Effects of Frying Conditions on Volatile Composition and Odor Characteristics of Fried Pepper (Zanthoxylum bungeanum Maxim.) Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Standards
2.2. Materials
2.3. Sample Preparation of FPOs with Different Frying Temperatures
2.4. Sample Preparation of FPOs with Different Frying Times
2.5. Sensory Analysis
2.6. E-Nose Analysis
2.7. Extraction of the Volatile Compounds by SAFE
2.8. GC–MS Analysis
2.9. Identification and Quantitation of Aroma Compounds
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Frying Temperature on Aroma and Sensory Profiles of FPO
3.2. Effect of Frying Times on the Aroma and Sensory Profiles of FPOs
3.3. Correlation between Volatile Components and Sensory Attributes of Pepper Oil by Different Frying Processes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Epifano, F.; Curini, M.; Carla Marcotullio, M.; Genoveese, S. Searching for Novel Cancer Chemopreventive Plants and their Products: The Genus Zanthoxylum. Curr. Drug Targets 2011, 12, 1895–1902. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A Systematic Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Z.; Wang, D.; He, F.; Li, D. Phytochemical profiles and antioxidant and antimicrobial activities of the leaves of Zanthoxylum bungeanum. Sci. World J. 2014, 2014, 181072. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Sun, B.; Ren, F.; Chen, H.; Zhang, N.; Zhang, Y. Characterization of Key Odorants in Hanyuan and Hancheng Fried Pepper (Zanthoxylum bungeanum) Oil. J. Agric. Food Chem. 2020, 68, 6403–6411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Sun, B.; Mao, X.; Chen, H.; Zhang, Y. Flavor formation in frying process of green onion (Allium fistulosum L.) deep-fried oil. Food Res. Int. 2019, 121, 296–306. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Chang, C.; Wu, G.; Zhang, H.; Jin, Q.; Wang, X. Deep-fried flavor: Characteristics, formation mechanisms, and influencing factors. Crit. Rev. Food Sci. Nutr. 2020, 60, 1496–1514. [Google Scholar] [CrossRef]
- Hosseini, H.; Ghorbani, M.; Meshginfar, N.; Mahoonak, A.S. A Review on Frying: Procedure, Fat, Deterioration Progress and Health Hazards. J. Am. Oil Chem. Soc. 2016, 93, 445–466. [Google Scholar] [CrossRef]
- Franklin, L.M.; King, E.S.; Chapman, D.; Byrnes, N.; Huang, G.; Mitchell, A.E. Flavor and Acceptance of Roasted California Almonds during Accelerated Storage. J. Agric. Food Chem. 2018, 66, 1222–1232. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Zhan, P.; Tian, H.; Wang, P.; Lu, C.; Zhao, Y.; Ni, R.; Zhang, Y. Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC-MS, OAV, and multivariate analysis. Food Chem. 2021, 345, 128748. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Wang, P.; Zhan, P.; Tian, H.; Li, T. Effects of different frying temperatures on the aroma profiles of fried mountain pepper (Litsea cubeba (Lour.) Pers.) oils and characterization of their key odorants. Food Chem. 2021, 357, 129786. