Real-Life Effectivity of Dose Intensity Reduction of First-Line mFOLFIRI-Based Treatment of Metastatic Colorectal Cancers: Sometimes Less Is More
Abstract
:1. Introduction
“… findings suggested that reductions in RDI … due to treatment delays and dose reductions in response to adverse events do not necessarily lead to shortened TTF and OS”[5].
“… the need to reduce chemotherapy dosage due to side effects does not indicate a worse prognosis in our retrospective analysis. … this can in part be explained by better adaption to interindividual pharmacokinetics and a longer time of treatment”[6].
“… it seems unreasonable to try to maintain a high RDI, with a greater risk of toxicity, in palliative patients whose quality of life should be maintained as long as possible”[7].
“Maintenance (therapy) appeared to reduce cumulative grade 3/4 toxicity as compared to the continuous strategy while showing comparable efficacy”[8].
“The incorporation of treatment breaks and the use of staged treatment strategies appear to result in little or no detriment to overall survival. Treatment breaks also provide periods off chemotherapy that are highly valued by patients as well as resulting in a lower risk of significant toxicity”[9].
“The use of treatment de-escalation in mCRC is prevalent and these modifications do not appear to result in inferior outcomes.”[10].
2. Methods
3. Results
3.1. Impact of DI Reduction on Treatment Outcomes
3.2. DI Reducing Deviations
3.2.1. Cycle-Time Extension
3.2.2. Dose Reduction
3.2.3. Drug Holiday
3.2.4. Relative Dose Intensity (RDI)
4. Discussion
4.1. Elements of mFOLFIRI-Based Treatments
4.2. Obstacles to Cycle-Time Compliance
4.3. Consequences of Decrease in DI
4.4. Importance of Maintenance Treatments
- *
- Continuous therapy—unchanged, full-dose chemotherapy;
- *
- Maintenance therapy—dose reduction or discarding the highly toxic drug component;
- *
- Intermittent therapy—chemotherapy-free intervals, CFIs;
- *
- Drug holiday—stop the therapy till progression [41].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations (in Alphabetical Order)
References
- Macrae, F.A. Colorectal Cancer: Epidemiology, Risk Factors, and Protective Factors. Available online: https://www.uptodate.com/contents/colorectal-cancer-epidemiology-risk-factors-and-protective-factors (accessed on 21 June 2021).
- National Cancer Institute SEER Database—Cancer Stat Facts: Colorectal Cancer. Available online: https://seer.cancer.gov/statfacts/html/colorect.html (accessed on 29 August 2022).
- Lyman, G.H. Impact of Chemotherapy Dose Intensity on Cancer Patient Outcomes. J. Natl. Compr. Cancer Netw. 2009, 7, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Vavra, K.L.; Saadeh, C.E.; Rosen, A.L.; Uptigrove, C.E.; Srkalovic, G. Improving the Relative Dose Intensity of Systemic Chemotherapy in a Community-Based Outpatient Cancer Center. J. Oncol. Pract. 2013, 9, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Mochinaga, S.; Okahashi, T.; Koga, S.; Nakano, Y.; Yakabe, T.; Sumi, K.; Kitahara, K.; Noshiro, H.; Kimura, S.; Fujito, H. Effects of Reduced Dose Intensity of Modified FOLFOX6 in Patients with Metastatic or Recurrent Colorectal Cancer. Oncol. Res. 2012, 19, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Munker, S.; Gerken, M.; Fest, P.; Ott, C.; Schnoy, E.; Fichtner-Feigl, S.; Wiggermann, P.; Vogelhuber, M.; Herr, W.; Stroszczynski, C.; et al. Chemotherapy for metastatic colon cancer: No effect on survival when the dose is reduced due to side effects. BMC Cancer 2018, 23, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Blazevic, I.; Vaillant, W.; Basso, M.; Salignon, K. Survival and relative dose intensity of 5-fluorouracil, oxaliplatin and irinotecan in real-life treatment of metastatic colorectal cancer. Contemp. Oncol. 2020, 24, 150–156. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.; Li, H.; Che, J.; Cao, B. Meta-analysis comparing maintenance strategies with continuous therapy and complete chemotherapy-free interval strategies in the treatment of metastatic colorectal cancer. Oncotarget 2015, 7, 33418–33427. