High SPINK4 Expression Predicts Poor Outcomes among Rectal Cancer Patients Receiving CCRT
Abstract
:1. Introduction
2. Materials and Methods
2.1. An Evaluation of the Gene Expression Profiles in Rectal Cancer
2.2. Patient Enrollment
2.3. Histopathological and Immunohistochemical Assessments
2.4. Statistical Analysis
3. Results
3.1. SPINK4 Gene Upregulation Is Predictive of Poor Response to CCRT in Rectal Adenocarcinoma
3.2. Clinicopathological Features of Our Rectal Cancer Cohort
3.3. Associations between SPINK4 Expression and Clinicopathological Characteristics
3.4. Survival Analysis and Prognostic Utility of SPINK4 Expression
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Availability of Data and Materials:
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA A Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y. Rectal Cancer in Asian vs. Western Countries: Why the Variation in Incidence? Curr. Treat. Options Oncol. 2017, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- De Caluwé, L.; Van Nieuwenhove, Y.; Ceelen, W.P. Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Bosset, J.F.; Calais, G.; Mineur, L.; Maingon, P.; Stojanovic-Rundic, S.; Bensadoun, R.J.; Bardet, E.; Beny, A.; Ollier, J.C.; Bolla, M.; et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: Long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014, 15, 184–190. [Google Scholar] [CrossRef]
- Kai, F.; Drain, A.P.; Weaver, V.M. The Extracellular Matrix Modulates the Metastatic Journey. Dev. Cell 2019, 49, 332–346. [Google Scholar] [CrossRef]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agerberth, B.; Söderling-Barros, J.; Jörnvall, H.; Chen, Z.W.; Ostenson, C.G.; Efendić, S.; Mutt, V. Isolation and characterization of a 60-residue intestinal peptide structurally related to the pancreatic secretory type of trypsin inhibitor: Influence on insulin secretion. Proc. Natl. Acad. Sci. USA 1989, 86, 8590–8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metsis, M.; Cintra, A.; Solfrini, V.; Ernfors, P.; Bortolotti, F.; Morrasutti, D.G.; Ostenson, C.G.; Efendic, S.; Agerberth, B.; Mutt, V.; et al. Molecular cloning of PEC-60 and expression of its mRNA and peptide in the gastrointestinal tract and immune system. J. Biol. Chem. 1992, 267, 19829–19832. [Google Scholar] [CrossRef]
- Xie, M.; Li, K.; Li, J.; Lu, D.; Hu, B. Association and diagnostic value of serum SPINK4 in colorectal cancer. PeerJ 2019, 7, e6679. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Q.; Ghareeb, W.M.; Zhang, Y.; Lu, X.; Huang, Y.; Huang, S.; Sun, Y.; Lin, J.; Liu, J.; et al. Downregulated SPINK4 is associated with poor survival in colorectal cancer. BMC Cancer 2019, 19, 1258. [Google Scholar] [CrossRef] [Green Version]
- Gene Ontology (GO) Database. Available online: http://geneontology.org/ (accessed on 24 June 2021).
- Zhang, X.; Li, C.F.; Zhang, L.; Wu, C.Y.; Han, L.; Jin, G.; Rezaeian, A.H.; Han, F.; Liu, C.; Xu, C.; et al. TRAF6 Restricts p53 Mitochondrial Translocation, Apoptosis, and Tumor Suppression. Mol. Cell 2016, 64, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int. J. Colorectal. Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.C.; Wu, W.J.; Li, W.M.; Shiao, M.S.; Shiue, Y.L.; Li, C.F. SLC14A1 prevents oncometabolite accumulation and recruits HDAC1 to transrepress oncometabolite genes in urothelial carcinoma. Theranostics 2020, 10, 11775–11793. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, N.; Ohmuraya, M.; Hirota, M.; Ida, S.; Wang, J.; Takamori, H.; Higashiyama, S.; Baba, H.; Yamamura, K. Serine protease inhibitor Kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor. Mol. Cancer Res. 2009, 7, 1572–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, R.; Pandey, S.K.; Goel, S.; Bhatia, V.; Shukla, S.; Jing, X.; Dhanasekaran, S.M.; Ateeq, B. SPINK1 promotes colorectal cancer progression by downregulating Metallothioneins expression. Oncogenesis 2015, 4, e162. [Google Scholar] [CrossRef]
