Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature
Abstract
:1. Introduction
2. Pathological, Molecular and Clinical Features of nccRCC Subtypes
2.1. Papillary
2.2. Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)
2.3. Chromophobe
2.4. Medullary
2.5. Collecting Duct
2.6. Sarcomatoid and Rhabdoid Dedifferentiation
3. Systemic Therapy
3.1. Immunotherapy
3.2. Targeted Therapy
3.3. Combination Therapies: IO/Targeted Therapy
4. Future Directions
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.-H.; Dong, L.M.; Devesa, S.S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 2010, 7, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A.; ESMO Guidelines Committee. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moch, H.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef]
- Ahrens, M.; Scheich, S.; Hartmann, A.; Bergmann, L. IAG-N Interdisciplinary Working Group Kidney Cancer of the German Cancer Society Non-Clear Cell Renal Cell Carcinoma—Pathology and Treatment Options. Oncol. Res. Treat. 2019, 42, 128–135. [Google Scholar] [CrossRef]
- Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthélémy, P.; Porta, C.; Powles, T.; Donskov, F.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: Extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 2020, 5, e001079. [Google Scholar] [CrossRef]
- Powles, T.; Plimack, E.R.; Soulières, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Zarrabi, K.; Walzer, E.; Zibelman, M. Immune Checkpoint Inhibition in Advanced Non-Clear Cell Renal Cell Carcinoma: Leveraging Success from Clear Cell Histology into New Opportunities. Cancers 2021, 13, 3652. [Google Scholar] [CrossRef]
- Mendhiratta, N.; Muraki, P.; Sisk, A.E.; Shuch, B. Papillary renal cell carcinoma: Review. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 327–337. [Google Scholar] [CrossRef]
- Leroy, X.; Zini, L.; Leteurtre, E.; Zerimech, F.; Porchet, N.; Aubert, J.-P.; Gosselin, B.; Copin, M.-C. Morphologic Subtyping of Papillary Renal Cell Carcinoma: Correlation with Prognosis and Differential Expression of MUC1 between the Two Subtypes. Mod. Pathol. 2002, 15, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.E.R.; Bilen, M.A. A Review of Papillary Renal Cell Carcinoma and MET Inhibitors. Kidney Cancer 2019, 3, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network; Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar] [CrossRef]
- Chayed, Z.; Kristensen, L.K.; Ousager, L.B.; Rønlund, K.; Bygum, A. Hereditary leiomyomatosis and renal cell carcinoma: A case series and literature review. Orphanet J. Rare Dis. 2021, 16, 34. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Zhang, Y.; Zeng, C. Hereditary Leiomyomatosis and Renal Cell Cancer: Recent Insights Into Mechanisms and Systemic Treatment. Front. Oncol. 2021, 11, 686556. [Google Scholar] [CrossRef] [PubMed]
- Gerharz, C.D.; Moll, R.; Störkel, S.; Ramp, U.; Thoenes, W.; Gabbert, H.E. Ultrastructural appearance and cytoskeletal architecture of the clear, chromophilic, and chromophobe types of human renal cell carcinoma in vitro. Am. J. Pathol. 1993, 142, 851–859. [Google Scholar]
