Seaweed as a Safe Nutraceutical Food: How to Increase Human Welfare?
Abstract
:1. Introduction
2. Seaweeds as a Possible Nutraceutical Food Source
2.1. A Good Source of Nutrients?
2.2. A Danger to Human Welfare?
3. Seaweed as Food: Regulations
How the Regulations Can Make the Seaweed Secure, Reducing the Risks to Human Health
4. Seaweed as a Future Secure Food
4.1. Seaweed Aquaculture
4.2. Seaweed Storage
4.3. Seaweed Commercial Products
4.4. Guidelines for Food Safety in Industry
4.4.1. Good Manufacturing Practices (GMPs)
- Ensure food safety: The fundamental goal of GMPs is to ensure food product safety. GMPs ensure that food items are free of contamination, adulteration, and other potentially dangerous chemicals [100].
- Meeting regulatory requirements: GMP implementation is a legal obligation in several countries. Companies that do not follow GMPs face legal action, penalties, and closure [100].
- Improving brand reputation: Companies that use GMPs are seen as responsible and dependable. This boosts the company’s reputation and consumer trust [100].
- Improving efficiency: Using GMPs may help businesses improve efficiency by decreasing waste, minimizing downtime, and increasing overall output [100].
- Improving product quality: Good Manufacturing Practices (GMPs) guarantee that food items are of high quality and fulfill customer expectations. This can boost consumer happiness and loyalty [100].
4.4.2. HACCPs
4.4.3. ISO 22000
5. Seaweed Food’s Real Potential: How Can Be Checked?
5.1. Chemical and Biochemical Techniques: New Approaches
5.1.1. Classical Techniques
5.1.2. New Technological Approaches
UV/VIS Spectroscopy
FTIR-ATR
NIRS
E-Nose
E-Eye
E-Tongue
Hyperspectral Imaging
X-ray Fluorescence
5.2. Bioavailability
5.2.1. Seaweed Bioavailability Analysis
Seaweed Proteins
Seaweed Polysaccharides
Seaweed Lipids
Seaweed Minerals
6. Future Road into Seaweed Food Safety and Nutraceutical Potential
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
% | Percentage |
Ag-NPs | Silver nanoparticles |
AnPs | Ascophyllum nodosum |
AOAC | Association of Official Analytical Chemists |
BP-NN | Back-propagation neural networks |
Ca | Calcium |
Cl | Chloride |
Co | Cobalt |
CO2 | Carbon dioxide |
Cu | Copper |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
E401 | Sodium alginate |
E407a | Transformed Eucheuma algae |
EAAs | Essential amino acids |
EC | Commission Regulation |
EC | Electrochemical |
EDXRF | Energy-dispersive X-ray fluorescence |
ELISA | Enzyme-linked immunosorbent assay |
EPA | Environmental Protection Agency |
EU | European Union |
FA | Fatty acids |
FAO | Food and Agriculture Organization of the United Nations |
Fe | Iron |
FSMS | Food Safety Management System |
FTIR-ATR | Fourier-transform infrared spectroscopy |
GC-MS | Gas chromatography-mass spectrometer |
GMP | Good Manufacturing Practices |
HACCP | Hazard Analysis Critical Control Point |
HIS | Hue, saturation, intensity |
HLS | High-level structure |
HPLC | High-performance liquid chromatography |
HSB | Hue, saturation, brightness |
HSI | Hyperspectral imaging |
HSL | Hue, saturation, lightness |
HSV | Hue, saturation, value |
I | Iodine |
ICP | Inductively coupled plasma |
ICP-MS/ICP-OES | Inductively coupled plasma mass/spectroscopy inductively coupled plasma atomic emission spectroscopy |
INFOGEST | COST INFOGEST network standardized protocol for human digestion assay |
K | Potassium |
LC-DAD-ESI-MS/MS | Liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry |
Mg | Magnesium |
Mn | Manganese |
Mo | Molybdenum |
MS | Mass spectrometry |
MUFAs | Monounsaturated fatty acids |
Na | Sodium |
NEAAs | Non-essential amino acids |
NIRS | Near-infrared spectroscopy |
P | Phosphorus |
PCR | Polymerase chain reaction |
PDO | Protected designation of origin |
pH | Potential of hydrogen |
PHPs | Pyropia haitanensis |
PUFAs | Polyunsaturated fatty acids |
RGB | Red–green–blue |
S | Sulfur |
SCFAs | Short-chain fatty acids |
Se | Selenium |
SFAs | Saturated fatty acids |
TVC | Total viable count |
UV-Vis | Absorption spectroscopy in ultraviolet and visible |
VOCs | Volatile organic compounds |
WHO | World Health Organization |
WWII | World War II |
XRF | X-ray fluorescence spectroscopy |
Zn | Zinc |
μ-XRF | Micro X-ray fluorescence spectroscopy |
ω | Ômega |
References
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.R.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal Proteins: Production Strategies and Nutritional and Functional Properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef] [PubMed]
- Dopelt, K.; Radon, P.; Davidovitch, N. Environmental Effects of the Livestock Industry: The Relationship between Knowledge, Attitudes, and Behavior among Students in Israel. Int. J. Environ. Res. Public Health 2019, 16, 1359. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.; Leip, A.; De Boer, I.J.M.; Slegers, P.M.; Ziegler, F.; Temme, E.H.M.; Herrero, M.; Tuomisto, H.; Valin, H.; Van Middelaar, C.E.; et al. The Potential of Future Foods for Sustainable and Healthy Diets. Nat. Sustain. 2018, 1, 782–789. [Google Scholar] [CrossRef]
- Leandro, A.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweed’s Bioactive Candidate Compounds to Food Industry and Global Food Security. Life 2020, 10, 140. [Google Scholar] [CrossRef]
- Sultana, F.; Wahab, M.A.; Nahiduzzaman, M.; Mohiuddin, M.; Iqbal, M.Z.; Shakil, A.; Mamun, A.-A.; Khan, M.S.R.; Wong, L.; Asaduzzaman, M. Seaweed Farming for Food and Nutritional Security, Climate Change Mitigation and Adaptation, and Women Empowerment: A Review. Aquac. Fish. 2023, 8, 463–480. [Google Scholar] [CrossRef]
- Ross, F.W.R.; Boyd, P.W.; Filbee-Dexter, K.; Watanabe, K.; Ortega, A.; Krause-Jensen, D.; Lovelock, C.; Sondak, C.F.A.; Bach, L.T.; Duarte, C.M.; et al. Potential Role of Seaweeds in Climate Change Mitigation. Sci. Total Environ. 2023, 885, 163699. [Google Scholar] [CrossRef] [PubMed]
- Klnc, B.; Cirik, S.; Turan, G.; Tekogul, H.; Koru, E. Seaweeds for Food and Industrial Applications. In Food Industry; InTech: London, UK, 2013. [Google Scholar]
- Shannon, E.; Abu-Ghannam, N. Seaweeds as Nutraceuticals for Health and Nutrition. Phycologia 2019, 58, 563–577. [Google Scholar] [CrossRef]
- Xu, J.; Liao, W.; Liu, Y.; Guo, Y.; Jiang, S.; Zhao, C. An Overview on the Nutritional and Bioactive Components of Green Seaweeds. Food Prod. Process. Nutr. 2023, 5, 18. [Google Scholar] [CrossRef]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef]
- da Costa, E.; Silva, J.; Mendonça, S.; Abreu, M.; Domingues, M. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar. Drugs 2016, 14, 101. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Algae in Food: A General Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Alba, K.; Kontogiorgos, V. Seaweed Polysaccharides (Agar, Alginate Carrageenan). In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 240–250. [Google Scholar]
- Ferrara, L. Seaweeds: A Food for Our Future. J. Food Chem. Nanotechnol. 2020, 6, 56–64. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Expert Meeting on Food Safety for Seaweed—Current Status and Future Perspectives; FAO: Rome, Italy, 2022; ISBN 9789251365908. [Google Scholar]
- FAO. New Report Urges Food Safety Guidance on Seaweed. In Inocuidad y Calidad de los Alimentos; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/food-safety/news/news-details/es/c/1607078/ (accessed on 20 November 2023).
