Antiglycation Effect of Jabuticaba (Plinia cauliflora) and Its Potential Role in Delaying Cataract Formation in Streptozotocin-Induced Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. In Vitro Antiglycation Assay
2.3. Extraction and Bioassay-Guided Fractionation of Jabuticaba Juice Powder
2.4. Identification of Active Compounds
2.5. Animal Study
2.6. Grading the Opacity of Lens
2.7. Statistical Analysis
3. Results
3.1. In Vitro Antiglycation Effect of Jabuticaba
3.2. Screening of Optimal Extraction Solvent through Antiglycation Activity
3.3. Identification of Active Substance in Jabuticaba
3.4. Effect of Jabuticaba Juice Extract on Diabetic Cataractogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bourne, R.R.A.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of Vision Loss Worldwide, 1990–2010: A Systematic Analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef]
- Fang, R.; Yu, Y.-F.; Li, E.-J.; Lv, N.-X.; Liu, Z.-C.; Zhou, H.-G.; Song, X.-D. Global, regional, national burden and gender disparity of cataract: Findings from the global burden of disease study 2019. BMC Public Health 2022, 22, 2068. [Google Scholar] [CrossRef]
- Becker, C.; Schneider, C.; Aballéa, S.; Bailey, C.; Bourne, R.; Jick, S.; Meier, C. Cataract in patients with diabetes mellitus—Incidence rates in the UK and risk factors. Eye 2018, 32, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.F.; Mahar, P.S.; Memon, M.S.; Mumtaz, S.N.; Shaikh, S.A.; Fahim, M.F. Age-related cataract and its types in patients with and without type 2 diabetes mellitus: A Hospital-based comparative study. J. Pak. Med. Assoc. 2016, 66, 1272–1276. [Google Scholar] [PubMed]
- Zhang, J.H.; Ramke, J.; Lee, C.N.; Gordon, I.; Safi, S.; Lingham, G.; Evans, J.R.; Keel, S. A Systematic Review of Clinical Practice Guidelines for Cataract: Evidence to Support the Development of the WHO Package of Eye Care Interventions. Vision 2022, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Pescosolido, N.; Barbato, A.; Giannotti, R.; Komaiha, C.; Lenarduzzi, F. Age-Related Changes in the Kinetics of Human Lenses: Prevention of the Cataract. Int. J. Ophthalmol. 2016, 9, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Beswick, H.T.; Hardingt, J.J. Conformational Changes Induced in Lens α-and γ-Crystallins by Modification with Glucose 6-Phosphate Implications for Cataract. Biochem. J. 1987, 246, 761–769. [Google Scholar] [CrossRef]
- Luthra, M.; Balasubramanian, D. Nonenzymatic Glycation Alters Protein Structure and Stability. A Study of Two Eye Lens Crystallins. J. Biol. Chem. 1993, 268, 18119–18127. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Reddy, P.Y.; Kumar, P.A.; Surolia, I.; Reddy, G.B. Effect of Dicarbonyl-Induced Browning on Alpha-Crystallin Chaperone-like Activity: Physiological Significance and Caveats of in Vitro Aggregation Assays. Biochem. J. 2004, 379, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Wuerth, J.-P.; Cartwright, K.; Bain, R.P.; Dippe, S.; Hershon, K.; Mooradian, A.D.; Spinowitz, B.S. Design and Baseline Characteristics for the Aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control. Clin. Trials 1999, 20, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Borg, D.J.; Forbes, J.M. Targeting Advanced Glycation with Pharmaceutical Agents: Where Are We Now? Glycoconj. J. 2016, 33, 653–670. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P.; Aryal, P.; Darkwah, E.K. Advanced Glycation End Products in Health and Disease. Microorganisms 2022, 10, 1848. [Google Scholar] [CrossRef] [PubMed]
- Love, K.; Paull, R.E. Jaboticaba. In Fruits and Nuts; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2011; pp. 1–6. [Google Scholar]
- Fernandes, I.d.A.A.; Maciel, G.M.; Maroldi, W.V.; Bortolini, D.G.; Pedro, A.C.; Haminiuk, C.W.I. Bioactive Compounds, Health-Promotion Properties and Technological Applications of Jabuticaba: A Literature Overview. Meas. Food 2022, 8, 100057. [Google Scholar] [CrossRef]