- Tiwari, R.; Manzar, N.; Bhatia, V.; Yadav, A.; Nengroo, M.A.; Datta, D.; Carskadon, S.; Gupta, N.; Sigouros, M.; Khani, F.; et al. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat. Commun. 2020, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Lu, C.; Huang, Y.; Zhou, J.; Wang, X.; Liu, C.; Chen, J.; Le, H. SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker. BMB Rep. 2018, 51, 648–653. [Google Scholar] [CrossRef] [Green Version]
- Mehner, C.; Miller, E.; Hockla, A.; Coban, M.; Weroha, S.J.; Radisky, D.C.; Radisky, E.S. Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene 2020, 39, 6606–6618. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Lamontagne, J.; Sun, A.; Pinkerton, M.; Block, T.; Lu, X. Role of the inflammatory protein serine protease inhibitor Kazal in preventing cytolytic granule granzyme A-mediated apoptosis. Immunology 2011, 134, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lamontagne, J.; Lu, F.; Block, T.M. Tumor-associated protein SPIK/TATI suppresses serine protease dependent cell apoptosis. Apoptosis 2008, 13, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Rockett, J.C.; Patrizio, P.; Schmid, J.E.; Hecht, N.B.; Dix, D.J. Gene expression patterns associated with infertility in humans and rodent models. Mutat. Res. 2004, 549, 225–240. [Google Scholar] [CrossRef]
- Blumenthal, M.N. The role of genetics in the development of asthma and atopy. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Porte, D., Jr. Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes 1991, 40, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Tomás, E.; Lin, Y.S.; Dagher, Z.; Saha, A.; Luo, Z.; Ido, Y.; Ruderman, N.B. Hyperglycemia and insulin resistance: Possible mechanisms. Ann. N. Y. Acad. Sci. 2002, 967, 43–51. [Google Scholar] [CrossRef]
- Jiralerspong, S.; Palla, S.L.; Giordano, S.H.; Meric-Bernstam, F.; Liedtke, C.; Barnett, C.M.; Hsu, L.; Hung, M.C.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 2009, 27, 3297–3302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J.; Zheng, Z.J.; Kan, H.; Song, Y.; Cui, W.; Zhao, G.; Kip, K.E. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: A meta-analysis. Diabetes Care 2011, 34, 2323–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudle, A.S.; Kim, H.J.; Tepper, J.E.; O’Neil, B.H.; Lange, L.A.; Goldberg, R.M.; Bernard, S.A.; Calvo, B.F.; Meyers, M.O. Diabetes mellitus affects response to neoadjuvant chemoradiotherapy in the management of rectal cancer. Ann. Surg. Oncol. 2008, 15, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Tang, M.X.; Shea, S.; Mayeux, R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004, 63, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004, 53, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Adler, L.; Karathia, H.; Carmel, N.; Rabinovich, S.; Auslander, N.; Keshet, R.; Stettner, N.; Silberman, A.; Agemy, L.; et al. Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures. Cell 2018, 174, 1559–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallois, C.; Pernot, S.; Zaanan, A.; Taieb, J. Colorectal Cancer: Why Does Side Matter? Drugs 2018, 78, 789–798. [Google Scholar] [CrossRef] [PubMed]
- STRING Database. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=SPINK4#pathways_interactions (accessed on 24 June 2021).
- Chien, J.; Aletti, G.; Baldi, A.; Catalano, V.; Muretto, P.; Keeney, G.L.; Kalli, K.R.; Staub, J.; Ehrmann, M.; Cliby, W.A.; et al. Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J. Clin. Investig. 2006, 116, 1994–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Human Protein Atlas Database. Available online: https://www.proteinatlas.org/ENSG00000166033-HTRA1/pathology (accessed on 24 June 2021).
