Ejima, Y; Nakamura, M; Koike, KA. Risk of transmission of imipenem-resistant Pseudomonas aeruginosa through use of mobile bathing service. Environ. Health Prev. Med 2006, 11, 31–37. [Google Scholar]
- Reuter, S; Sigge, A; Wiedeck, H; Trautmann, M. Analysis of transmission pathways of Pseudomonas aeruginosa between patients and tap water outlets. Crit. Care Med 2002, 30, 2222–2228. [Google Scholar]
- Blondel-Hill, E; Henry, DA; Speert, DP. Pseudomonas. In Manual of Clinical Microbiology, 9th ed; Murray, PR, Baron, EJ, Jorgensen, JH, Landry, ML, Pfaller, MA, Eds.; ASM Press: Washington, DC, USA, 2007; pp. 734–748. [Google Scholar]
- Dulabon, LM; LaSpina, M; Riddell, SW; Kiska, DL; Cynamon, M. Pseudomonas aeruginosa acute prostatitis and urosepsis after sexual relations in a hot tub. J. Clin. Microbiol 2009, 47, 1607–1608. [Google Scholar]
- Muraca, P; Stout, JE; Yu, VL. Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system. Appl. Environ. Microbiol 1987, 53, 447–453. [Google Scholar]
- Price, D; Ahearn, DG. Incidence and persistence of Pseudomonas aeruginosa in whirlpools. J. Clin. Microbiol 1988, 26, 1650–1654. [Google Scholar]
- Clark, CF; Smith, PG. The survival of Pseudomonas aeruginosa during bromination in a model whirlpool spa. Lett. Appl. Microbiol 1992, 14, 10–12. [Google Scholar]
- Aloush, V; Navon-Venezia, S; Seigman-Igra, Y; Cabili, S; Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob. Agents Chemother 2006, 50, 43–48. [Google Scholar]
- Gasink, LB; Fishman, NO; Weiner, MG; Nachamkin, I; Bilker, WB; Lautenbach, E. Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. Am J Med 2006, 119, 526e19–526e25. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environmental Federation. Standard Methods for the Examination of Water and Wastewater, 18th ed; American Public Health Association: New York, NY, USA, 1992; Section 9213,; pp. 9–31. [Google Scholar]
- Reasoner, DJ; Geldreich, EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol 1985, 49, 1–7. [Google Scholar]
- Lee, J; Lee, CS; Hugunin, KM; Maute, CJ; Dysko, RC. Bacteria in drinking water supply and their fate in gastrointestinal tracts of germ-free mice: a phylogenetic comparison study. Water Res 2010, 44, 5050–5058. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; eighteenth informational supplement (document M100-S18); The Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- NSPF Pool and Spa Operator Handbook; National Swimming Pool Foundation: Colorado Springs, CO, USA, 2007.