- Geraldi, M.V.; Betim Cazarin, C.B.; Cristianini, M.; Vasques, A.C.J.; Geloneze, B.; Maróstica Júnior, M.R. Jabuticaba Juice Improves Postprandial Glucagon-like Peptide-1 and Antioxidant Status in Healthy Adults: A Randomised Crossover Trial. Br. J. Nutr. 2022, 128, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Djeujo, F.M.; Francesconi, V.; Gonella, M.; Ragazzi, E.; Tonelli, M.; Froldi, G. Anti-α-Glucosidase and Antiglycation Activities of α-Mangostin and New Xanthenone Derivatives: Enzymatic Kinetics and Mechanistic Insights through In Vitro Studies. Molecules 2022, 27, 547. [Google Scholar] [CrossRef] [PubMed]
- Hori, M.; Yagi, M.; Nomoto, K.; Ichijo, R.; Shimode, A.; Kitano, T.; Yonei, Y. Experimental Models for Advanced Glycation End Product Formation Using Albumin, Collagen, Elastin, Keratin and Proteoglycan. Anti Aging Med. 2012, 9, 125–134. [Google Scholar]
- Grzegorczyk-Karolak, I.; Gołab, K.; Gburek, J.; Wysokińska, H.; Matkowski, A. Inhibition of Advanced Glycation End-Product Formation and Antioxidant Activity by Extracts and Polyphenols from Scutellaria alpina L. and S. altissima L. Molecules 2016, 21, 739. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Sugawa, H.; Shirakawa, J.-I.; Ohno, R.-I.; Kinoshita, S.; Ichimaru, K.; Arakawa, S.; Nagai, M.; Kabata, K.; Nagai, R. Aphanothece sacrum (Sur.) Okada Prevents Cataractogenesis in Type 1 Diabetic Mice. J. Nutr. Sci. Vitaminol. 2017, 63, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Nagai, R.; Nagai, M.; Shimasaki, S.; Baynes, J.W.; Fujiwara, Y. Citric Acid Inhibits Development of Cataracts, Proteinuria and Ketosis in Streptozotocin (Type 1) Diabetic Rats. Biochem. Biophys. Res. Commun. 2010, 393, 118–122. [Google Scholar] [CrossRef]
- Xu, M.; Zha, Z.-J.; Qin, X.-L.; Zhang, X.-L.; Yang, C.-R.; Zhang, Y.-J. Phenolic Antioxidants from the Whole Plant of Phyllanthus urinaria. Chem. Biodivers. 2007, 4, 2246–2252. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.L.R.; de Oliveira, L.L.; Freitas, V.V.; Leite Júnior, B.R.dC.; Nascimento, A.L.A.A.; Castro, G.A.D.; Fernandes, S.A.; Stringheta, P.C. Digestive Enzymes Inhibition, Antioxidant and Antiglycation Activities of Phenolic Compounds from Jabuticaba (Plinia cauliflora) Peel. Food. Biosci. 2022, 50, 102195. [Google Scholar] [CrossRef]
- Umadevi, S.; Gopi, V.; Vellaichamy, E. Inhibitory Effect of Gallic Acid on Advanced Glycation End Products Induced Up-Regulation of Inflammatory Cytokines and Matrix Proteins in H9C2 (2-1) Cells. Cardiovasc. Toxicol. 2013, 13, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, S.; Gopi, V.; Elangovan, V. Regulatory Mechanism of Gallic Acid against Advanced Glycation End Products Induced Cardiac Remodeling in Experimental Rats. Chem. Biol. Interact. 2014, 208, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Tsai, S.J.; Huang, C.S.; Yin, M.C. Antiglycative Effects of Protocatechuic Acid in the Kidneys of Diabetic Mice. J. Agric. Food Chem. 2011, 59, 5117–5124. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S.; Thilavech, T.; Sompong, W.; Pasukamonset, P. Interaction between Ascorbic Acid and Gallic Acid in a Model of Fructose-Mediated Protein Glycation and Oxidation. Electron. J. Biotechnol. 2017, 27, 32–36. [Google Scholar] [CrossRef]
- Huang, X.; Xu, M.; Shirahata, T.; Li, W.; Koike, K.; Kojima-Yuasa, A.; Yuasa, I.; Kobayashi, Y. Anti-Steatosis Compounds from Leaves of Mallotus furetianus. Nat. Prod. Res. 2018, 32, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. Polyphenols with Antiglycation Activity and Mechanisms of Action: A Review of Recent Findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Taglizucchi, D.; Martini, S.; Conte, A. Protocatechuic and 3,4-Dihydroxyphenylacetic Acids Inhibit Protein Glycation by Binding Lysine through a Metal-Catalyzed Oxidative Mechanism. J. Agric. Food Chem. 2019, 67, 7821–7831. [Google Scholar] [CrossRef] [PubMed]
- Raman, T.; Ramar, M.; Arumugam, M.; Nabavi, S.M.; Varsha, M.K.N.S. Cytoprotective Mechanism of Action of Curcumin against Cataract. Pharmacol. Rep. 2016, 68, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayana, P.; Saraswat, M.; Mrudula, T.; Krishna, T.P.; Krishnaswamy, K.; Reddy, G.B. Curcumin and Turmeric Delay Streptozotocin-Induced Diabetic Cataract in Rats. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Sugawa, H.; Nanri, T.; Ohno, R.; Shirakawa, J.; Sato, H.; Katsuta, N.; Sakake, S.; Nagai, R. Trapa bispinosa Roxb. and Lutein Ameliorate Cataract in Type 1 Diabetic Rats. J. Clin. Biochem. Nutr. 2020, 66, 8–14. [Google Scholar] [CrossRef]