- Baldi, A.; De Luca, A.; Morini, M.; Battista, T.; Felsani, A.; Baldi, F.; Catricalà, C.; Amantea, A.; Noonan, D.M.; Albini, A.; et al. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 2002, 21, 6684–6688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, H.; Wang, C.; Xu, W.; Sun, J.; Zhao, W. Serine protease HtrA1 as an inhibitor on proliferation invasion and migration of gastric cancer. Med. Oncol. 2015, 32, 112. [Google Scholar] [CrossRef]
- Xiong, Z.; Fu, Z.; Shi, J.; Jiang, X.; Wan, H. HtrA1 Down-regulation Induces Cisplatin Resistance in Colon Cancer by Increasing XIAP and Activating PI3K/Akt Pathway. Ann. Clin. Lab. Sci. 2017, 47, 264–270. [Google Scholar]
- Ishaque, N.; Abba, M.L.; Hauser, C.; Patil, N.; Paramasivam, N.; Huebschmann, D.; Leupold, J.H.; Balasubramanian, G.P.; Kleinheinz, K.; Toprak, U.H.; et al. Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nat. Commun. 2018, 9, 4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.; Xie, J.; Yang, Q.; Yang, J.; Luo, Y.; Xi, L.; Guo, J.; Yang, G.; Jin, W.; Wang, G. Serine peptidase inhibitor Kazal type III (SPINK3) promotes BRL-3A cell proliferation by targeting the PI3K-AKT signaling pathway. J. Cell Physiol. 2020, 235, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Basnet, H.; Kaygusuz, Y.; Laughney, A.M.; He, L.; Sharma, R.; O’Rourke, K.P.; Reuter, V.P.; Huang, Y.H.; Turkekul, M.; et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 2020, 1, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Terraneo, N.; Jacob, F.; Peitzsch, C.; Dubrovska, A.; Krudewig, C.; Huang, Y.L.; Heinzelmann-Schwarz, V.; Schibli, R.; Béhé, M.; Grünberg, J. L1 Cell Adhesion Molecule Confers Radioresistance to Ovarian Cancer and Defines a New Cancer Stem Cell Population. Cancers 2020, 12, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valiente, M.; Obenauf, A.C.; Jin, X.; Chen, Q.; Zhang, X.H.; Lee, D.J.; Chaft, J.E.; Kris, M.G.; Huse, J.T.; Brogi, E.; et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 2014, 156, 1002–1016. [Google Scholar] [CrossRef] [Green Version]
- Norberg, A.; Gruber, S.; Angelucci, F.; Renlund, S.; Wadensten, H.; Efendic, S.; Ostenson, C.G.; Jörnvall, H.; Sillard, R.; Mathé, A.A. Identification of the bioactive peptide PEC-60 in brain. Cell Mol. Life Sci. 2003, 60, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Bajou, K.; Noël, A.; Gerard, R.D.; Masson, V.; Brunner, N.; Holst-Hansen, C.; Skobe, M.; Fusenig, N.E.; Carmeliet, P.; Collen, D.; et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 1998, 4, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Kanse, S.M.; Kost, C.; Wilhelm, O.G.; Andreasen, P.A.; Preissner, K.T. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp. Cell Res. 1996, 224, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Abe, J.; Urano, T.; Konno, H.; Erhan, Y.; Tanaka, T.; Nishino, N.; Takada, A.; Nakamura, S. Larger and more invasive colorectal carcinoma contains larger amounts of plasminogen activator inhibitor type 1 and its relative ratio over urokinase receptor correlates well with tumor size. Cancer 1999, 86, 2602–2611. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, H.; Davids, J.; Bryant, M.; Lucas, A. Serpins for diagnosis and therapy in cancer. Cardiovasc. Hematol. Disord. Drug Targets 2013, 13, 123–132. [Google Scholar] [CrossRef]