- Davis, C.F.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.D.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.C.; Fahey, C.C.; et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 2014, 26, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Garje, R.; Elhag, D.; Yasin, H.A.; Acharya, L.; Vaena, D.; Dahmoush, L. Comprehensive review of chromophobe renal cell carcinoma. Crit. Rev. Oncol. 2021, 160, 103287. [Google Scholar] [CrossRef] [PubMed]
- Casuscelli, J.; Becerra, M.F.; Seier, K.; Manley, B.J.; Benfante, N.; Redzematovic, A.; Stief, C.G.; Hsieh, J.J.; Tickoo, S.K.; Reuter, V.E.; et al. Chromophobe Renal Cell Carcinoma: Results From a Large Single-Institution Series. Clin. Genitourin. Cancer 2019, 17, 373–379.e4. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.; Matrana, M.R. Renal medullary carcinoma: A case report and brief review of the literature. Ochsner J. 2014, 14, 270–275. [Google Scholar] [PubMed]
- Msaouel, P.; Malouf, G.G.; Su, X.; Yao, H.; Tripathi, D.N.; Soeung, M.; Gao, J.; Rao, P.; Coarfa, C.; Creighton, C.J.; et al. Comprehensive Molecular Characterization Identifies Distinct Genomic and Immune Hallmarks of Renal Medullary Carcinoma. Cancer Cell 2020, 37, 720–734.e13. [Google Scholar] [CrossRef]
- Harbin, A.C.; Styskel, B.A.; Patel, V.; Wang, H.; Eun, D.D. Collecting Duct Renal Cell Carcinoma Found to Involve the Collecting System During Partial Nephrectomy: A Case Report. J. Kidney Cancer VHL 2015, 2, 134–139. [Google Scholar] [CrossRef]
- Srigley, J.R.; Eble, J.N. Collecting duct carcinoma of kidney. Semin. Diagn. Pathol. 1998, 15, 54–67. [Google Scholar]
- Sui, W.; Matulay, J.T.; Robins, D.J.; James, M.B.; Onyeji, I.C.; Roychoudhury, A.; Wenske, S.; DeCastro, G.J. Collecting duct carcinoma of the kidney: Disease characteristics and treatment outcomes from the National Cancer Database. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 540.e13–540.e18. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, X.; Huang, G.; Hua, M.; Zhang, W.; Wang, T.; Huang, L.; Wang, Z.; Chen, Q.; Li, J.; et al. A genomic mutation spectrum of collecting duct carcinoma in the Chinese population. BMC Med. Genom. 2022, 15, 1. [Google Scholar] [CrossRef]
- Bakouny, Z.; Braun, D.A.; Shukla, S.A.; Pan, W.; Gao, X.; Hou, Y.; Flaifel, A.; Tang, S.; Bosma-Moody, A.; He, M.X.; et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat. Commun. 2021, 12, 808. [Google Scholar] [CrossRef]
- Pichler, R.; Compérat, E.; Klatte, T.; Pichler, M.; Loidl, W.; Lusuardi, L.; Schmidinger, M. Renal Cell Carcinoma with Sarcomatoid Features: Finally New Therapeutic Hope? Cancers 2019, 11, 422. [Google Scholar] [CrossRef] [Green Version]
- Gökden, N.; Nappi, O.; Swanson, P.E.; Pfeifer, J.D.; Vollmer, R.T.; Wick, M.R.; Humphrey, P.A. Renal Cell Carcinoma With Rhabdoid Features. Am. J. Surg. Pathol. 2000, 24, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, B.; Cheville, J.C.; Martignoni, G.; Humphrey, P.A.; Magi-Galluzzi, C.; McKenney, J.; Egevad, L.; Algaba, F.; Moch, H.; Grignon, D.J.; et al. The International Society of Urological Pathology (ISUP) Grading System for Renal Cell Carcinoma and Other Prognostic Parameters. Am. J. Surg. Pathol. 2013, 37, 1490–1504. [Google Scholar] [CrossRef] [PubMed]