- Jansirani; Anathanaryanan, P.H. A Comparative Study of Lens Protein Glycation in Various Forms of Cataract. Indian J. Clin. Biochem. 2004, 19, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Moemen, L.A.; Mahmoud, A.M.; Mostafa, A.M.; Ghaleb, F.; Aziz, M.A.; Abdelhamid, M.A.; Farrag, M.Y.; Fahmy, I.A. The Relation Between Advanced Glycation End Products and Cataractogensis in Diabetics. World J. Med. Sci. 2014, 10, 368–374. [Google Scholar] [CrossRef]
- Tarwadi, K.V.; Agte, V.V.; Kelkar, A.R. Influence of Selected Micronutrients on Glycation of Human Lens Proteins: Implications in Diabetic Cataract. Acta Scient. Ophthalmol. 2018, 1, 4–10. [Google Scholar]
- Katta, A.V.; Suryakar, A.N.; Katkam, R.V.; Shaikh, A.; Ghodake, S.R. Glycation of Lens Crystalline Protein in the Pathogenesis of Various Forms of Cataract. Biomed. Res. 2009, 2, 119–121. [Google Scholar]
- Kubo, E. Aging of the Crystalline Lens from the Viewpoint of Anti-Glycation and Anti-Oxidation. Glycative Stress Res. 2020, 2, 283–286. [Google Scholar] [CrossRef]
- Hashim, Z.; Zarina, S. Advanced Glycation End Products in Diabetic and Non-Diabetic Human Subjects Suffering from Cataract. AGE 2011, 33, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Chung, S.K.; Chung, S.S. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. USA 1995, 7, 2780–2784. [Google Scholar] [CrossRef]
- Oishi, N.; Morikubo, S.; Takamura, Y.; Kubo, E.; Tsuzuki, S.; Tanimoto, T.; Akagi, Y. Correlation between Adult Diabetic Cataracts and Red Blood Cell Aldose Reductase Levels. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2061–2064. [Google Scholar] [CrossRef] [PubMed]
- Rahul, P.; Akalpita, A. Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microb. Pathog. 2021, 15, 104589. [Google Scholar]
- Dongen, K.; Linkens, A.; Wetzels, S.; Wouters, K.; Vanmierlo, T.; Waarenburg, M.; Scheijen, J.; Vos, W.; Belzer, C.; Schalkwijk, C. Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Res. Int. 2021, 147, 110547. [Google Scholar] [CrossRef] [PubMed]
- Filho, P.S.L.; Baseggio, A.M.; Vuolo, M.M.; Reguengo, L.M.; Biasoto, A.C.T.; Correa, L.C.; Junior, S.B.; Cagnon, V.H.A.; Cazarin, C.B.B.; Júnior, M.R.M. Gut microbiota modulation by jabuticaba peel and its effect on glucose metabolism via inflammatory signaling. Curr. Res. Food Sci. 2022, 5, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
Extraction Solvent | IC50 Value (μg/mL) for Antiglycation | Yield (%) 1 |
60% EtOH | 230 | 47.0 |
50% EtOH | 394 | 63.3 |
40% EtOH | 436 | 80.5 |
Fraction | Precursor Ions (m/z [M-H]−) | Product Ions m/z | Compound Identification | Antiglycation (IC50 μg/mL) |
---|---|---|---|---|
Fraction-2 | 169 | 125, 79 | Gallic acid | 24.7 |
Fraction-4 | 153 | 108, 91, 65, 53 | Protocatechuic acid | 1.22 |
Fraction-5 | 771 | 726, 632, 613, 301, 275 | Repandinin B | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridwan, A.Y.; Shimozu, Y.; Narang, N.; Kometani, T.; Yamashita, Y.; Kim, Y.-I. Antiglycation Effect of Jabuticaba (Plinia cauliflora) and Its Potential Role in Delaying Cataract Formation in Streptozotocin-Induced Diabetic Rats. Nutraceuticals 2024, 4, 363-372. https://doi.org/10.3390/nutraceuticals4030021
Ridwan AY, Shimozu Y, Narang N, Kometani T, Yamashita Y, Kim Y-I. Antiglycation Effect of Jabuticaba (Plinia cauliflora) and Its Potential Role in Delaying Cataract Formation in Streptozotocin-Induced Diabetic Rats. Nutraceuticals. 2024; 4(3):363-372. https://doi.org/10.3390/nutraceuticals4030021
Chicago/Turabian StyleRidwan, Arif Yanuar, Yuki Shimozu, Nikesh Narang, Takashi Kometani, Yusuke Yamashita, and Young-Il Kim. 2024. "Antiglycation Effect of Jabuticaba (Plinia cauliflora) and Its Potential Role in Delaying Cataract Formation in Streptozotocin-Induced Diabetic Rats" Nutraceuticals 4, no. 3: 363-372. https://doi.org/10.3390/nutraceuticals4030021
APA StyleRidwan, A. Y., Shimozu, Y., Narang, N., Kometani, T., Yamashita, Y., & Kim, Y. -I. (2024). Antiglycation Effect of Jabuticaba (Plinia cauliflora) and Its Potential Role in Delaying Cataract Formation in Streptozotocin-Induced Diabetic Rats. Nutraceuticals, 4(3), 363-372. https://doi.org/10.3390/nutraceuticals4030021