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Giercksky, E.; Doumeizel, V. Seaweed Revolution: A Manifesto for a Sustainable Future; Lloyd’s Register Foundation: London, UK, 2020. [Google Scholar]
- Sloth, J.J.; Holdt, S.L. Setting the Standards for Seaweed Analysis. In New Food; Russell Publishing Ltd.: Kent, UK, 2021. [Google Scholar]
- Cian, R.; Drago, S.; De Medina, F.; Martínez-Augustin, O. Proteins and Carbohydrates from Red Seaweeds: Evidence for Beneficial Effects on Gut Function and Microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Domínguez-González, R.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Bermejo-Barrera, P. Trace Metals in Marine Foodstuff: Bioavailability Estimation and Effect of Major Food Constituents. Food Chem. 2012, 134, 339–345. [Google Scholar] [CrossRef]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Guiry, M.D.M.; Guiry, M.D.M. AlgaeBase; World-Wide Electronic Publication; National Univerity of Ireland: Galway, Ireland, 2021. [Google Scholar]
- Thiviya, P.; Gamage, A.; Gama-Arachchige, N.S.; Merah, O.; Madhujith, T. Seaweeds as a Source of Functional Proteins. Phycology 2022, 2, 216–243. [Google Scholar] [CrossRef]
- Webb, P.; Somers, N.K.; Thilsted, S.H. Seaweed’s Contribution to Food Security in Low- and Middle-Income Countries: Benefits from Production, Processing and Trade. Glob. Food Sec 2023, 37, 100686. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-Animal Proteins as Cutting-Edge Ingredients to Reformulate Animal-Free Foodstuffs: Present Status and Future Perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 6390–6420. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Hayes, M. Red and Green Macroalgae for Fish and Animal Feed and Human Functional Food Development. Food Rev. Int. 2016, 32, 15–45. [Google Scholar] [CrossRef]
- van der Heide, M.E.; Stødkilde, L.; Værum Nørgaard, J.; Studnitz, M. The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. Sustainability 2021, 13, 2303. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17, 314. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, P.; Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes 2021, 9, 1953. [Google Scholar] [CrossRef]
- Pereira, L. Edible Seaweeds of the World; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429154041. [Google Scholar]
- Pereira, L. Therapeutic and Nutritional Uses of Algae; A Science Publishers Book; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781315152844. [Google Scholar]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef] [PubMed]
- Rebours, C.; Marinho-Soriano, E.; Zertuche-González, J.A.; Hayashi, L.; Vásquez, J.A.; Kradolfer, P.; Soriano, G.; Ugarte, R.; Abreu, M.H.; Bay-Larsen, I.; et al. Seaweeds: An Opportunity for Wealth and Sustainable Livelihood for Coastal Communities. J. Appl. Phycol. 2014, 26, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Tanna, B.; Mishra, A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1613–1624. [Google Scholar] [CrossRef]
- Brown, E.M.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.; Nitecki, S.; Strain, C.R.; McSorley, E.M. Seaweed and Human Health. Nutr. Rev. 2014, 72, 205–216. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Nutritional Quality of Some Wild and Cultivated Seaweeds: Nutrient Composition, Total Phenolic Content and In Vitro Digestibility. J. Appl. Phycol. 2016, 28, 3575–3585. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Collins, K.; Fitzgerald, G.; Stanton, C.; Ross, R. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar. Drugs 2016, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Galland-Irmouli, A.-V.; Fleurence, J.; Lamghari, R.; Luçon, M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J.-P.; Villaume, C.; Guéant, J.-L. Nutritional Value of Proteins from Edible Seaweed Palmaria Palmata (Dulse). J. Nutr. Biochem. 1999, 10, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Wong, K.H.; Cheung, P.C.K. Nutritional Evaluation of Some Subtropical Red and Green Seaweeds. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Kendel, M.; Wielgosz-Collin, G.; Bertrand, S.; Roussakis, C.; Bourgougnon, N.; Bedoux, G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva Armoricana, and Solieria Chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Mar. Drugs 2015, 13, 5606–5628. [Google Scholar] [CrossRef] [PubMed]
- Rohani-Ghadikolaei, K.; Abdulalian, E.; Ng, W.-K. Evaluation of the Proximate, Fatty Acid and Mineral Composition of Representative Green, Brown and Red Seaweeds from the Persian Gulf of Iran as Potential Food and Feed Resources. J. Food Sci. Technol. 2012, 49, 774–780. [Google Scholar] [CrossRef]
- Polat, S.; Ozogul, Y. Biochemical Composition of Some Red and Brown Macro Algae from the Northeastern Mediterranean Sea. Int. J. Food Sci. Nutr. 2008, 59, 566–572. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO: Rome, Italy, 2003; ISBN 9251049580. [Google Scholar]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2008, 65, 535–543. [Google Scholar] [CrossRef]
- Narayan, B.; Kumar, C.S.; Sashima, T.; Maeda, H.; Hosokawa, M.; Miyashita, K. Composition, Functionality and Potential Applications of Seaweed Lipids. In Biocatalysis and Bioenergy; Wiley: Hoboken, NJ, USA, 2008; pp. 463–490. [Google Scholar]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Tavares, J.O.; Cotas, J.; Valado, A.; Pereira, L. Algae Food Products as a Healthcare Solution. Mar. Drugs 2023, 21, 578. [Google Scholar] [CrossRef]
- Cotas, J.; Lomartire, S.; Gonçalves, A.M.M.; Pereira, L. From Ocean to Medicine: Harnessing Seaweed’s Potential for Drug Development. Int. J. Mol. Sci. 2024, 25, 797. [Google Scholar] [CrossRef]
- Circuncis, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef] [PubMed]
- Jadeja, R.N.; Batty, L. Metal Content of Seaweeds in the Vicinity of Acid Mine Drainage in Amlwch, North Wales, U.K. Indian. J. Mar. Sci. 2013, 42, 16–20. [Google Scholar]
- Vellinga, R.E.; Sam, M.; Verhagen, H.; Jakobsen, L.S.; Ravn-Haren, G.; Sugimoto, M.; Torres, D.; Katagiri, R.; Thu, B.J.; Granby, K.; et al. Increasing Seaweed Consumption in the Netherlands and Portugal and the Consequences for the Intake of Iodine, Sodium, and Exposure to Chemical Contaminants: A Risk-Benefit Study. Front. Nutr. 2022, 8, 792923. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xue, S.; Zhang, L.; Chen, G. Trace Elements and the Thyroid. Front. Endocrinol. 2022, 13, 904889. [Google Scholar] [CrossRef]
- American Cancer Society. Arsenic and Cancer Risk. Available online: https://www.cancer.org/cancer/risk-prevention/chemicals/arsenic.html#:~:t (accessed on 15 December 2023).
- Davis, T.A.; Volesky, B.; Mucci, A. A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.M. Biosorption of Heavy Metal Ions from Aqueous Solution by Red Macroalgae. J. Hazard. Mater. 2011, 192, 1827–1835. [Google Scholar] [CrossRef]
- Banach, J.L.; van den Burg, S.W.K.; van der Fels-Klerx, H.J. Food Safety during Seaweed Cultivation at Offshore Wind Farms: An Exploratory Study in the North Sea. Mar. Policy 2020, 120, 104082. [Google Scholar] [CrossRef]
- Grebe, G.S.; Byron, C.J.; St. Gelais, A.; Kotowicz, D.M.; Olson, T.K. An Ecosystem Approach to Kelp Aquaculture in the Americas and Europe. Aquac. Rep. 2019, 15, 100215. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Rahikainen, M.; Camarena-Gómez, M.T.; Piiparinen, J.; Spilling, K.; Yang, B. European Union Legislation on Macroalgae Products. Aquac. Int. 2021, 29, 487–509. [Google Scholar] [CrossRef]
- Gianello, D.; Ávila-Hernández, E.; Aguer, I.; Crettaz-Minaglia, M.C. Water Quality Assessment of a Temperate Urban Lagoon Using Physico-Chemical and Biological Indicators. SN Appl. Sci. 2019, 1, 470. [Google Scholar] [CrossRef]
- Rahikainen, M.; Yang, B. Macroalgae as Food and Feed Ingredients in the Baltic Sea Region—Regulation by the European Union; Growing Algae Sustainably in the Baltic Sea (GRASS) Project, University of Turku: Turku, Finland, 2020. [Google Scholar]
- Augyte, S.; Yarish, C.; Redmond, S.; Kim, J.K. Cultivation of a Morphologically Distinct Strain of the Sugar Kelp, Saccharina Latissima Forma Angustissima, from Coastal Maine, USA, with Implications for Ecosystem Services. J. Appl. Phycol. 2017, 29, 1967–1976. [Google Scholar] [CrossRef]
- Concepcion, A.; DeRosia-Banick, K.; Balcom, N. Seaweed Production and Processing in Connecticut: A Guide to Understanding and Controlling Potential Food Safety Hazards; NOAA: Washington, DC, USA, 2020.