- Przybycin, C.G.; McKenney, J.K.; Reynolds, J.P.; Campbell, S.; Zhou, M.; Karafa, M.T.; Magi-Galluzzi, C. Rhabdoid Differentiation Is Associated With Aggressive Behavior in Renal Cell Carcinoma. Am. J. Surg. Pathol. 2014, 38, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, C.E.; Chittoria, N.; Choueiri, T.K.; Kroeger, N.; Lee, J.-L.; Srinivas, S.; Knox, J.J.; Bjarnason, G.A.; Ernst, S.D.; Wood, L.A.; et al. Outcome of Patients With Metastatic Sarcomatoid Renal Cell Carcinoma: Results From the International Metastatic Renal Cell Carcinoma Database Consortium. Clin. Genitourin. Cancer 2014, 13, e79–e85. [Google Scholar] [CrossRef]
- Tannir, N.M.; Signoretti, S.; Choueiri, T.K.; McDermott, D.F.; Motzer, R.J.; Flaifel, A.; Pignon, J.-C.; Ficial, M.; Frontera, O.A.; George, S.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab versus Sunitinib in First-line Treatment of Patients with Advanced Sarcomatoid Renal Cell Carcinoma. Clin. Cancer Res. 2021, 27, 78–86. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Soulieres, D.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for metastatic renal cell carcinoma (mRCC): Outcomes in the combined IMDC intermediate/poor risk and sarcomatoid subgroups of the phase 3 KEYNOTE-426 study. J. Clin. Oncol. 2019, 37, 4500. [Google Scholar] [CrossRef]
- Choueiri, T.; Larkin, J.; Pal, S.; Motzer, R.; Rini, B.; Venugopal, B.; Alekseev, B.; Miyake, H.; Gravis, G.; Bilen, M.; et al. Efficacy and correlative analyses of avelumab plus axitinib versus sunitinib in sarcomatoid renal cell carcinoma: Post hoc analysis of a randomized clinical trial. ESMO Open 2021, 6, 100101. [Google Scholar] [CrossRef]
- Pandolfo, S.D.; Carbonara, U.; Beksac, A.T.; Derweesh, I.; Celia, A.; Schiavina, R.; Elbich, J.; Basile, G.; Hampton, L.J.; Cerrato, C.; et al. Microwave versus cryoablation and radiofrequency ablation for small renal mass: A multicenter comparative analysis. Minerva Urol. Nephrol. 2022. ahead of print. [Google Scholar] [CrossRef]
- Colomba, E.; Le Teuff, G.; Eisen, T.; Stewart, G.D.; Fife, K.; Larkin, J.; Biondo, A.; Pickering, L.; Srinivasan, A.; Boyle, H.; et al. Metastatic chromophobe renal cell carcinoma treated with targeted therapies: A Renal Cross Channel Group study. Eur. J. Cancer 2017, 80, 55–62. [Google Scholar] [CrossRef]
- Buti, S.; Bersanelli, M.; Maines, F.; Facchini, G.; Gelsomino, F.; Zustovich, F.; Santoni, M.; Verri, E.; De Giorgi, U.; Masini, C.; et al. First-Line PAzopanib in NOn–clear-cell Renal cArcinoMA: The Italian Retrospective Multicenter PANORAMA Study. Clin. Genitourin. Cancer 2017, 15, e609–e614. [Google Scholar] [CrossRef]
- Campbell, M.T.; Bilen, M.A.; Shah, A.Y.; Lemke, E.; Jonasch, E.; Venkatesan, A.; Altinmakas, E.; Duran, C.; Msaouel, P.; Tannir, N. Cabozantinib for the treatment of patients with metastatic non-clear cell renal cell carcinoma: A retrospective analysis. Eur. J. Cancer 2018, 104, 188–194. [Google Scholar] [CrossRef]