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.C.; Fagan, C.C.; Parker, J.K. Improved recovery of higher boiling point volatiles during solvent-assisted flavour evaporation. Food Anal. Methods 2021, 14, 2486–2493. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Mo, X.; Xu, Y.; Fan, W. Characterization of Aroma Compounds in Chinese Rice Wine Qu by Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction. J. Agric. Food Chem. 2010, 58, 2462–2469. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; He, C.; Song, H.; Guo, J.; Wang, Y.; Yang, H.; Su, X. A comparative study of aroma-active compounds between dark and milk chocolate: Relationship to sensory perception. J. Sci. Food Agric. 2015, 95, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Roeck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Xiaogen, Y. Aroma constituents and alkylamides of red and green huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J. Agric. Food Chem. 2008, 56, 1689–1696. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, C.; Wang, C.; Chen, H.; Liu, Y.; Li, S.; Lin, D.; Wu, D.; Qin, W. Evaluation of the non-aldehyde volatile compounds formed during deep-fat frying process. Food Chem. 2018, 243, 151–161. [Google Scholar] [CrossRef]
- Bi, S.; Sun, S.; Lao, F.; Liao, X.; Wu, J. Gas chromatography-mass spectrometry combined with multivariate data analysis as a tool for differentiating between processed orange juice samples on the basis of their volatile markers. Food Chem. 2020, 311, 125913. [Google Scholar] [CrossRef] [PubMed]
- Boskou, G.; Salta, F.N.; Chiou, A.; Troullidou, E.; Andrikopoulos, N.K. Content of trans,trans-2,4-decadienal in deep-fried and pan-fried potatoes. Eur. J. Lipid Sci. Technol. 2006, 108, 109–115. [Google Scholar] [CrossRef]
- Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Kumar Pandey, S.; Lal, M. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod. 2018, 125, 131–139. [Google Scholar] [CrossRef]
- Waheed, A.; Mahmud, S.; Akhtar, M.; Nazir, T. Studies on the Components of Essential Oil of Zanthoxylum Armatum by Gc-Ms. Am. J. Anal. Chem. 2011, 02, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Wang, H.; Wang, Z.; Huang, P.; Kan, J. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2022, 375, 131671. [Google Scholar] [CrossRef]
- Selke, E.; Rohwedder, W.K.; Dutton, H.J. Volatile components from trilinolein heated in air. J. Am. Oil Chem. Soc. 1980, 57, 25–30. [Google Scholar] [CrossRef]
- Asaaf, S.; Hadar, Y.; Dosoretz, C.G. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzym. Microb. Technol. 1997, 21, 484–490. [Google Scholar] [CrossRef]
- Dominguez, R.; Gomez, M.; Fonseca, S.; Lorenzo, J.M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef]