- LeChevallier, MW; Cawthon, CD; Lee, RG; Lechevallier, MW; Cawthon, CD; Lee, RG. Factors promoting survival of bacteria in chlorinated water supplies. Appl. Environ. Microbiol 1988, 54, 649–654. [Google Scholar]
- Morrison, AJ; Wenzel, RP. Epidemiology of infections due to Pseudomonas aeruginosa. Rev. Infect. Dis 1984, 6, S627–S642. [Google Scholar]
- Pollack, M. Pseudomonas aeruginosa. In Principles and Practices of Infectious Diseases; Mandell, GL, Dolan, R, Bennett, JE, Eds.; Churchill Livingstone: New York, NY, USA, 1995; pp. 1820–2003. [Google Scholar]
- Rogues, AM; Boulestreau, H; Lashéras, A; Boyer, A; Gruson, D; Merle, C; Castaing, Y; Bébear, CM; Gachie, JP. Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit. J. Hosp. Infect 2007, 67, 72–78. [Google Scholar]
- Hoiby, N; Pers, C; Johansen, HK; Hansen, H. Excretion of beta-lactam antibiotics in sweat—A neglected mechanism for development of antibiotic resistance? Antimicrob. Agents Chemother 2000, 44, 2855–2857. [Google Scholar]
- Ye, Z; Weinberg, HS; Meyer, MT. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal. Chem 2007, 79, 1135–1144. [Google Scholar]
- Murray, GE; Tobin, RS; Junkins, B; Kushner, DJ. Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria. Appl. Environ. Microbiol 1984, 48, 73–77. [Google Scholar]
Location | Pool/Spa Size (m3) | Approximate Bather Load (per day) | Average Water Temperature (°C) | Average Free Chlorine (mg/L) | Average Total Chlorine (mg/L) | Turbidity (NTU) | P. aeruginosa-positive (%) Water (n) | P. aeruginosa-positive (%) Swab (n) |
---|---|---|---|---|---|---|---|---|
Hot tub–Residential | ∼1.80 | ∼1 | Not Available | Not Available | Not Available | Not Available | 100% (6/6) | 100% (4/4) |
Hot tub–Public 1 | 8,593 | 60 | 39.1 | 6.2 | 6.8 | 0.1 | 0% (0/4) | 0% (0/5) |
Hot tub–Public 2 | 14,237 | 50 | 38.9 | >10 | >10 | 0.2 | 0% (0/4) | 75% (6/8) |
Swimming Pool 1 | 2,130,187 | 50 | 29.4 | 6.2 | 8.4 | 0.3 | 0% (0/4) | 25% (1/4) |
Swimming Pool 2 | 3,758,770 | 220 | 26.2 | 7.0 | 9.3 | 0.1 | 0% (0/4) | 25% (1/4) |
Swimming Pool 3 | 927,009 | 120 | 28.7 | 6.5 | >10 | 0.3 | 25% (1/4) | 0% (0/4) |
Swimming Pool 4 | 590,997 | 110 | 27.4 | 7.8 | >10 | 0.4 | 0% (0/4) | 0% (0/4) |
Swimming Pool 5 | 24,383 | 65 | 29.4 | 6.9 | >10 | 0.2 | 0% (0/4) | 25% (1/4) |
Swimming Pool 6 | Not Available | Not Available | 26.7 | 5.1 | 5.5 | 0.4 | 0% (0/8) | 0% (0/8) |
Swimming Pool 7 | Not Available | Not Available | 28.6 | 9.8 | >10 | 0.1 | 0% (0/4) | 0% (0/4) |
Swimming Pool 8 | Not Available | Not Available | 32.4 | >10 | >10 | 0.1 | 0% (0/4) | 33% (3/9) |
Additional antimicrobial agents tested | ||
---|---|---|
Antimicrobial | Class | % Resistant |
Ampicillin | Penicillin | 74 |
Ampicillin/sulbactam | Beta-Lactam/B-Lactamase Inhibitor | 74 |
Cefazolin | Cephem (cephalosporin) | 96 |
Cefotetan | Cephem (cephalosporin) | 74 |
Cefoxitin | Cephem (cephalosporin) | 78 |
Cefpodoxime | Cephem (cephalosporin) | 30 |
Cefuroxime | Cephem (cephalosporin) | 74 |
Nitrofurantoin | Nitrofurantoin | 96 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lutz, J.K.; Lee, J. Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs. Int. J. Environ. Res. Public Health 2011, 8, 554-564. https://doi.org/10.3390/ijerph8020554
Lutz JK, Lee J. Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs. International Journal of Environmental Research and Public Health. 2011; 8(2):554-564. https://doi.org/10.3390/ijerph8020554
Chicago/Turabian StyleLutz, Jonathan K., and Jiyoung Lee. 2011. "Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs" International Journal of Environmental Research and Public Health 8, no. 2: 554-564. https://doi.org/10.3390/ijerph8020554
APA StyleLutz, J. K., & Lee, J. (2011). Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs. International Journal of Environmental Research and Public Health, 8(2), 554-564. https://doi.org/10.3390/ijerph8020554