- Agarwala, V.; Ramaswamy, A.; Joshi, A.; Patil, V.M.; Noronha, V.; Menon, S.; Popat, B.P.; Nilesh, S.; Prabhash, K. Treatment outcomes of metastatic nonclear cell renal cell carcinoma: A single institution retrospective analysis. South Asian J. Cancer 2018, 07, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Chanzá, N.M.; Xie, W.; Bilen, M.A.; Dzimitrowicz, H.; Burkart, J.; Geynisman, D.M.; Balakrishnan, A.; Bowman, I.A.; Jain, R.; Stadler, W.; et al. Cabozantinib in advanced non-clear-cell renal cell carcinoma: A multicentre, retrospective, cohort study. Lancet Oncol. 2019, 20, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, S.H.; Song, M.K.; Joo, J.; Seo, S.I.; Kwak, C.; Jeong, C.W.; Song, C.; Hwang, E.C.; Seo, I.Y.; et al. Survival and clinical prognostic factors in metastatic non-clear cell renal cell carcinoma treated with targeted therapy: A multi-institutional, retrospective study using the Korean metastatic renal cell carcinoma registry. Cancer Med. 2019, 8, 3401–3410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, A.; Joshi, A.; Noronha, V.; Menon, N.; Kapoor, A.; Menon, S.; Prabhash, K. 202MO Real-world outcomes of non-clear cell renal cell carcinoma: Retrospective study from tertiary cancer center in India. Ann. Oncol. 2020, 31, S1320. [Google Scholar] [CrossRef]
- McKay, R.R.; Bossé, D.; Xie, W.; Wankowicz, S.A.; Flaifel, A.; Brandao, R.; Lalani, A.-K.A.; Martini, D.J.; Wei, X.X.; Braun, D.A.; et al. The Clinical Activity of PD-1/PD-L1 Inhibitors in Metastatic Non–Clear Cell Renal Cell Carcinoma. Cancer Immunol. Res. 2018, 6, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Ornstein, M.C.; Li, H.; Allman, K.D.; Wood, L.S.; Gilligan, T.; Garcia, J.A.; Von Merveldt, D.; Hammers, H.J.; Rini, B.I. Clinical Activity of Ipilimumab Plus Nivolumab in Patients With Metastatic Non–Clear Cell Renal Cell Carcinoma. Clin. Genitourin. Cancer 2019, 18, 429–435. [Google Scholar] [CrossRef]
- Chahoud, J.; Msaouel, P.; Campbell, M.T.; Bathala, T.; Xiao, L.; Gao, J.; Zurita, A.J.; Shah, A.Y.; Jonasch, E.; Sharma, P.; et al. Nivolumab for the Treatment of Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (nccRCC): A Single-Institutional Experience and Literature Meta-Analysis. Oncologist 2019, 25, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Koshkin, V.S.; Barata, P.C.; Zhang, T.; George, D.J.; Atkins, M.B.; Kelly, W.J.; Vogelzang, N.J.; Pal, S.K.; Hsu, J.; Appleman, L.J.; et al. Clinical activity of nivolumab in patients with non-clear cell renal cell carcinoma. J. Immunother. Cancer 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Schwartzman, W.; Elias, R.; Patel, V.M.; Bowman, A.I.; Chintalapati, S.; Kapur, P.; Hammers, H.J.; Brugarolas, J. Safety and efficacy of immune checkpoint inhibitors (ICI) in metastatic non-clear cell renal cell carcinoma (nccRCC): An institutional experience. J. Clin. Oncol. 2020, 38, 640. [Google Scholar] [CrossRef]
- Kilari, D.; Szabo, A.; Ghatalia, P.; Rose, T.L.; Dong, H.; Weise, N.; Zhuang, T.Z.; Alloghbi, A.; Jain, R.K.; Alva, A.S.; et al. Outcomes with novel combinations in nonclear cell renal cell carcinoma (nccRCC): ORACLE study. J. Clin. Oncol. 2022, 40, 4545. [Google Scholar] [CrossRef]
- Choueiri, T.; Fay, A.; Gray, K.; Callea, M.; Ho, T.; Albiges, L.; Bellmunt, J.; Song, J.; Carvo, I.; Lampron, M.; et al. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann. Oncol. 2014, 25, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Yakirevich, E.; Patel, N.R. Tumor mutational burden and immune signatures interplay in renal cell carcinoma. Ann. Transl. Med. 2020, 8, 269. [Google Scholar] [CrossRef]