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.S.; Seymour, M.T. Balancing the efficacy and toxicity of chemotherapy in colorectal cancer. Ther. Adv. Med. Oncol. 2011, 3, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Loree, J.; Tan, S.K.; Lafond, L.M.; Speers, C.H.; Kennecke, H.F.; Cheung, W.Y. Real-World Effect of Maintenance and Intermittent Chemotherapy on Survival in Metastatic Colorectal Cancer. Clin. Color. Cancer 2017, 17, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Saltz, L.B.; Cox, J.V.; Blanke, C.; Rosen, L.S.; Fehrenbacher, L.; Moore, M.J.; Maroun, J.A.; Ackland, S.P.; Locker, P.K.; Pirotta, N.; et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2000, 343, 905–914. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef]
- Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichel, J.; Alaki, M.; et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet 2000, 355, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Maroun, J.; Vanhoefer, U.; Van Cutsem, E. Optimizing the Use of Irinotecan in Colorectal Cancer. Oncologist 2001, 6 (Suppl. 4), 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Adenis, A.; Pignon, J.P.; Francois, E.; Chauffert, B.; Ichanté, J.L.; Boucher, E.; Ychou, M.; Pierga, J.Y.; Monto-to-Grillot, C.; et al. Efficacy and safety of bevacizumab-based combination regimens in patients with previously untreated metastatic colorectal cancer: Final results from a randomised phase ii study of bevacizumab plus 5-fluorouracil, leucovorin plus irinotecan versus bevacizumab plus capecitabine plus irinotecan (FNCLCC ACCORD 13/0503 study). Eur. J. Cancer 2013, 49, 1236–1245. [Google Scholar] [PubMed]
- Kocakova, I.; Melichar, B.; Kocak, I.; Bortlicek, Z.; Büchler, T.; Dusek, L.; Petruzelka, L.; Kohoutek, M.; Prausova, J.; Finek, J.; et al. Bevacizumab with FOLFIRI or XELIRI in the First-line Therapy of Metastatic Colorectal Carcinoma: Results from Czech Observational Registry. Anticancer Res. 2015, 35, 3455–3462. [Google Scholar] [PubMed]
- Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chien, C.R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; et al. Cetuximab and Chemotherapy as Initial Treatment for Metastatic Colorectal Cancer. N. Engl. J. Med. 2009, 360, 1408–1417. [Google Scholar] [CrossRef] [Green Version]
- Carrato, A.; Abad, A.; Massuti, B.; Gravalos, C.; Escudero, P.; Longo-Munoz, F.; Manzano, J.L.; Gómez, A.; Safont, M.J.; Gallego, J.; et al. First-line panitumumab plus FOLFOX4 or FOLFIRI in colorectal cancer with multiple or unresectable liver metastases: A randomised, phase II trial (PLANET-TTD). Eur. J. Cancer 2017, 81, 191–202. [Google Scholar] [CrossRef]
- Longo, D.L.; Duffey, P.L.; DeVita Jr, V.T.; Wesley, M.N.; Hubbard, S.M.; Young, R.C. The calculation of actual or received dose intensity: A comparison of published methods. J. Clin. Oncol. 1991, 9, 2042–2051. [Google Scholar] [CrossRef]
- Alberto, P. Dose intensity in cancer chemotherapy: Definition, average relative dose intensity and effective dose intensity. Bull. Du Cancer 1995, 82, 3s–8s. [Google Scholar]
- Louvet, C.; de Gramont, A.; Tournigand, C.; Artru, P.; Maindrault-Goebel, F.; Krulik, M. Correlation between progression free survival and response rate in patients with metastatic colorectal carcinoma. Cancer 2001, 91, 2033–2038. [Google Scholar] [CrossRef]
- Lokich, J.J. Infusional 5-FU: Historical Evolution, Rationale, and Clinical Experience. Oncology 1998, 10, 19–22. [Google Scholar]
- Meta-analysis Group in Cancer: Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. J. Clin. Oncol. 1998, 16, 301–308. [CrossRef] [PubMed]
- Fujita, K.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 2015, 21, 12234–12248. [Google Scholar] [CrossRef] [PubMed]
- Irinotecan—Summary of Product Characteristics; EMA: London, UK, 2016.