NO. | Compound | Concentrations (mg/kg) | Identification | |||
---|---|---|---|---|---|---|
110 °C (FPO1) | 120 °C (FPO2) | 130 °C (FPO3) | 140 °C (FPO4) | |||
1 | Sabinene | 0.57 ± 0.08 a | 0.3 ± 0.02 b | 0.49 ± 0.05 a | 0.5 ± 0.06 a | MS,RI,Std |
2 | β-Myrcene | 28.48 ± 1.2 a | 26.84 ± 1.49 a | 83.45 ± 3.85 b | 38.53 ± 6.58 c | MS,RI,Std |
3 | Copaene | ND a | ND a | 0.18 ± 0.01 b | ND a | MS,RI,Std |
4 | Hydroxyacetone | ND a | ND a | 0.16 ± 0.02 b | 0.19 ± 0.03 b | MS,RI,Std |
5 | Limonene | 121.1 ± 2.63 a | 183.99 ± 3.85 b | 261.13 ± 5.45 c | 218.24 ± 5.48 d | MS,RI,Std |
6 | 1,8-Cineole | 3.14 ± 0.59 a | 2.27 ± 0.12 b | 5.95 ± 0.11 c | 4.53 ± 0.84 d | MS,RI,Std |
7 | (E,E)-2,4-Hexadienal | ND a | ND a | 0.44 ± 0.04 b | ND a | MS,RI,Std |
8 | (E,Z)-2,6-Dimethyl-2,4,6-octatriene | 0.03 ± 0 a | ND b | 2.53 ± 0.12 c | 0.04 ± 0 a | MS,RI |
9 | β-Ocimene | 1.39 ± 0.28 a | 3.46 ± 0.16 b | 3.29 ± 0.05 b | 3.03 ± 0.51 c | MS,RI,Std |
10 | δ-3-Carene | 0.11 ± 0.02 a | 0.02 ± 0 b | 7.15 ± 0.14 c | 0.1 ± 0.02 a | MS,RI |
11 | p-Cymene | 0.34 ± 0.06 a | 0.28 ± 0.03 b | 1.44 ± 0.06 c | 0.47 ± 0.11 c | MS,RI,Std |
12 | Terpinolene | ND a | ND a | 0.04 ± 0 b | 0.13 ± 0.02 c | MS,RI,Std |
13 | Octanal | ND a | ND a | 0.08 ± 0.01 b | 0.18 ± 0.02 c | MS,RI,Std |
14 | (E)-2-Heptenal | ND a | ND a | 0.88 ± 0.05 b | 0.92 ± 0.03 b | MS,RI,Std |
15 | β-Terpineol | ND a | ND a | 0.34 ± 0.01 b | ND a | MS,RI,Std |
16 | Perillen | 0.55 ± 0.09 a | 0.28 ± 0.01 b | 0.21 ± 0.03 c | 0.59 ± 0.11 a | MS,RI,Std |
17 | 2-Acetylfuran | ND a | ND a | 0.08 ± 0.01 b | 031 ± 0.01 c | MS,RI,Std |
18 | (E)-Limonene oxide | 0.41 ± 0.06 a | 0.36 ± 0.01 b | 0.49 ± 0.14 a | 0.77 ± 0.05 c | MS,RI,Std |
19 | 1-Octen-3-ol | ND a | ND a | 0.14 ± 0.01 b | 0.14 ± 0.02 b | MS,RI,Std |
20 | 5-Methyl furfural | ND a | 0.13 ± 0.01 b | 0.13 ± 0.01 b | 0.23 ± 0.05 c | MS,RI,Std |
21 | Linalool oxide | 1.79 ± 0.33 a | 1.2 ± 0.03 b | 1.83 ± 0.07 a | ND c | MS,RI,Std |
22 | (E,E)-2,4-Heptadienal | 0.13 ± 0.02 a | 0.2 ± 0.01 b | 1.04 ± 0.15 c | 2.54 ± 0.42 d | MS,RI,Std |
23 | Perillalcohol | 0.13 ± 0.02 a | ND b | ND b | ND b | MS,RI,Std |
24 | Dihydrocarvone | 0.07 ± 0.01 a | ND b | 0.16 ± 0.02 c | ND a | MS,RI,Std |
25 | β-Caryophyllene | ND a | ND a | 0.54 ± 0 b | ND a | MS,RI,Std |
26 | Linalool | 44.56 ± 2.61 a | 65.29 ± 1.09 b | 85.12 ± 1.01 c | 30.98 ± 0.78 d | MS,RI,Std |
27 | Linalyl acetate | 9.18 ± 1.56 a | 7.17 ± 0.77 b | 47.33 ± 1.07 c | 15.33 ± 1.88 d | MS,RI,Std |
28 | (E)-2-Decenal | ND a | ND a | ND a | 0.23 ± 0.05 b | MS,RI,Std |
29 | Hotrienol | 0.48 ± 0.11 a | 0.41 ± 0.01 a | 0.28 ± 0.01 b | 1.16 ± 0.21 c | MS,RI,Std |
30 | (E)-p-2,8-Menadien-1-ol | 0.14 ± 0.02 a | 0.1 ± 0.01 b | 0.34 ± 0 c | 0.21 ± 0.03 d | MS,RI |
31 | 4-(1-Methylethyl)-2-cyclohexen-1-one | ND a | ND a | 0.44 ± 0.02 b | ND a | MS,RI |