- Campbell, I.; Kambey, C.S.B.; Mateo, J.P.; Rusekwa, S.B.; Hurtado, A.Q.; Msuya, F.E.; Stentiford, G.D.; Cottier-Cook, E.J. Biosecurity Policy and Legislation for the Global Seaweed Aquaculture Industry. J. Appl. Phycol. 2020, 32, 2133–2146. [Google Scholar] [CrossRef]
- WHO. Food Safety; WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Suutari, M.; Leskinen, E.; Spilling, K.; Kostamo, K.; Seppälä, J. Nutrient Removal by Biomass Accumulation on Artificial Substrata in the Northern Baltic Sea. J. Appl. Phycol. 2017, 29, 1707–1720. [Google Scholar] [CrossRef]
- Biancarosa, I.; Espe, M.; Bruckner, C.G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E.J. Amino Acid Composition, Protein Content, and Nitrogen-to-Protein Conversion Factors of 21 Seaweed Species from Norwegian Waters. J. Appl. Phycol. 2017, 29, 1001–1009. [Google Scholar] [CrossRef]
- Guo, J.; Qi, M.; Chen, H.; Zhou, C.; Ruan, R.; Yan, X.; Cheng, P. Macroalgae-Derived Multifunctional Bioactive Substances: The Potential Applications for Food and Pharmaceuticals. Foods 2022, 11, 3455. [Google Scholar] [CrossRef] [PubMed]
- Desideri, D.; Cantaluppi, C.; Ceccotto, F.; Meli, M.A.; Roselli, C.; Feduzi, L. Essential and Toxic Elements in Seaweeds for Human Consumption. J. Toxicol. Environ. Health A 2016, 79, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.A. Biosorption of Heavy Metals by Marine Algae. Curr. Microbiol. 2000, 41, 232–238. [Google Scholar] [CrossRef]
- Negara, B.F.S.P.; Sohn, J.H.; Kim, J.-S.; Choi, J.-S. Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins. Foods 2021, 10, 452. [Google Scholar] [CrossRef]
- Nutrition and Food Safety (NFS). Basic Food Safety for Health Workers; Nutrition and Food Safety (NFS): Geneva, Switzerland, 1999. [Google Scholar]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Goecke, F.; Klemetsdal, G.; Ergon, Å. Cultivar Development of Kelps for Commercial Cultivation—Past Lessons and Future Prospects. Front. Mar. Sci. 2020, 8, 110. [Google Scholar] [CrossRef]
- Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19, 245. [Google Scholar] [CrossRef] [PubMed]
- Roleda, M.Y.; Hurd, C.L. Seaweed Nutrient Physiology: Application of Concepts to Aquaculture and Bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef]
- Hafting, J.T.; Critchley, A.T.; Cornish, M.L.; Hubley, S.A.; Archibald, A.F. On-Land Cultivation of Functional Seaweed Products for Human Usage. J. Appl. Phycol. 2012, 24, 385–392. [Google Scholar] [CrossRef]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef] [PubMed]
- Hafting, J.T.; Craigie, J.S.; Stengel, D.B.; Loureiro, R.R.; Buschmann, A.H.; Yarish, C.; Edwards, M.D.; Critchley, A.T. Prospects and Challenges for Industrial Production of Seaweed Bioactives. J. Phycol. 2015, 51, 821–837. [Google Scholar] [CrossRef]
- Snethlage, J.S.; de Koning, S.; Giesbers, E.; Veraart, J.A.; Debrot, A.O.; Harkes, I.; van den Burg, S.W.K.; Hamon, K.G. Knowledge Needs in Realising the Full Potential of Seaweed for World Food Provisioning. Glob. Food Secur. 2023, 37, 100692. [Google Scholar] [CrossRef]
- Farkas, J. Physical Methods of Food Preservation. In Food Microbiology: Fundamentals and Frontiers, 3rd ed.; American Society of Microbiology: Washington, DC, USA, 2007; pp. 685–712. [Google Scholar]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods; Wiley: Hoboken, NJ, USA, 2020; pp. 323–355. [Google Scholar]
- Skonberg, D.I.; Fader, S.; Perkins, L.B.; Perry, J.J. Lactic Acid Fermentation in the Development of a Seaweed Sauerkraut-style Product: Microbiological, Physicochemical, and Sensory Evaluation. J. Food Sci. 2021, 86, 334–342. [Google Scholar] [CrossRef]
- Santhoshkumar, P.; Yoha, K.S.; Moses, J.A. Drying of Seaweed: Approaches, Challenges and Research Needs. Trends Food Sci. Technol. 2023, 138, 153–163. [Google Scholar] [CrossRef]
- Regal, A.L.; Alves, V.; Gomes, R.; Matos, J.; Bandarra, N.M.; Afonso, C.; Cardoso, C. Drying Process, Storage Conditions, and Time Alter the Biochemical Composition and Bioactivity of the Anti-Greenhouse Seaweed Asparagopsis Taxiformis. Eur. Food Res. Technol. 2020, 246, 781–793. [Google Scholar] [CrossRef]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of Different Drying Temperatures on the Moisture and Phytochemical Constituents of Edible Irish Brown Seaweed. LWT—Food Sci. Technol. 2011, 44, 1266–1272. [Google Scholar] [CrossRef]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Leite, B.; Antunes, R.; Cotas, J.; Martins, N.; Costa, N.; Noronha, J.P.; Mata, P.; Diniz, M. Modified Atmosphere Packaging (MAP) for Seaweed Conservation: Impact on Physicochemical Characteristics and Microbiological Activity. Foods 2023, 12, 2736. [Google Scholar] [CrossRef]
- Moreira Leite, B.S. Novas Alternativas Para o Uso de Macroalgas Da Costa Portuguesa Em Alimentação. Master’s Thesis, Universidade Nova de Lisboa, Lisboa, Portugal, 2017. [Google Scholar]
- Cascais, M.; Monteiro, P.; Pacheco, D.; Cotas, J.; Pereira, L.; Marques, J.C.; Gonçalves, A.M.M. Effects of Heat Treatment Processes: Health Benefits and Risks to the Consumer. Appl. Sci. 2021, 11, 8740. [Google Scholar] [CrossRef]
- Vucko, M.J.; Magnusson, M.; Kinley, R.D.; Villart, C.; de Nys, R. The Effects of Processing on the in Vitro Antimethanogenic Capacity and Concentration of Secondary Metabolites of Asparagopsis Taxiformis. J. Appl. Phycol. 2017, 29, 1577–1586. [Google Scholar] [CrossRef]
- Banach, J.L.; Hoek-van den Hil, E.F.; van der Fels-Klerx, H.J. Food Safety Hazards in the European Seaweed Chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef]
- Nitschke, U.; Stengel, D.B. Quantification of Iodine Loss in Edible Irish Seaweeds during Processing. J. Appl. Phycol. 2016, 28, 3527–3533. [Google Scholar] [CrossRef]
- WHO. Cyanobacterial Toxins: Anatoxin-a and Analogues; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Wright, A. What Are Good Manufacturing Practices in the Food Industry? Available online: https://www.imsm.com/gb/blogs/what-are-good-manufacturing-practices-in-the-food-industry/ (accessed on 20 December 2023).