- Shao, Y.; Hui, L.V.; Zhong, D.S. Different schedules of irinotecan administration: A meta-analysis. Mol. Clin. Oncol. 2016, 5, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avastin—Summary of Product Characteristics; EMA: London, UK, 2010.
- Daoud, M.A.; Aboelnaga, E.M.; Mohamed, W.M. Second-line panitumumab as a triweekly dose for patients with wild-type KRAS exon 2 metastatic colorectal cancer: A single-institution experience. Cancer Biol. Med. 2016, 13, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.R.; Moore, D.F.; Hidalgo, M.; Doroshow, J.H.; Poplin, E.A.; Goodin, S.; Mauro, D.; Rubin, E.H. Pharmacokinetics of Cetuximab After Administration of Escalating Single Dosing and Weekly Fixed Dosing in Patients with Solid Tumors. Clin. Cancer Res. 2006, 12, 6517–6522. [Google Scholar] [CrossRef] [Green Version]
- Ozer, H. The timing of chemotherapy-induced neutropenia and its clinical and economic impact. Oncology 2006, 20, 11–15. [Google Scholar]
- Rasmy, A.; Amin, A.A.I. Febrile neutropenia in cancer patient: Epidemiology, microbiology, pathophysiology and management. J. Cancer Prev. Curr. Res. 2016, 5, 273–278. [Google Scholar]
- Rosenoff, S.H.; Gabrail, N.Y.; Conklin, R.; Hohneker, J.A.; Berg, W.J.; Warsi, G.; Maloney, J.; Benedetto, J.J.; Miles, E.A.; Zhu, W.; et al. A multicenter, randomized trial of long-acting octreotide for the optimum prevention of chemotherapy-induced diarrhea: Results of the STOP trial. J. Support Oncol. 2006, 4, 289–294. [Google Scholar]
- Stein, A.; Voigt, W.; Jordan, K. Chemotherapy-induced diarrhea: Pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2010, 2, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Rouits, E.; Boisdron-Celle, M.; Dumont, A.; Guerin, O.; Morel, A.; Gamelin, E. Relevance of Different UGT1A1 Polymorphisms in Irinotecan Induced Toxicity: A Molecular and Clinical Study of 75 Patients. Clin. Cancer Res. 2004, 10, 5151–5159. [Google Scholar] [CrossRef] [Green Version]
- Eaton, K.D.; Lyman, G.H. Dosing of Anticancer Agents in Adults. Available online: https://www.uptodate.com/contents/dosing-of-anticancer-agents-in-adults#! (accessed on 15 August 2019).