- Turajlic, S.; Litchfield, K.; Xu, H.; Rosenthal, R.; McGranahan, N.; Reading, J.L.; Wong, Y.N.S.; Rowan, A.; Kanu, N.; Al Bakir, M.; et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: A pan-cancer analysis. Lancet Oncol. 2017, 18, 1009–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, D.F.; Lee, J.-L.; Bjarnason, G.A.; Larkin, J.M.G.; Gafanov, R.A.; Kochenderfer, M.D.; Jensen, N.V.; Donskov, F.; Malik, J.; Poprach, A.; et al. Open-Label, Single-Arm Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients With Advanced Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2021, 39, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, N.J.; Olsen, M.R.; McFarlane, J.J.; Arrowsmith, E.; Bauer, T.M.; Jain, R.K.; Somer, B.; Lam, E.T.; Kochenderfer, M.D.; Molina, A.; et al. Safety and Efficacy of Nivolumab in Patients With Advanced Non–Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 461–468.e3. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B.; Jegede, O.A.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Stein, M.; Sosman, J.A.; Alter, R.; Plimack, E.R.; Ornstein, M.; et al. Phase II Study of Nivolumab and Salvage Nivolumab/Ipilimumab in Treatment-Naive Patients With Advanced Clear Cell Renal Cell Carcinoma (HCRN GU16-260-Cohort A). J. Clin. Oncol. 2022, 40, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Tykodi, S.S.; Gordan, L.N.; Alter, R.S.; Arrowsmith, E.; Harrison, M.R.; Percent, I.; Singal, R.; Van Veldhuizen, P.; George, D.J.; Hutson, T.; et al. Safety and efficacy of nivolumab plus ipilimumab in patients with advanced non-clear cell renal cell carcinoma: Results from the phase 3b/4 CheckMate 920 trial. J. Immunother. Cancer 2022, 10, e003844. [Google Scholar] [CrossRef]
- Conduit, C.; Kichenadasse, G.; Harris, C.A.; Gurney, H.; Ferguson, T.; Parnis, F.; Goh, J.C.; Morris, M.F.; Underhill, C.; Pook, D.W.; et al. Sequential immunotherapy in rare variant renal cell carcinomafinal report of UNISoN (ANZUP 1602): Nivolumab then ipilimumab + nivolumab in advanced nonclear cell renal cell carcinoma. J. Clin. Oncol. 2022, 40, 4537. [Google Scholar] [CrossRef]
- Zhang, X.; Yamashita, M.; Uetsuki, H.; Kakehi, Y. Angiogenesis in renal cell carcinoma: Evaluation of microvessel density, vascular endothelial growth factor and matrix metalloproteinases. Int. J. Urol. 2002, 9, 509–514. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, A.J.; Halabi, S.; Eisen, T.; Broderick, S.; Stadler, W.M.; Jones, R.J.; Garcia, J.A.; Vaishampayan, U.N.; Picus, J.; Hawkins, R.E.; et al. Everolimus versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): A multicentre, open-label, randomised phase 2 trial. Lancet Oncol. 2016, 17, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Tannir, N.M.; Jonasch, E.; Albiges, L.; Altinmakas, E.; Ng, C.S.; Matin, S.F.; Wang, X.; Qiao, W.; Lim, Z.D.; Tamboli, P.; et al. Everolimus Versus Sunitinib Prospective Evaluation in Metastatic Non–Clear Cell Renal Cell Carcinoma (ESPN): A Randomized Multicenter Phase 2 Trial. Eur. Urol. 2015, 69, 866–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knox, J.J.; Barrios, C.H.; Kim, T.M.; Cosgriff, T.; Srimuninnimit, V.; Pittman, K.; Sabbatini, R.; Rha, S.Y.; Flaig, T.W.; Page, R.D.; et al. Final overall survival analysis for the phase II RECORD-3 study of first-line everolimus followed by sunitinib versus first-line sunitinib followed by everolimus in metastatic RCC. Ann. Oncol. 2017, 28, 1339–1345. [Google Scholar] [CrossRef]