- NQA. GMP: Food Safety Management. Available online: https://www.nqa.com/en-gb/certification/standards/gmp (accessed on 20 December 2023).
- Chon, J.; Koo, R.; Song, K.; Kang, I.; Kim, D.; Bae, D.; Kim, H.; Kim, S.; Seo, K. Strategies for Expanding HACCP Certification Rate Using an Awareness Survey of Dairy Farmers. Int. J. Dairy. Technol. 2021, 74, 453–461. [Google Scholar] [CrossRef]
- Suherman, S.; Janitra, A.A.; Budhiary, K.N.S.; Pratiwi, W.Z.; Idris, F.A. Review on Hazard Analysis and Critical Control Point (HACCP) in the Dairy Product: Cheese. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012081. [Google Scholar] [CrossRef]
- Food Safety Management—ISO 22000:2018. Available online: https://www.iso.org/publication/PUB100430.html (accessed on 20 December 2023).
- NQA. Guide to ISO 22000. Available online: https://www.nqa.com/en-ca/resources/blog/february-2019/guide-to-iso-22000 (accessed on 20 December 2023).
- ISO 22000:2018—Food Safety Management Systems, a Practical Guide. Available online: https://www.iso.org/publication/PUB100454.html (accessed on 20 December 2023).
- Monteiro, P.; Cotas, J.; Pacheco, D.; Figueirinha, A.; da Silva, G.J.; Pereira, L.; Gonçalves, A.M.M. Seaweed as Food: How to Guarantee Their Quality? In Sustainable Global Resources of Seaweeds Volume 2; Springer International Publishing: Cham, Switzerland, 2022; pp. 309–321. [Google Scholar]
- Shannon, E.; Conlon, M.; Hayes, M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar. Drugs 2021, 19, 358. [Google Scholar] [CrossRef] [PubMed]
- AOAC Scientific Standards & Methods—AOAC International. Available online: https://www.aoac.org/scientific-solutions/ (accessed on 20 November 2023).
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of Electronic Nose as a Non-Invasive Technique for Odor Fingerprinting and Detection of Bacterial Foodborne Pathogens: A Review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef]
- Anwar, H.; Anwar, T.; Murtaza, S. Review on Food Quality Assessment Using Machine Learning and Electronic Nose System. Biosens. Bioelectron. X 2023, 14, 100365. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent Biosensing Strategies for Rapid Detection in Food Safety: A Review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef]
- Mahmudiono, T.; Olegovich Bokov, D.; Abdalkareem Jasim, S.; Kamal Abdelbasset, W.; Dinora, M. Khashirbaeva State-of-the-Art of Convenient and Low-Cost Electrochemical Sensor for Food Contamination Detection: Technical and Analytical Overview. Microchem. J. 2022, 179, 107460. [Google Scholar] [CrossRef]
- Kaufmann, A. The Current Role of High-Resolution Mass Spectrometry in Food Analysis. Anal. Bioanal. Chem. 2012, 403, 1233–1249. [Google Scholar] [CrossRef]
- Nollet, L.M.L.; Toldra, F. (Eds.) Food Analysis by HPLC; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9780429151620. [Google Scholar]
- Kholafazad Kordasht, H.; Hasanzadeh, M. Biomedical Analysis of Exosomes Using Biosensing Methods: Recent Progress. Anal. Methods 2020, 12, 2795–2811. [Google Scholar] [CrossRef]
- Huang, X.; Chalmers, A.N. Review of Wearable and Portable Sensors for Monitoring Personal Solar UV Exposure. Ann. Biomed. Eng. 2021, 49, 964–978. [Google Scholar] [CrossRef]
- Kholafazad-Kordasht, H.; Hasanzadeh, M.; Seidi, F. Smartphone Based Immunosensors as next Generation of Healthcare Tools: Technical and Analytical Overview towards Improvement of Personalized Medicine. TrAC Trends Anal. Chem. 2021, 145, 116455. [Google Scholar] [CrossRef]
- Haque, F.; Bubli, S.Y.; Khan, M.S. UV–Vis Spectroscopy for Food Analysis. In Techniques to Measure Food Safety and Quality; Springer International Publishing: Cham, Switzerland, 2021; pp. 169–193. [Google Scholar]
- Karoui, R. Spectroscopic Technique: Fluorescence and Ultraviolet-Visible (UV-Vis) Spectroscopies. In Modern Techniques for Food Authentication; Elsevier: Amsterdam, The Netherlands, 2018; pp. 219–252. [Google Scholar]
- Claßen, J.; Aupert, F.; Reardon, K.F.; Solle, D.; Scheper, T. Spectroscopic Sensors for In-Line Bioprocess Monitoring in Research and Pharmaceutical Industrial Application. Anal. Bioanal. Chem. 2017, 409, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.; Callejón, R.M. Assessment of UV–Visible Spectroscopy as a Useful Tool for Determining Grape-Must Caramel in High-Quality Wine and Balsamic Vinegars. Food Chem. 2020, 323, 126792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B. A Unique Quantitative Method of Acid Value of Edible Oils and Studying the Impact of Heating on Edible Oils by UV–Vis Spectrometry. Food Chem. 2015, 185, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Bian, X.; Lin, E.; Wang, H.; Guo, Y.; Tan, X. Weighted Multiscale Support Vector Regression for Fast Quantification of Vegetable Oils in Edible Blend Oil by Ultraviolet-Visible Spectroscopy. Food Chem. 2021, 342, 128245. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G.; Foley, B.; Abu-Ghannam, N. Identification and Characterization of Phenolic Antioxidant Compounds from Brown Irish Seaweed Himanthalia Elongata Using LC-DAD–ESI-MS/MS. Innov. Food Sci. Emerg. Technol. 2016, 37, 261–268. [Google Scholar] [CrossRef]
- Barnes, M.; Sulé-Suso, J.; Millett, J.; Roach, P. Fourier Transform Infrared Spectroscopy as a Non-Destructive Method for Analysing Herbarium Specimens. Biol. Lett. 2023, 19, 20220546. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Sousa, A.; Coelho, H.; Amado, A.M.; Ribeiro-Claro, P.J.A. Use of FTIR, FT-Raman and 13C-NMR Spectroscopy for Identification of Some Seaweed Phycocolloids. Biomol. Eng. 2003, 20, 223–228. [Google Scholar] [CrossRef]
- Bogolitsyn, K.; Parshina, A.; Druzhinina, A.; Ovchinnikov, D.; Krasikov, V.; Khviyuzov, S. Physicochemical Characteristics of the Active Fractions of Polyphenols from Arctic Macrophytes. J. Appl. Phycol. 2020, 32, 4277–4287. [Google Scholar] [CrossRef]
- Cotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. The Effect of Salinity on Fucus Ceranoides (Ochrophyta, Phaeophyceae) in the Mondego River (Portugal). J. Oceanol. Limnol. 2019, 37, 881–891. [Google Scholar] [CrossRef]
- Li, Q.; Feng, Z.; Zhang, T.; Ma, C.; Shi, H. Microplastics in the Commercial Seaweed Nori. J. Hazard. Mater. 2020, 388, 122060. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.F.; Lee, T.Z.E.; Mohd Irwan Lu, N.A.L.; Samling, B. Synchronized Analysis of FTIR Spectra and GCMS Chromatograms for Evaluation of the Thermally Degraded Vegetable Oils. J. Anal. Methods Chem. 2014, 2014, 271970. [Google Scholar] [CrossRef] [PubMed]
- Galvis-Sánchez, A.C.; Barros, A.; Delgadillo, I. FTIR-ATR Infrared Spectroscopy for the Detection of Ochratoxin A in Dried Vine Fruit. Food Addit. Contam. 2007, 24, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.I.N.; Pereira, C.G.; Andrade, J.; Vicentini, N.M.; Bell, M.J.V.; Anjos, V. FTIR-ATR Spectroscopy as a Tool for the Rapid Detection of Adulterations in Butter Cheeses. LWT 2019, 109, 63–69. [Google Scholar] [CrossRef]