- Azouz, N.P.; Ynga-Durand, M.A.; Caldwell, J.M.; Jain, A.; Rochman, M.; Fischesser, D.M.; Ray, L.M.; Bedard, M.C.; Mingler, M.K.; Forney, C.; et al. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Lun, Y.; Zhou, X.; He, S.; Gao, L.; Liu, Y.; He, Z.; Li, B.; Wang, C. Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharm. Res. 2019, 143, 73–85. [Google Scholar] [CrossRef]
- Shyu, R.Y.; Wang, C.H.; Wu, C.C.; Wang, L.K.; Chen, M.L.; Kuo, C.Y.; Lee, M.C.; Lin, Y.Y.; Tsai, F.M. Tazarotene-Induced Gene 1 (TIG1) Interacts with Serine Protease Inhibitor Kazal-Type 2 (SPINK2) to Inhibit Cellular Invasion of Testicular Carcinoma Cells. BioMed Res. Int. 2019, 2019, 6171065. [Google Scholar] [CrossRef] [Green Version]
Probe | ComparisonLog Ratio | Comparison p-Value | Gene Symbol | Gene Name | Biological Process | Molecular Function |
---|---|---|---|---|---|---|
223447_at | 2.9382 | <0.0001 | REG4 | regenerating islet-derived family; member 4 | sugar-binding | |
1554436_a_at | 2.9364 | <0.0001 | ||||
210107_at | 2.1851 | 0.0001 | CLCA1 | chloride channel; calcium-activated; family member 1 | integral to plasma membrane | chloride channel activity |
203649_s_at | 1.9828 | <0.0001 | PLA2G2A | phospholipase A2; group IIA (platelets; synovial fluid) | endoplasmic reticulum, extracellular region, membrane | calcium ion-binding, calcium-dependent phospholipase A2 activity, hydrolase activity, metal ion-binding, phospholipase A2 activity, protein-binding |
207214_at | 1.891 | 0.0001 | SPINK4 | serine peptidase inhibitor; Kazal-type 4 | endopeptidase inhibitor activity, serine-type endopeptidase inhibitor activity | |
205825_at | 1.8447 | <0.0001 | PCSK1 | proprotein convertase subtilisin/kexin-type 1 | cytoplasmic vesicle | calcium ion-binding, hydrolase activity, peptidase activity, proprotein convertase 1 activity, serine-type endopeptidase activity, subtilase activity |
228241_at | 1.8125 | <0.0001 | AGR3 | anterior gradient homolog 3 (Xenopus laevis) | ||
205927_s_at | 1.7848 | <0.0001 | CTSE | cathepsin E | endosome | aspartic-type endopeptidase activity, cathepsin E activity, hydrolase activity, pepsin A activity, peptidase activity |
204818_at | 1.6874 | <0.0001 | HSD17B2 | hydroxysteroid (17-beta) dehydrogenase 2 | endoplasmic reticulum membrane, integral to membrane, membrane | estradiol 17-beta-dehydrogenase activity, oxidoreductase activity |
204673_at | 1.6574 | 0.0002 | MUC2 | mucin 2; oligomeric mucus/gel-forming | extracellular region, extracellular space, proteinaceous extracellular matrix | extracellular matrix constituent; lubricant activity, extracellular matrix structural constituent |
203240_at | 1.5838 | 0.0004 | FCGBP | Fc fragment of IgG binding protein | membrane | chloride channel activity |
Parameter | No. | SPINK4 Expression | p-Value | ||
---|---|---|---|---|---|
Low Exp. | High Exp. | ||||
Gender | Male | 108 | 48 | 60 | 0.058 |
Female | 64 | 38 | 26 | ||
Age | <70 | 106 | 49 | 57 | 0.210 |
≧70 | 66 | 37 | 29 | ||
Pre-Tx tumor status (Pre-T) | T1–T2 | 81 | 52 | 29 | <0.001 * |
T3–T4 | 91 | 34 | 57 | ||
Pre-Tx nodal status (Pre-N) | N0 | 125 | 66 | 59 | 0.231 |
N1–N2 | 47 | 20 | 27 | ||
Post-Tx tumor status (Post-T) | T1–T2 | 86 | 62 | 24 | <0.001 * |
T3–T4 | 86 | 24 | 62 | ||
Post-Tx nodal status (Post-N) | N0 | 123 | 71 | 52 | 0.001 * |
N1–N2 | 49 | 15 | 34 | ||
Vascular invasion | Absent | 157 | 83 | 74 | 0.015 * |
Present | 15 | 3 | 12 | ||
Perineurial invasion | Absent | 167 | 86 | 81 | 0.023 * |
Present | 5 | 0 | 5 | ||