- Escudier, B.; Molinie, V.; Bracarda, S.; Maroto, P.; Szczylik, C.; Nathan, P.; Negrier, S.; Weiss, C.; Porta, C.; Grünwald, V.; et al. Open-label phase 2 trial of first-line everolimus monotherapy in patients with papillary metastatic renal cell carcinoma: RAPTOR final analysis. Eur. J. Cancer 2016, 69, 226–235. [Google Scholar] [CrossRef]
- Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; et al. Temsirolimus, Interferon Alfa, or Both for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 2271–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procopio, G.; Sepe, P.; Claps, M.; Buti, S.; Colecchia, M.; Giannatempo, P.; Guadalupi, V.; Mariani, L.; Lalli, L.; Fucà, G.; et al. Cabozantinib as First-line Treatment in Patients With Metastatic Collecting Duct Renal Cell Carcinoma. JAMA Oncol. 2022, 8, 910. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Xu, W.; Poole, L.; Telaranta-Keerie, A.; Hartmaier, R.; Powles, T. SAMETA: An open-label, three-arm, multicenter, phase III study of savolitinib + durvalumab versus sunitinib and durvalumab monotherapy in patients with MET-driven, unresectable, locally advanced/metastatic papillary renal cell carcinoma (PRCC). J. Clin. Oncol. 2022, 40, TPS4601. [Google Scholar] [CrossRef]
- Schöffski, P.; Wozniak, A.; Escudier, B.; Rutkowski, P.; Anthoney, A.; Bauer, S.; Sufliarsky, J.; van Herpen, C.; Lindner, L.H.; Grünwald, V.; et al. Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial. Eur. J. Cancer 2017, 87, 147–163. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Vaishampayan, U.; Rosenberg, J.E.; Logan, T.F.; Harzstark, A.L.; Bukowski, R.M.; Rini, B.I.; Srinivas, S.; Stein, M.N.; Adams, L.M.; et al. Phase II and Biomarker Study of the Dual MET/VEGFR2 Inhibitor Foretinib in Patients With Papillary Renal Cell Carcinoma. J. Clin. Oncol. 2013, 31, 181–186. [Google Scholar] [CrossRef]
- Twardowski, P.W.; Tangen, C.M.; Wu, X.; Plets, M.R.; Plimack, E.R.; Agarwal, N.; Vogelzang, N.J.; Wang, J.; Tao, S.; Thompson, I.M.; et al. Parallel (Randomized) Phase II Evaluation of Tivantinib (ARQ197) and Tivantinib in Combination with Erlotinib in Papillary Renal Cell Carcinoma: SWOG S1107. Kidney Cancer 2017, 1, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Heng, D.Y.C.; Lee, J.L.; Cancel, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.H.; Frigault, M.M.; L’Hernault, A.; Szijgyarto, Z.; et al. Efficacy of Savolitinib vs. Sunitinib in Patients WithMET-Driven Papillary Renal Cell Carcinoma. JAMA Oncol. 2020, 6, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Tangen, C.; Thompson, I.M.; Balzer-Haas, N.; George, D.J.; Heng, D.Y.C.; Shuch, B.; Stein, M.; Tretiakova, M.; Humphrey, P.; et al. A comparison of sunitinib with cabozantinib, crizotinib, and savolitinib for treatment of advanced papillary renal cell carcinoma: A randomised, open-label, phase 2 trial. Lancet 2021, 397, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Gurram, S.; Al Harthy, M.; Singer, E.A.; Sidana, A.; Shuch, B.M.; Ball, M.W.; Friend, J.C.; Mac, L.; Purcell, E.; et al. Results from a phase II study of bevacizumab and erlotinib in subjects with advanced hereditary leiomyomatosis and renal cell cancer (HLRCC) or sporadic papillary renal cell cancer. J. Clin. Oncol. 2020, 38, 5004. [Google Scholar] [CrossRef]