32 | Terpinyl acetate | 0.16 ± 0.02 a | ND b | 1.56 ± 0.14 c | 0.46 ± 0.06 d | MS,RI,Std |
33 | α-Terpineol | ND a | ND a | 1.38 ± 0.04 b | 0.2 ± 0.04 c | MS,RI,Std |
34 | (+)-Isomenthol | 0.73 ± 0.12 a | 0.34 ± 0.02 b | 0.25 ± 0.01 c | 0.73 ± 0.13 a | MS,RI |
35 | (2E,4E)-2,4-Decanedienal | ND a | ND a | ND a | 0.55 ± 0.12 b | MS,RI,Std |
36 | Neryl acetate | ND a | ND a | 0.41 ± 0.03 b | ND a | MS,RI,Std |
37 | Geranyl acetate | 0.17 ± 0.04 a | ND b | 0.6 ± 0.06 c | 0.2 ± 0.03 a | MS,RI,Std |
38 | Piperitone | 0.28 ± 0.06 a | 0.17 ± 0.02 b | 0.26 ± 0 a | ND c | MS,RI,Std |
39 | Carveol | 0.59 ± 0.12 a | 0.26 ± 0.01 b | 0.99 ± 0.02 c | 0.46 ± 0.09 d | MS,RI,Std |
40 | (-)-Carveol | ND a | ND a | 0.84 ± 0.04 b | ND a | MS,RI,Std |
41 | Phenylethyl alcohol | ND a | ND a | 0.77 ± 0.1 b | ND a | MS,RI,Std |
42 | p-1,8-Menadien-7-ol | ND a | ND a | 0.39 ± 0.02 b | ND a | MS,RI |
43 | 2-Acetyl pyrrole | ND a | ND a | 0.19 ± 0.01 b | ND a | MS,RI,Std |
44 | Octanoic acid | ND a | ND a | 1.4 ± 0.12 b | ND a | MS,RI,Std |
45 | Nonanoic acid | ND a | ND a | 1.48 ± 0.14 b | ND a | MS,RI,Std |
46 | Decanoic acid | ND a | ND a | 0.47 ± 0.01 b | ND a | MS,RI,Std |
NO. | Compound | Concentrations (mg/kg) | Identification | ||
---|---|---|---|---|---|
10 min (FPO5) | 20 min (FPO6) | 30 min (FPO7) | |||
1 | Sabinene | 0.67 ± 0.05 a | 0.49 ± 0.05 b | 0.41 ± 0.05 b | MS,RI,Std |
2 | β-Myrcene | 91.22 ± 1.94 a | 83.45 ± 3.85 b | 71.52 ± 2.71 c | MS,RI,Std |
3 | Copaene | ND a | 0.18 ± 0.01 b | ND a | MS,RI,Std |
4 | Hydroxyacetone | ND a | 0.16 ± 0.02 b | 0.09 ± 0.01 c | MS,RI,Std |
5 | Limonene | 270.88 ± 1.39 a | 261.13 ± 5.45 a | 198.79 ± 10.99 b | MS,RI,Std |
6 | 1,8-Cineole | 4.2 ± 0.39 a | 5.95 ± 0.11 b | 6.27 ± 0.44 c | MS,RI,Std |
7 | (E,E)-2,4-Hexadienal | 0.08 ± 0.01 a | 0.44 ± 0.04 b | 0.04 ± 0 c | MS,RI,Std |
8 | (E,Z)-2,6-Dimethyl-2,4,6-octatriene | 0.09 ± 0.01 a | 2.53 ± 0.12 b | 0.08 ± 0.01 a | MS,RI |
9 | β-Ocimene | 0.97 ± 0.06 a | 3.29 ± 0.05 b | 1.59 ± 0.18 c | MS,RI,Std |
10 | δ-3-Carene | 5.16 ± 0.02 a | 7.15 ± 0.14 b | 6.24 ± 0.03 a | MS,RI,Std |
11 | p-Cymene | 1.41 ± 0.03 a | 1.44 ± 0.06 a | 1.32 ± 0.04 b | MS,RI,Std |
12 | Terpinolene | 0.05 ± 0.01 a | 0.04 ± 0.01 a | 0.06 ± 0.01 a | MS,RI,Std |
13 | Octanal | 0.1 ± 0.01 a | 0.08 ± 0.01 a | 0.09 ± 0.01 a | MS,RI,Std |
14 | (E)-2-Heptenal | 0.24 ± 0.01 a | 0.88 ± 0.05 b | 0.51 ± 0.07 c | MS,RI,Std |
15 | β-Terpineol | ND a | 0.13 ± 0.01 b | 0.1 ± 0.01 b | MS,RI,Std |
16 | Perillen | 0.58 ± 0.05 a | 0.34 ± 0.01 b | 0.65 ± 0.08 c | MS,RI,Std |
17 | 2-Acetylfuran | ND a | 0.08 ± 0.01 b | ND a | MS,RI,Std |
18 | (E)-Limonene oxide | 0.49 ± 0.01 a | 0.49 ± 0.14 a | 0.53 ± 0.12 a | MS,RI,Std |
19 | 1-Octen-3-ol | ND a | 0.14 ± 0.01 b | 0.1 ± 0.01 b | MS,RI,Std |
20 | 5-Methyl furfural | ND a | 0.13 ± 0.01 b | ND a | MS,RI,Std |
21 | Linalool oxide | 1.91 ± 0.15 a | 1.83 ± 0.07 a | 1.91 ± 0.29 a | MS,RI,Std |