- Nakayama, G.; Tanaka, C.; Uehara, K.; Mashita, N.; Hayashi, N.; Kobayashi, D.; Kanda, M.; Yamada, S.; Fujii, T.; Sugimoto, H.; et al. The impact of dose/time modification in irinotecan- and oxaliplatin-based chemotherapies on outcomes in metastatic colorectal cancer. Cancer Chemother. Pharmacol. 2014, 73, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Havrilesky, L.J.; Reiner, M.; Morrow, P.K.; Watson, H.; Crawford, J. A review of relative dose intensity and survival in patients with metastatic solid tumors. Crit. Rev. Oncol./Hematol. 2015, 93, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wu, X.; Tao, M.; Tang, N.; Li, Y.; Zhang, X.; Zhou, Q. Efficacy and safety of bevacizumab-based maintenance therapy in metastatic colorectal cancer. A meta-analysis. Medicine 2019, 98, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Macedo, L.T.; da Costa Lima, A.B.; sasse, A.D. Addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer: A systematic review and meta-analysis, with emphasis on chemotherapy subgroups. BMC Cancer 2012, 12, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonbol, M.B.; Mountjoy, L.J.; Firwana, B.; Liu, A.J.; Almader-Douglas, D.; Mody, K.; Hubbard, J.; Borad, M.; Ahn, D.H.; Murad, M.H.; et al. The Role of Maintenance Strategies in Metastatic Colorectal Cancer. A Systematic Review and Network Meta-analysis of Randomized Clinical Trials. JAMA Oncol. 2020, 6, 4489–4496. [Google Scholar] [CrossRef]
- Garattini, S.K.; Basile, D.; Bonotto, M.; Ongaro, E.; Porcu, L.; Corvaja, C.; Cattaneo, M.; Andreotti, V.J.; Lisanti, C.; Bertoli, E.; et al. Drug holidays and overall survival in patients treated for metastatic colorectal cancer. Cancers 2021, 13, 3504. [Google Scholar] [CrossRef]
- Enriquez-Navas, P.M.; Kam, Y.; Das, T.; Hassan, S.; Silva, A.; Foroutan, P.; Ruiz, E.; Martinez, G.; Minton, S.; Gillies, R.J.; et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 2016, 24, 327–340. [Google Scholar] [CrossRef]
FOLFIRI | BEV-FOLFIRI | EGFRi-FOLFIRI | ||
---|---|---|---|---|
No. of Cases | 293 | 149 | 73 | |
No. of chemotherapy cycles | 4023 | 2796 | 1205 | |
Median No. of cycles per patient | 12.0 (2–70) | 12.5 (1–81) | 12.0 (1–89) | |
Median cycle-time (days) | 17.26 | 17.48 | 18.40 | |
Response rate (%) | 16.0 | 41.0 | 52.2 | |
Median Time-on-Treatment (days) | 179 (17–2010) | 237 (0–1834) | 213 (0–1654) | |
Median Progression-Free Survival (days) | 241 (28–3274) | 310 (1–3297) | 267 (22–3556) | |
1y PFS OR (95% CI) | 0.50 (0.33–0.75) | |||
1.35 (0.76–2.41) | ||||
Median Overall Survival (days) | 598 (46–3452) | 739 (54–3842) | 817 (71–3663) | |
2 yrs OS OR (95% CI) | 0.61 (0.40–0.95) | |||
0.80 (0.44–1.47) | ||||
Literary comparison | Median PFS (days) | 201–255 | 270–345 | 297–420 |
Median OS (days) | 529–654 | 700–772 | 605–1125 | |
RR (%) | 50–56% | 43–63% | 47–67% | |
Source | [11,12] | [15,16] | [17,18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pécsi, B.; Mangel, L. Real-Life Effectivity of Dose Intensity Reduction of First-Line mFOLFIRI-Based Treatment of Metastatic Colorectal Cancers: Sometimes Less Is More. Curr. Oncol. 2023, 30, 908-922. https://doi.org/10.3390/curroncol30010069
Pécsi B, Mangel L. Real-Life Effectivity of Dose Intensity Reduction of First-Line mFOLFIRI-Based Treatment of Metastatic Colorectal Cancers: Sometimes Less Is More. Current Oncology. 2023; 30(1):908-922. https://doi.org/10.3390/curroncol30010069
Chicago/Turabian StylePécsi, Balázs, and László Mangel. 2023. "Real-Life Effectivity of Dose Intensity Reduction of First-Line mFOLFIRI-Based Treatment of Metastatic Colorectal Cancers: Sometimes Less Is More" Current Oncology 30, no. 1: 908-922. https://doi.org/10.3390/curroncol30010069
APA StylePécsi, B., & Mangel, L. (2023). Real-Life Effectivity of Dose Intensity Reduction of First-Line mFOLFIRI-Based Treatment of Metastatic Colorectal Cancers: Sometimes Less Is More. Current Oncology, 30(1), 908-922. https://doi.org/10.3390/curroncol30010069