- Choi, Y.; Keam, B.; Kim, M.; Yoon, S.; Kim, D.; Choi, J.G.; Seo, J.Y.; Park, I.; Lee, J.L. Bevacizumab Plus Erlotinib Combination Therapy for Advanced Hereditary Leiomyomatosis and Renal Cell Carcinoma-Associated Renal Cell Carcinoma: A Multicenter Retrospective Analysis in Korean Patients. Cancer Res. Treat. 2019, 51, 1549–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulkowski, P.L.; Sundaram, R.K.; Oeck, S.; Corso, C.D.; Liu, Y.; Noorbakhsh, S.; Niger, M.; Boeke, M.; Ueno, D.; Kalathil, A.N.; et al. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat. Genet. 2018, 50, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 2020, 52, 1475–1485. [Google Scholar] [CrossRef]
- Lee, C.-H.; Voss, M.H.; Carlo, M.I.; Chen, Y.-B.; Zucker, M.; Knezevic, A.; Lefkowitz, R.A.; Shapnik, N.; Dadoun, C.; Reznik, E.; et al. Phase II Trial of Cabozantinib Plus Nivolumab in Patients With Non–Clear-Cell Renal Cell Carcinoma and Genomic Correlates. J. Clin. Oncol. 2022, 40, 2333–2341. [Google Scholar] [CrossRef]
- Powles, T.; Larkin, J.; Patel, P.; Pérez-Valderrama, B.; Rodriguez-Vida, A.; Glen, H.; Thistlethwaite, F.; Ralph, C.; Srinivasan, G.; Mendez-Vidal, M.J.; et al. A phase II study investigating the safety and efficacy of savolitinib and durvalumab in metastatic papillary renal cancer (CALYPSO). J. Clin. Oncol. 2019, 37, 545. [Google Scholar] [CrossRef]
- Powles, T.; Mendez-Vidal, M.J.; Rodriguez-Vida, A.; Pérez-Valderrama, B.; Esteban, E.; Thistlethwaite, F.; Patel, P.M.; Herranz, U.A.; Srinivasan, G.; Hamid, A.; et al. CALYPSO: A three-arm randomized phase II study of durvalumab alone or with savolitinib or tremelimumab in previously treated advanced clear cell renal cancer. J. Clin. Oncol. 2022, 40, LBA4503. [Google Scholar] [CrossRef]
- McGregor, B.A.; McKay, R.R.; Braun, D.A.; Werner, L.; Gray, K.; Flaifel, A.; Signoretti, S.; Hirsch, M.S.; Steinharter, J.A.; Bakouny, Z.; et al. Results of a Multicenter Phase II Study of Atezolizumab and Bevacizumab for Patients With Metastatic Renal Cell Carcinoma With Variant Histology and/or Sarcomatoid Features. J. Clin. Oncol. 2020, 38, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; McGregor, B.; Suárez, C.; Tsao, C.-K.; Kelly, W.; Vaishampayan, U.; Pagliaro, L.; Maughan, B.L.; Loriot, Y.; Castellano, D.; et al. Cabozantinib in Combination With Atezolizumab for Advanced Renal Cell Carcinoma: Results From the COSMIC-021 Study. J. Clin. Oncol. 2021, 39, 3725–3736. [Google Scholar] [CrossRef] [PubMed]