Tumor regression grade | Grade 0–1 | 37 | 10 | 27 | 0.001 * |
Grade 2~3 | 118 | 63 | 55 | ||
Grade 4 | 17 | 13 | 4 |
Parameter | No. of Cases | DSS | LRFS | MeFS | ||||
---|---|---|---|---|---|---|---|---|
No. of Events | p-Value | No. of Events | p-Value | No. of Events | p-Value | |||
Gender | Male | 108 | 20 | 0.9026 | 7 | 0.2250 | 17 | 0.3520 |
Female | 64 | 11 | 20 | 14 | ||||
Age | <70 | 106 | 19 | 0.8540 | 18 | 0.6615 | 20 | 0.7427 |
≧70 | 66 | 12 | 9 | 11 | ||||
Pre-Tx tumor status (Pre-T) | T1–T2 | 81 | 10 | 0.0776 | 10 | 0.2261 | 11 | 0.1745 |
T3–T4 | 91 | 21 | 17 | 20 | ||||
Pre-Tx nodal status (Pre-N) | N0 | 125 | 19 | 0.0711 | 15 | 0.0070 * | 19 | 0.0973 |
N1–N2 | 47 | 21 | 12 | 12 | ||||
Post-Tx tumor status (Post-T) | T1–T2 | 86 | 7 | 0.0006 * | 7 | 0.0040 * | 8 | 0.0033 * |
T3–T4 | 86 | 24 | 20 | 23 | ||||
Post-Tx nodal status (Post-N) | N0 | 123 | 21 | 0.5998 | 16 | 0.1320 | 20 | 0.4634 |
N1–N2 | 49 | 10 | 11 | 11 | ||||
Vascular invasion | Absent | 157 | 25 | 0.0184 * | 21 | 0.0028 * | 27 | 0.4470 |
Present | 15 | 6 | 6 | 4 | ||||
Perineurial invasion | Absent | 167 | 29 | 0.2559 | 25 | 0.0940 | 30 | 0.9083 |
Present | 5 | 2 | 2 | 1 | ||||
Tumor regression grade | Grade 0–1 | 37 | 13 | 0.0038 * | 10 | 0.0090 * | 14 | 0.0006 * |
Grade 2~3 | 118 | 17 | 17 | 16 | ||||
Grade 4 | 17 | 1 | 0 | 1 | ||||
Down stage after CCRT | Non-Sig. | 150 | 29 | 0.1651 | 24 | 0.5961 | 30 | 0.0853 |
Sig. (>=2) | 22 | 2 | 3 | 1 | ||||
SPINK4 expression | Low Exp. | 86 | 4 | <0.0001 * | 7 | 0.0017 * | 4 | <0.0001 * |
High Exp. | 86 | 27 | 20 | 27 |
Parameter | DSS | LRFS | MeFS | ||||||
---|---|---|---|---|---|---|---|---|---|
H.R | 95% CI | p-Value | H.R | 95% CI | p-Value | H.R | 95% CI | p-Value | |
Tumor regression grade | 1.869 | 0.951–3.717 | 0.069 | 2.506 | 1.174–5.376 | 0.018 * | 2.155 | 1.085–4.292 | 0.028 * |
SPINK4 expression | 5.310 | 1.697–16.613 | 0.004 * | 1.997 | 0.739–5.399 | 0.173 | 6.000 | 1.969–18.279 | 0.002 * |
Vascular invasion | 1.851 | 0.737–4.650 | 0.190 | 3.096 | 1.133–8.458 | 0.028 * | - | - | - |
Post-Tx tumor status (Post-T) | 1.517 | 0.610–3.772 | 0.370 | 1.639 | 0.616–4.356 | 0.322 | 1.233 | 0.515–2.952 | 0.638 |
Pre-Tx nodal status (Pre-N) | - | - | - | 0.844 | 0.364–1.958 | 0.693 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-J.; Tian, Y.-F.; Chou, C.-L.; Chan, T.-C.; He, H.-L.; Li, W.-S.; Tsai, H.-H.; Li, C.-F.; Lai, H.-Y. High SPINK4 Expression Predicts Poor Outcomes among Rectal Cancer Patients Receiving CCRT. Curr. Oncol. 2021, 28, 2373-2384. https://doi.org/10.3390/curroncol28040218
Chen T-J, Tian Y-F, Chou C-L, Chan T-C, He H-L, Li W-S, Tsai H-H, Li C-F, Lai H-Y. High SPINK4 Expression Predicts Poor Outcomes among Rectal Cancer Patients Receiving CCRT. Current Oncology. 2021; 28(4):2373-2384. https://doi.org/10.3390/curroncol28040218
Chicago/Turabian StyleChen, Tzu-Ju, Yu-Feng Tian, Chia-Lin Chou, Ti-Chun Chan, Hong-Lin He, Wan-Shan Li, Hsin-Hwa Tsai, Chien-Feng Li, and Hong-Yue Lai. 2021. "High SPINK4 Expression Predicts Poor Outcomes among Rectal Cancer Patients Receiving CCRT" Current Oncology 28, no. 4: 2373-2384. https://doi.org/10.3390/curroncol28040218
APA StyleChen, T.-J., Tian, Y.-F., Chou, C.-L., Chan, T.-C., He, H.-L., Li, W.-S., Tsai, H.-H., Li, C.-F., & Lai, H.-Y. (2021). High SPINK4 Expression Predicts Poor Outcomes among Rectal Cancer Patients Receiving CCRT. Current Oncology, 28(4), 2373-2384. https://doi.org/10.3390/curroncol28040218