- Candoğan, K.; Altuntas, E.G.; İğci, N. Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. Food Eng. Rev. 2021, 13, 66–91. [Google Scholar] [CrossRef]
- Al-Deen, R.B.; Azizieh, A.; Al-Ameer, L. Identification of Enterobacteriaceae Foodborne Bacteria in Syrian Foods by PCR and FTIR-ATR Techniques. Adv. Environ. Biol. 2014, 2014, 1233. [Google Scholar]
- Keshavarzi, Z.; Barzegari Banadkoki, S.; Faizi, M.; Zolghadri, Y.; Shirazi, F.H. Comparison of Transmission FTIR and ATR Spectra for Discrimination between Beef and Chicken Meat and Quantification of Chicken in Beef Meat Mixture Using ATR-FTIR Combined with Chemometrics. J. Food Sci. Technol. 2020, 57, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR Spectroscopy to the Quantification of Sugar in Honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Vandanjon, L.; Burlot, A.-S.; Zamanileha, E.F.; Douzenel, P.; Ravelonandro, P.H.; Bourgougnon, N.; Bedoux, G. The Use of FTIR Spectroscopy as a Tool for the Seasonal Variation Analysis and for the Quality Control of Polysaccharides from Seaweeds. Mar. Drugs 2023, 21, 482. [Google Scholar] [CrossRef]
- Amin, H.H. Safe Ulvan Silver Nanoparticles Composite Films for Active Food Packaging. Am. J. Biochem. Biotechnol. 2021, 17, 28–39. [Google Scholar] [CrossRef]
- Qu, J.-H.; Liu, D.; Cheng, J.-H.; Sun, D.-W.; Ma, J.; Pu, H.; Zeng, X.-A. Applications of Near-Infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2015, 55, 1939–1954. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ying, Y. Theory and Application of near Infrared Spectroscopy in Assessment of Fruit Quality: A Review. Sens. Instrum. Food Qual. Saf. 2009, 3, 130–141. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Defraeye, T.; De Ketelaere, B.; Herremans, E.; Hertog, M.L.A.T.M.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive Measurement of Fruit and Vegetable Quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312. [Google Scholar] [CrossRef]
- Pojić, M.M.; Mastilović, J.S. Near Infrared Spectroscopy—Advanced Analytical Tool in Wheat Breeding, Trade, and Processing. Food Bioproc Tech. 2013, 6, 330–352. [Google Scholar] [CrossRef]
- Morsy, N.; Sun, D.-W. Robust Linear and Non-Linear Models of NIR Spectroscopy for Detection and Quantification of Adulterants in Fresh and Frozen-Thawed Minced Beef. Meat Sci. 2013, 93, 292–302. [Google Scholar] [CrossRef]
- Tito, N.B.; Rodemann, T.; Powell, S.M. Use of near Infrared Spectroscopy to Predict Microbial Numbers on Atlantic Salmon. Food Microbiol. 2012, 32, 431–436. [Google Scholar] [CrossRef]
- Kurz, C.; Leitenberger, M.; Carle, R.; Schieber, A. Evaluation of Fruit Authenticity and Determination of the Fruit Content of Fruit Products Using FT-NIR Spectroscopy of Cell Wall Components. Food Chem. 2010, 119, 806–812. [Google Scholar] [CrossRef]
- Kuligowski, J.; Carrión, D.; Quintás, G.; Garrigues, S.; de la Guardia, M. Direct Determination of Polymerised Triacylglycerides in Deep-Frying Vegetable Oil by near Infrared Spectroscopy Using Partial Least Squares Regression. Food Chem. 2012, 131, 353–359. [Google Scholar] [CrossRef]
- Balabin, R.M.; Smirnov, S.V. Melamine Detection by Mid- and near-Infrared (MIR/NIR) Spectroscopy: A Quick and Sensitive Method for Dairy Products Analysis Including Liquid Milk, Infant Formula, and Milk Powder. Talanta 2011, 85, 562–568. [Google Scholar] [CrossRef]
- Mignani, A.G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A. Visible and Near-Infrared Absorption Spectroscopy by an Integrating Sphere and Optical Fibers for Quantifying and Discriminating the Adulteration of Extra Virgin Olive Oil from Tuscany. Anal. Bioanal. Chem. 2011, 399, 1315–1324. [Google Scholar] [CrossRef]
- Prieto, N.; Andrés, S.; Giráldez, F.J.; Mantecón, A.R.; Lavín, P. Discrimination of Adult Steers (Oxen) and Young Cattle Ground Meat Samples by near Infrared Reflectance Spectroscopy (NIRS). Meat Sci. 2008, 79, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Flores, K.; Sánchez, M.-T.; Pérez-Marín, D.; Guerrero, J.-E.; Garrido-Varo, A. Feasibility in NIRS Instruments for Predicting Internal Quality in Intact Tomato. J. Food Eng. 2009, 91, 311–318. [Google Scholar] [CrossRef]
- Yuan, W.; Xiang, B.; Yu, L.; Xu, J. A Non-Invasive Method for Screening Sodium Hydroxymethanesulfonate in Wheat Flour by Near-Infrared Spectroscopy. Food Anal. Methods 2011, 4, 550–558. [Google Scholar] [CrossRef]
- Lytou, A.E.; Tsakanikas, P.; Lymperi, D.; Nychas, G.-J.E. Rapid Assessment of Microbial Quality in Edible Seaweeds Using Sensor Techniques Based on Spectroscopy, Imaging Analysis and Sensors Mimicking Human Senses. Sensors 2022, 22, 7018. [Google Scholar] [CrossRef] [PubMed]
- Tadmor Shalev, N.; Ghermandi, A.; Tchernov, D.; Shemesh, E.; Israel, A.; Brook, A. NIR Spectroscopy and Artificial Neural Network for Seaweed Protein Content Assessment In-Situ. Comput. Electron. Agric. 2022, 201, 107304. [Google Scholar] [CrossRef]
- Campbell, M.; Ortuño, J.; Koidis, A.; Theodoridou, K. The Use of Near-Infrared and Mid-Infrared Spectroscopy to Rapidly Measure the Nutrient Composition and the in Vitro Rumen Dry Matter Digestibility of Brown Seaweeds. Anim. Feed. Sci. Technol. 2022, 285, 115239. [Google Scholar] [CrossRef]
- Niu, Y.; Sun, F.; Xu, Y.; Cong, Z.; Wang, E. Applications of Electrochemical Techniques in Mineral Analysis. Talanta 2014, 127, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Ampuero, S.; Zesiger, T.; Gustafsson, V.; Lundén, A.; Bosset, J. Determination of Trimethylamine in Milk Using an MS Based Electronic Nose. Eur. Food Res. Technol. 2002, 214, 163–167. [Google Scholar] [CrossRef]
- Lippolis, V.; Cervellieri, S.; Damascelli, A.; Pascale, M.; Di Gioia, A.; Longobardi, F.; De Girolamo, A. Rapid Prediction of Deoxynivalenol Contamination in Wheat Bran by MOS-based Electronic Nose and Characterization of the Relevant Pattern of Volatile Compounds. J. Sci. Food Agric. 2018, 98, 4955–4962. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, N.; Zhou, D.; Sun, Y.; Sun, K.; Pan, L.; Tu, K. Discrimination and Growth Tracking of Fungi Contamination in Peaches Using Electronic Nose. Food Chem. 2018, 262, 226–234. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Sun, L.; Zhao, G.; Huang, X. Application of Electronic Nose for Measuring Total Volatile Basic Nitrogen and Total Viable Counts in Packaged Pork During Refrigerated Storage. J. Food Sci. 2016, 81, M906–M912. [Google Scholar] [CrossRef] [PubMed]
- Pallottino, F.; Costa, C.; Antonucci, F.; Strano, M.C.; Calandra, M.; Solaini, S.; Menesatti, P. Electronic Nose Application for Determination of Penicillium Digitatum in Valencia Oranges. J. Sci. Food Agric. 2012, 92, 2008–2012. [Google Scholar] [CrossRef]