22 | (E,E)-2,4-Heptadienal | 0.41 ± 0.03 a | 1.04 ± 0.15 b | 1.17 ± 0.14 b | MS,RI,Std |
23 | Dihydrocarvone | ND a | 0.16 ± 0.06 b | ND a | MS,RI,Std |
24 | β-Caryophyllene | ND a | 0.54 ± 0 b | ND a | MS,RI,Std |
25 | Linalool | 64.64 ± 0.65 a | 85.12 ± 1.01 b | 75.36 ± 2.82 c | MS,RI,Std |
26 | Linalyl acetate | 30.68 ± 0.64 a | 47.33 ± 1.07 b | 30.65 ± 0.14 a | MS,RI,Std |
27 | (E)-2-Decenal | 0.09 ± 0.01 a | ND b | ND b | MS,RI,Std |
28 | Hotrienol | 0.78 ± 0.06 a | 0.28 ± 0.01 b | 1.24 ± 0.16 c | MS,RI |
29 | (E)-p-2,8-Menadien-1-ol | 0.17 ± 0.01 a | 0.34 ± 0 b | 0.2 ± 0.01 a | MS,RI |
30 | 4-(1-Methylethyl)-2-cyclohexen-1-one | ND a | 0.44 ± 0.02 b | 0.35 ± 0.03 b | MS,RI |
31 | Terpinyl acetate | ND a | 1.56 ± 0.14 b | ND a | MS,RI,Std |
32 | α-Terpineol | 0.22 ± 0.01 a | 1.38 ± 0.04 b | 0.18 ± 0.01 a | MS,RI,Std |
33 | (+)-Isomenthol | 0.82 ± 0.05 a | 0.25 ± 0.01 b | 1.02 ± 0.11 c | MS,RI |
34 | (2E,4E)-2,4-Decanedienal | ND a | ND a | 0.47 ± 0.03 b | MS,RI,Std |
35 | Neryl acetate | ND a | 0.41 ± 0.03 b | 0.07 ± 0.01 c | MS,RI,Std |
36 | Geranyl acetate | 0.16 ± 0 a | 0.6 ± 0.06 b | 0.19 ± 0.01 a | MS,RI,Std |
37 | Piperitone | 0.3 ± 0.02 a | 0.26 ± 0 a | 0.3 ± 0.03 a | MS,RI,Std |
38 | Carveol | 0.64 ± 0.06 a | 0.99 ± 0.02 b | 0.79 ± 0.08 c | MS,RI,Std |
39 | (-)-Carveol | ND a | 0.84 ± 0.04 b | 0.46 ± 0.02 c | MS,RI,Std |
40 | Phenylethyl alcohol | ND a | 0.77 ± 0.1 b | ND a | MS,RI,Std |
41 | p-1,8-Menadien-7-ol | ND a | 0.39 ± 0.02 b | 0.58 ± 0.03 c | MS,RI |
42 | 2-Acetyl pyrrole | ND a | 0.19 ± 0.01 b | 0.63 ± 0.08 c | MS,RI,Std |
43 | Octanoic acid | ND a | 1.4 ± 0.12 b | 1.7 ± 0.04 c | MS,RI,Std |
44 | Nonanoic acid | ND a | 1.48 ± 0.14 b | ND a | MS,RI,Std |
45 | Decanoic acid | ND a | 0.47 ± 0.01 b | ND a | MS,RI,Std |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Qi, N.; Sun, J.; Chen, H.; Zhang, N.; Sun, B. Effects of Frying Conditions on Volatile Composition and Odor Characteristics of Fried Pepper (Zanthoxylum bungeanum Maxim.) Oil. Foods 2022, 11, 1661. https://doi.org/10.3390/foods11111661
Liu R, Qi N, Sun J, Chen H, Zhang N, Sun B. Effects of Frying Conditions on Volatile Composition and Odor Characteristics of Fried Pepper (Zanthoxylum bungeanum Maxim.) Oil. Foods. 2022; 11(11):1661. https://doi.org/10.3390/foods11111661
Chicago/Turabian StyleLiu, Ruijia, Nan Qi, Jie Sun, Haitao Chen, Ning Zhang, and Baoguo Sun. 2022. "Effects of Frying Conditions on Volatile Composition and Odor Characteristics of Fried Pepper (Zanthoxylum bungeanum Maxim.) Oil" Foods 11, no. 11: 1661. https://doi.org/10.3390/foods11111661
APA StyleLiu, R., Qi, N., Sun, J., Chen, H., Zhang, N., & Sun, B. (2022). Effects of Frying Conditions on Volatile Composition and Odor Characteristics of Fried Pepper (Zanthoxylum bungeanum Maxim.) Oil. Foods, 11(11), 1661. https://doi.org/10.3390/foods11111661