- Pattarapon, P.; Zhang, M.; Bhandari, B.; Gao, Z. Effect of Vacuum Storage on the Freshness of Grass Carp ( Ctenopharyngodon Idella ) Fillet Based on Normal and Electronic Sensory Measurement. J. Food Process Preserv. 2018, 42, e13418. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Liu, T.; Liu, Y. Prediction of Total Viable Counts on Chilled Pork Using an Electronic Nose Combined with Support Vector Machine. Meat Sci. 2012, 90, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Azman, W.N.F.S.W.; Azir, K.N.F.b.K.; Khairuddin, A.b.M. E-Nose: Spoiled Food Detection Embedded Device Using Machine Learning for Food Safety Application. In Computing and Informatics; Springer: Singapore, 2024; pp. 221–234. [Google Scholar]
- Dai, C.; Huang, X.; Lv, R.; Zhang, Z.; Sun, J.; Aheto, J.H. Analysis of Volatile Compounds of Tremella Aurantialba Fermentation via Electronic Nose and HS-SPME-GC-MS. J. Food Saf. 2018, 38, e12555. [Google Scholar] [CrossRef]
- Huang, X.; Yu, S.; Xu, H.; Aheto, J.H.; Bonah, E.; Ma, M.; Wu, M.; Zhang, X. Rapid and Nondestructive Detection of Freshness Quality of Postharvest Spinaches Based on Machine Vision and Electronic Nose. J. Food Saf. 2019, 39, e12708. [Google Scholar] [CrossRef]
- Shen, H.; Tao, J. Applying Electronic Nose Based on Odour Classification and Identification Technology in Detecting the Shelf Life of Fresh Fruits. Chem. Eng. Trans. 2018, 68, 217–222. [Google Scholar] [CrossRef]
- Chongthanaphisut, P.; Seesaard, T.; Kerdcharoen, T. Monitoring of Microbial Canned Food Spoilage and Contamination Based on E-Nose for Smart Home. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–27 June 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Zarezadeh, M.R.; Aboonajmi, M.; Varnamkhasti, M.G.; Azarikia, F. Olive Oil Classification and Fraud Detection Using E-Nose and Ultrasonic System. Food Anal. Methods 2021, 14, 2199–2210. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Huang, J.; Gao, P.; Jin, Q.; Wang, X. Rapid Measuring Flavor Quality Changes of Frying Rapeseed Oils Using a Flash Gas Chromatography Electronic Nose. Eur. J. Lipid Sci. Technol. 2019, 121, 1800260. [Google Scholar] [CrossRef]
- Singh, S.; Gaur, S. Development of Rapid and Non-Destructive Electric Nose (E-Nose) System for Shelf Life Evaluation of Different Edible Seeds. Food Chem. 2023, 426, 136562. [Google Scholar] [CrossRef]
- McCaig, T.N. Extending the Use of Visible/near-Infrared Reflectance Spectrophotometers to Measure Colour of Food and Agricultural Products. Food Res. Int. 2002, 35, 731–736. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Colour Measurements by Computer Vision for Food Quality Control—A Review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- YongXia, C.; RuiXin, L.; ZhaoZhou, L.; PengJu, C.; LiLi, W.; YanLi, W.; SuiQing, C. Quality Evaluation Based on Color Grading: Quality Discrimination of the Chinese Medicine Corni Fructus by an E-Eye. Sci. Rep. 2019, 9, 17006. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, Z.; Song, C.; Li, C.; Peng, Z.; Xu, W. E-Eye. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, New York, NY, USA, 4–7 November 2018; ACM: New York, NY, USA, 2018; pp. 68–81. [Google Scholar]
- Calvini, R.; Pigani, L. Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes. Sensors 2022, 22, 577. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Cui, Q.; Li, L.; Ning, J.; Zhang, Z. Monitoring the Withering Condition of Leaves during Black Tea Processing via the Fusion of Electronic Eye (E-Eye), Colorimetric Sensing Array (CSA), and Micro-near-Infrared Spectroscopy (NIRS). J. Food Eng. 2021, 300, 110534. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioproc Tech. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Finardi, S.; de Souza, C.K.; Meinert, C.; Pateiro, M.; Hoffmann, T.G.; Domínguez, R.; Bertoli, S.L.; Kumar, M.; Lorenzo, J.M. Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. Sensors 2023, 23, 672. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-Nose, e-Tongue and e-Eye for Edible Olive Oil Characterization and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Foschi, M.; Di Maria, V.; D’Archivio, A.A.; Marini, F.; Biancolillo, A. E-Eye-Based Approach for Traceability and Annuality Compliance of Lentils. Appl. Sci. 2023, 13, 1433. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Quality Evaluation of Fish and Other Seafood by Traditional and Nondestructive Instrumental Methods: Advantages and Limitations. Crit. Rev. Food Sci. Nutr. 2017, 57, 1976–1998. [Google Scholar] [CrossRef]
- Titova, T.; Nachev, V. “Electronic Tongue” in the Food Industry. Food Sci. Appl. Biotechnol. 2020, 3, 71. [Google Scholar] [CrossRef]
- Surányi, J.; Zaukuu, J.-L.Z.; Friedrich, L.; Kovacs, Z.; Horváth, F.; Németh, C.; Kókai, Z. Electronic Tongue as a Correlative Technique for Modeling Cattle Meat Quality and Classification of Breeds. Foods 2021, 10, 2283. [Google Scholar] [CrossRef]
- Banerjee, R.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. A Review on Combined Odor and Taste Sensor Systems. J. Food Eng. 2016, 190, 10–21. [Google Scholar] [CrossRef]
- Kaya, Z.; Koca, İ. Gıda Mühendisliğinde Elektronik Dil Uygulamaları. Turk. J. Agric.—Food Sci. Technol. 2020, 8, 1463–1471. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic Tongues—A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Chiofalo, V. Electronic Noses and Tongues. In Chemical Analysis of Food; Elsevier: Amsterdam, The Netherlands, 2020; pp. 353–389. [Google Scholar]
- Scagion, V.P.; Mercante, L.A.; Sakamoto, K.Y.; Oliveira, J.E.; Fonseca, F.J.; Mattoso, L.H.C.; Ferreira, M.D.; Correa, D.S. An Electronic Tongue Based on Conducting Electrospun Nanofibers for Detecting Tetracycline in Milk Samples. RSC Adv. 2016, 6, 103740–103746. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Teye, E.; Gu, H. Quantitative Analysis of Fish Microbiological Quality Using Electronic Tongue Coupled with Nonlinear Pattern Recognition Algorithms. J. Food Saf. 2015, 35, 336–344. [Google Scholar] [CrossRef]
- Pascual, L.; Gras, M.; Vidal-Brotóns, D.; Alcañiz, M.; Martínez-Máñez, R.; Ros-Lis, J.V. A Voltammetric E-Tongue Tool for the Emulation of the Sensorial Analysis and the Discrimination of Vegetal Milks. Sens. Actuators B Chem. 2018, 270, 231–238. [Google Scholar] [CrossRef]
- Semenov, V.; Volkov, S.; Khaydukova, M.; Fedorov, A.; Lisitsyna, I.; Kirsanov, D.; Legin, A. Determination of Three Quality Parameters in Vegetable Oils Using Potentiometric E-Tongue. J. Food Compos. Anal. 2019, 75, 75–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Q.; Yao, Y.; Guo, X.; Wang, R.; Peng, Z. A Preliminary Study: Saltiness and Sodium Content of Aqueous Extracts from Plants and Marine Animal Shells. Eur. Food Res. Technol. 2014, 238, 565–571. [Google Scholar] [CrossRef]
- Gowen, A.; Odonnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral Imaging—An Emerging Process Analytical Tool for Food Quality and Safety Control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. A Sequential CNN Approach for Foreign Object Detection in Hyperspectral Images. In Computer Analysis of Images and Patterns; Springer: Cham, Switzerland, 2019; pp. 271–283. [Google Scholar]
- Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef]
- Soni, A.; Dixit, Y.; Reis, M.M.; Brightwell, G. Hyperspectral Imaging and Machine Learning in Food Microbiology: Developments and Challenges in Detection of Bacterial, Fungal, and Viral Contaminants. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3717–3745. [Google Scholar] [CrossRef]
- Kim, M.S.; Chao, K.; Chen, Y.-R.; Chan, D.; Mehl, P.M. Hyperspectral Imaging System for Food Safety: Detection of Fecal Contamination on Apples. In Proc. SPIE 4206, Photonic Detection and Intervention Technologies for Safe Food; Chen, Y.-R., Tu, S.-I., Eds.; SPIE: Bellingham, WA, USA, 2001; pp. 174–184. [Google Scholar]
- Kwak, D.-H.; Son, G.-J.; Park, M.-K.; Kim, Y.-D. Rapid Foreign Object Detection System on Seaweed Using VNIR Hyperspectral Imaging. Sensors 2021, 21, 5279. [Google Scholar] [CrossRef]
- El Hosry, L.; Sok, N.; Richa, R.; Al Mashtoub, L.; Cayot, P.; Bou-Maroun, E. Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review. Foods 2023, 12, 895. [Google Scholar] [CrossRef]
- McComb, J.Q.; Rogers, C.; Han, F.X.; Tchounwou, P.B. Rapid Screening of Heavy Metals and Trace Elements in Environmental Samples Using Portable X-Ray Fluorescence Spectrometer, A Comparative Study. Water Air Soil. Pollut. 2014, 225, 2169. [Google Scholar] [CrossRef]
- Winberg, P.C. Best Practices for the Emerging Australian Seaweed Industry: Seaweed Quality Control Systems; AgriFutures: Wagga Wagga, NSW, Australia, 2017. [Google Scholar]
- Pashkova, G.V.; Smagunova, A.N.; Finkelshtein, A.L. X-Ray Fluorescence Analysis of Milk and Dairy Products: A Review. TrAC Trends Anal. Chem. 2018, 106, 183–189. [Google Scholar] [CrossRef]
- Gallardo, H.; Queralt, I.; Tapias, J.; Guerra, M.; Carvalho, M.L.; Marguí, E. Possibilities of Low-Power X-Ray Fluorescence Spectrometry Methods for Rapid Multielemental Analysis and Imaging of Vegetal Foodstuffs. J. Food Compos. Anal. 2016, 50, 1–9. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Xu, L.; Wang, S.; Zhou, M.; Yin, J.; Lu, A. Rapid Screening of Cadmium in Rice and Identification of Geographical Origins by Spectral Method. Int. J. Environ. Res. Public. Health 2018, 15, 312. [Google Scholar] [CrossRef]
- Reboredo, F.H.; Junior, W.; Pessoa, M.F.; Lidon, F.C.; Ramalho, J.C.; Leitão, R.G.; Silva, M.M.; Alvarenga, N.; Guerra, M. Elemental Composition of Algae-Based Supplements by Energy Dispersive X-Ray Fluorescence. Plants 2021, 10, 2041. [Google Scholar] [CrossRef] [PubMed]
- Garshott, D.M.; MacDonald, E.A.; Murray, M.N.; Benvenuto, M.A.; Roberts-Kirchhoff, E.S. Elemental Analysis of a Variety of Dried, Powdered, Kelp Food Supplements for the Presence of Heavy Metals via Energy-Dispersive X-ray Fluorescence Spectrometry. In ACS Symposium Series; ACS Publications: Washington, DC, USA, 2011; pp. 123–133. [Google Scholar]
- Chesori, C.R. Determination of Elemental Concentrations in Edible Seaweeds, Sea Sediments and Seawater Samples from the Kenyan Coast Using X-Ray Fluorescence Techniques. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2015. [Google Scholar]
- García-Sartal, C.; Barciela-Alonso, M.d.C.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Study of Cooking on the Bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from Edible Seaweed. Microchem. J. 2013, 108, 92–99. [Google Scholar] [CrossRef]
- Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent Updates on Bioaccessibility of Phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- Alegría, A.; Garcia-Llatas, G.; Cilla, A. Static Digestion Models: General Introduction. In The Impact of Food Bioactives on Health; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–12. [Google Scholar]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Li, R.; Zhou, H.; Liu, J.; Muriel Mundo, J.; Zhang, R.; McClements, D.J. Impact of Calcium Levels on Lipid Digestion and Nutraceutical Bioaccessibility in Nanoemulsion Delivery Systems Studied Using Standardized INFOGEST Digestion Protocol. Food Funct. 2020, 11, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, W.; Jin, W.; Shah, B.R.; Li, Y.; Li, B. Influence of Anionic Alginate and Cationic Chitosan on Physicochemical Stability and Carotenoids Bioaccessibility of Soy Protein Isolate-Stabilized Emulsions. Food Res. Int. 2015, 77, 419–425. [Google Scholar] [CrossRef]
- Zheng, B.; Peng, S.; Zhang, X.; McClements, D.J. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. J. Agric. Food Chem. 2018, 66, 10816–10826. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in Vitro and in Vivo Data on Food Digestion. What Can We Predict with Static in Vitro Digestion Models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Li, Y. Review of in Vitro Digestion Models for Rapid Screening of Emulsion-Based Systems. Food Funct. 2010, 1, 32. [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, H.; McClements, D.J. Application of Static in Vitro Digestion Models for Assessing the Bioaccessibility of Hydrophobic Bioactives: A Review. Trends Food Sci. Technol. 2022, 122, 314–327. [Google Scholar] [CrossRef]
- Mackie, A.; Rigby, N. InfoGest Consensus Method. In The Impact of Food Bioactives on Health; Springer International Publishing: Cham, Switzerland, 2015; pp. 13–22. [Google Scholar]
- Satoor, S.N.; Patil, D.P.; Kristensen, H.D.; Joglekar, M.V.; Shouche, Y.; Hardikar, A.A. Manipulation and Assessment of Gut Microbiome for Metabolic Studies. Methods Mol. Biol. 2014, 1194, 449–469. [Google Scholar]
- Demarco, M.; Oliveira de Moraes, J.; Matos, Â.P.; Derner, R.B.; de Farias Neves, F.; Tribuzi, G. Digestibility, Bioaccessibility and Bioactivity of Compounds from Algae. Trends Food Sci. Technol. 2022, 121, 114–128. [Google Scholar] [CrossRef]
- De Bhowmick, G.; Hayes, M. In Vitro Protein Digestibility of Selected Seaweeds. Foods 2022, 11, 289. [Google Scholar] [CrossRef]
- Zheng, L.-X.; Chen, X.-Q.; Cheong, K.-L. Current Trends in Marine Algae Polysaccharides: The Digestive Tract, Microbial Catabolism, and Prebiotic Potential. Int. J. Biol. Macromol. 2020, 151, 344–354. [Google Scholar] [CrossRef]
- Qin, Y. Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products. In Bioactive Seaweeds for Food Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 135–152. [Google Scholar]
- Chen, L.; Xu, W.; Chen, D.; Chen, G.; Liu, J.; Zeng, X.; Shao, R.; Zhu, H. Digestibility of Sulfated Polysaccharide from the Brown Seaweed Ascophyllum Nodosum and Its Effect on the Human Gut Microbiota in Vitro. Int. J. Biol. Macromol. 2018, 112, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Jiang, Y.; Wang, C.; Yang, Q.; Jiang, X.; Zhu, C. Determination of the Extraction, Physicochemical Characterization, and Digestibility of Sulfated Polysaccharides in Seaweed—Porphyra Haitanensis. Mar. Drugs 2020, 18, 539. [Google Scholar] [CrossRef] [PubMed]
- Peñalver, R.; Lorenzo, J.M.; Nieto, G. Bioaccessibility, Digestibility and Nutritional Properties of Algae and Cyanophyceae as Basis of Their Potential as Functional Food Ingredients. Appl. Food Res. 2024, 4, 100404. [Google Scholar] [CrossRef]
- Rupérez, P.; Saura-Calixto, F. Dietary Fibre and Physicochemical Properties of Edible Spanish Seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Soares, C.; Sousa, S.; Machado, S.; Vieira, E.; Carvalho, A.P.; Ramalhosa, M.J.; Morais, S.; Correia, M.; Oliva-Teles, T.; Domingues, V.F.; et al. Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination. Foods 2021, 10, 1366. [Google Scholar] [CrossRef]
- Kramer, R.M.; Shende, V.R.; Motl, N.; Pace, C.N.; Scholtz, J.M. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility. Biophys. J. 2012, 102, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Flores, S.R.L.; Dobbs, J.; Dunn, M.A. Mineral Nutrient Content and Iron Bioavailability in Common and Hawaiian Seaweeds Assessed by an in Vitro Digestion/Caco-2 Cell Model. J. Food Compos. Anal. 2015, 43, 185–193. [Google Scholar] [CrossRef]
- Nakamura, E.; Yokota, H.; Matsui, T. The in Vitro Digestibility and Absorption of Magnesium in Some Edible Seaweeds. J. Sci. Food Agric. 2012, 92, 2305–2309. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.; Chi, L.; Bodnar, W.; Zhang, Z.; Gao, B.; Bian, X.; Stewart, J.; Fry, R.; Lu, K. Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Sandhu, K.V.; Griffin, B.T.; Dinan, T.G.; Cryan, J.F.; Hyland, N.P. Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacol. Rev. 2019, 71, 198–224. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Lorini, C.; Garamella, G.; Bonaccorsi, G. Seaweeds as a “Palatable” Challenge between Innovation and Sustainability: A Systematic Review of Food Safety. Sustainability 2021, 13, 7652. [Google Scholar] [CrossRef]
- Cottier-Cook, E.J.; Nagabhatla, N.; Asri, A.; Beveridge, M.; Bianchi, P.; Bolton, J.; Bondad-Reantaso, M.G.; Brodie, J.; Buschmann, A.; Cabarubias, J.; et al. Ensuring the Sustainable Future of the Rapidly Expanding Global Seaweed Aquaculture Industry—A Vision; UNU Institute on Comparative Regional Integration Studies: Bruges, Belgium, 2021. [Google Scholar]
- Deepika, C.; Wolf, J.; Moheimani, N.; Hankamer, B.; von Herzen, B.; Rao, A.R. Utilisation of Seaweeds in the Australian Market—Commercialisation Strategies: Current Trends and Future Prospects. In Sustainable Global Resources Of Seaweeds Volume 1; Springer International Publishing: Cham, Switzerland, 2022; pp. 265–294. [Google Scholar]
- Blikra, M.J.; Altintzoglou, T.; Løvdal, T.; Rognså, G.; Skipnes, D.; Skåra, T.; Sivertsvik, M.; Noriega Fernández, E. Seaweed Products for the Future: Using Current Tools to Develop a Sustainable Food Industry. Trends Food Sci. Technol. 2021, 118, 765–776. [Google Scholar] [CrossRef]
- Salido, M.; Soto, M.; Seoane, S. Seaweed: Nutritional and Gastronomic Perspective. A Review. Algal Res. 2024, 77, 103357. [Google Scholar] [CrossRef]
Species | Common Name | Proteins | Ashes | Dietary Fibers | Carbohydrates | Lipids |
---|---|---|---|---|---|---|
Alaria esculenta (P) | Winged Kelp | 9–20 | - | 42.86 | 46–51 | 1–2 |
Caulerpa lentillifera (C) | Green Caviar | 10–13 | 24–37 | 33 | 38–59 | 0.86–1.11 |
C. racemosa (C) | Sea Grapes | 17.8–18.4 | 7–19 | 64.9 | 33–41 | 9.8 |
Chondrus crispus (R) | Irish Moss | 11–21 | 21.08 | 10–34 | 55–68 | 1.0–3.0 |
Codium fragile (C) | Dead Man’s Fingers | 8–11 | 21–39 | 5.1 | 39–67 | 0.5–1.5 |
Eisenia bicyclis (P) | Arame | 7.5 | 9.72 | 10–12 | 60.6 | 0.1 |
Fucus spiralis (P) | Spiral Wrack | 10.77 | - | 63.88 | - | - |
F. vesiculosus (P) | Bladder Wrack | 3–14 | 14–30 | 45–59 | 46.8 | 1.9 |
Gracilaria chilensis (R) | Penco | 13.7 | 18.9 | - | 66.1 | 1.3 |
Himanthalia elongata (P) | Sea Spaghetti | 5–15 | 30–36 | 33–37 | 44–61 | 0.5–1.1 |
Laminaria digitata (P) | Oarweed | 8–15 | 37.59 | 37.3 | 48 | 1.0 |
Palmaria palmata (R) | Dulse | 8–35 | 15–30 | 28.57 | 46–56 | 0.7–3 |
Porphyra umbilicalis (R) | Purple laver | 29–39 | 12 | 29–35 | 43 | 0.3 |
Pyropia tenera (R) | Nori | 33–47 | 20.5 | 12–35 | 44.3 | 0.7 |
Pyropia yezoensis (R) | Nori Seaweed | 31–44 | 7.8 | 48.6 | 44.4 | 2.1 |
Saccharina japonica (P) | Sweet Kelp | 7.5 | 26.63 | 10–36 | 51.9 | 1.0 |
S. latissima (P) | Sugar Kelp | 6–26 | 34.78 | 30 | 52–61 | 0.5–1.1 |
Sargassum fusiforme (P) | Hizikia | 11.6 | 19.77 | 17–62 | 30.6 | 1.4 |
Ulva compressa (C) | Tape Weed | 21–27 | 18.6 | 33–45 | 48.2 | 0.3 |
U. lactuca (C) | Sea Lettuce | 10–25 | 12.9 | 29–38 | 36–43 | 0.6–1.6 |
U. australis (C) | Lacy Sea Lettuce | 20–26 | - | - | 47.0 | - |
U. rigida (C) | Glasán | 18–19 | 28.6 | 38–41 | 43–56 | 0.9–2.0 |
U. reticulata (C) | Ribbon Sea Lettuce | 17–20 | - | 65.7 | 50–58 | 1.7–2.3 |
Undaria pinnatifida (P) | Wakame | 12–23 | 26–39 | 16–46 | 45–51 | 1.5–4.5 |
Typology | Techniques | Supported Analysis |
---|---|---|
Spectroscopy | UV/VIS Spectroscopy | Grape-must caramel in vinegar; edible oils degradation; antioxidant compounds |
FTIR-ATR | Detect mycotoxins; detect adulteration in dairy products; authenticity of meat and meat products; identify pathogenic bacteria; quantify sugars; characterize polysaccharides | |
NIRS | Detect meat adulteration; fish quality; analyze constituents in fruits, oils and milk products; quantify adulterated oils; analyze rheological parameters; determine protein concentration and nutritional composition | |
Electrochemical | E-Nose | Detect food spoilage due to bacterial and fungal infections; monitor fermentation processes; detect fraud in food products; monitor the oxidation process; determine the shelf life of macroalgae |
E-Eye | Classification of olive oil; identify food fraud | |
E-tongue | Detection of tetracycline residues in milk; microbiological quality of fish samples; sensory analysis of vegetable milk; quality parameters; characteristics of aqueous extracts from seaweed | |
Imaging | Hyperspectral imaging | Detect fecal contamination; detect chemical residues and contaminants; detection of foodborne pathogens |
Fluorescence | X-ray Fluorescence | Seaweed biomass products; mineral composition of milk; analyze plant material; determination of cadmium; evaluate algae-based supplements; heavy metal contamination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotas, J.; Tavares, J.O.; Silva, R.; Pereira, L. Seaweed as a Safe Nutraceutical Food: How to Increase Human Welfare? Nutraceuticals 2024, 4, 323-362. https://doi.org/10.3390/nutraceuticals4030020
Cotas J, Tavares JO, Silva R, Pereira L. Seaweed as a Safe Nutraceutical Food: How to Increase Human Welfare? Nutraceuticals. 2024; 4(3):323-362. https://doi.org/10.3390/nutraceuticals4030020
Chicago/Turabian StyleCotas, João, Joana O. Tavares, Rita Silva, and Leonel Pereira. 2024. "Seaweed as a Safe Nutraceutical Food: How to Increase Human Welfare?" Nutraceuticals 4, no. 3: 323-362. https://doi.org/10.3390/nutraceuticals4030020
APA StyleCotas, J., Tavares, J. O., Silva, R., & Pereira, L. (2024). Seaweed as a Safe Nutraceutical Food: How to Increase Human Welfare? Nutraceuticals, 4(3), 323-362. https://doi.org/10.3390/nutraceuticals4030020