- Halabi, S.; Yang, Q.; Carmack, A.; Zhang, S.; Foo, W.-C.; Eisen, T.; Stadler, W.; Jones, R.; Garcia, J.; Picus, J.; et al. Tissue based biomarkers in non-clear cell RCC: Correlative analysis from the ASPEN clinical trial. Kidney Cancer J. 2021, 19, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Chen, G.; Xie, Q.; Li, X.; Xu, H.; Wang, H.; Zhao, S. Association between PD-L1 Expression and the Prognosis and Clinicopathologic Features of Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Urol. Int. 2020, 104, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, N.A.; Lasorsa, F.; Rutigliano, M.; Loizzo, D.; Ferro, M.; Stella, A.; Bizzoca, C.; Vincenti, L.; Pandolfo, S.D.; Autorino, R.; et al. Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 14360. [Google Scholar] [CrossRef]
- Gudas, L.J.; Fu, L.; Minton, D.R.; Mongan, N.P.; Nanus, D.M. The role of HIF1α in renal cell carcinoma tumorigenesis. J. Mol. Med. 2014, 92, 825–836. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Ooi, A.; Furge, K.A. Fumarate hydratase inactivation in renal tumors: HIF1 alpha, NRF2, and “cryptic targets” of transcription factors. Chin. J. Cancer 2012, 31, 413–420. [Google Scholar] [CrossRef]
Subtype | % of all RCC |
---|---|
Papillary RCC (Types 1 and 2) | 10–15 |
Chromophobe RCC | 5 |
Collecting duct RCC | 1 |
MiT family translocation RCC | 1 |
Multilocular cystic renal neoplasm of low malignant potential | 1 |
Medullary RCC | <1% |
Tubulocystic RCC | <1% |
Acquired cystic kidney disease-associated RCC | <1% |
Hereditary leiomyomatosis with RCC | <1% |
Succinate dehydrogenase deficient RCC | <1% |
Unclassified | <1% |
Trial | Year | Treatment | Sample Size | Results | |||
---|---|---|---|---|---|---|---|
mOS (mths) | mPFS (mths) | ORR | Other Endpoints | ||||
Colomba et al. [39] | 2017 | VEGF/mTORi VEGFi: 82% mTORi: 18% | n = 61 | VEGFi: 22.9 (95% CI 17.8–49.2) mTORi: 3.2 (95% CI 2.3–NE) | N/A | VEGFi: 28.9% mTORi: 0% | mTTF VEGFi: 8.0mths (95% CI 4.1–13.6) mTORi: 2.3mths (95% CI 0.7–8.0) |
Buti et al. [40] | 2017 | Pazopanib | n = 37 Papillary: 51% Chromophobe: 24% Unclassified: 21% | 17.3 (95% CI 11.5–23.0) | 15.9 (95% CI 5.9–25.8) | Overall: 27% Papillary: 21% Chromophobe: 44% | DCR: 81% |
Campbell et al. [41] | 2018 | Cabozantinib | n = 30 | 25.4 (95% CI 15.5–35.4) | 8.6 (95% CI 6.1–14.7) | 14.3% | DCR: 78.6% |
Agarwala et al. [42] | 2018 | VEGF/mTORi Sorafenib: 35% Sunitinib: 22.5% Pazopanib: 20% Everolimus: 17.5% | n = 40 Papillary: 62.5% Sarcomatoid: 15% Chromophobe: 12.5% | 11.7 | N/A | N/A | mEFS: 6.1mths |
Chanza et al. [43] | 2019 | Cabozantinib | n = 112 Papillary: 59% Translocation: 15% Unclassified: 13% Chromophobe: 9% | 12.0 (95% CI 9.2–17.0) | 7.0 (95% CI 5.7–9.0) | Overall: 27% Papillary: 27% Chromophobe: 30% Collecting duct: 50% Unclassified: 13% | mTTF: 6.7mths |
Kim et al. [44] | 2019 | VEGFi vs. mTORi | n = 156 Papillary: 59.6% Chromophobe: 12.8% Collecting duct: 11.5% Unclassified: 10.3% | N/A | 10.0 vs. 5.0 (p = 0.0275) | N/A | mCSS: 27.0 vs. 16.0 (p = 0.1706) |
Choudhary et al. [45] | 2020 | VEGFi Sorafenib: 39.2% Sunitinib: 27.4% Pazopanib: 21.6% | n = 139 Papillary: 76.2% Chromophobe: 7.9% Sarcomatoid: 6.5% Unclassified: 1.4% | 11.9 (95% CI 5.4–18.4) | 6.0 (95% CI 2.4-9.6) | 16.6% | DCR: 54.1% |
McKay et al. [46] | 2018 | PD-1/PD-L1 inhibitors | n = 43 Papillary: 33% Chromophobe: 23% Unclassified: 21% Sarcomatoid: 16% Translocation: 7% | 12.9 (95% CI 7.4–NR) | N/A | Overall: 19% Papillary: 29% Chromophobe: 0% Translocation: 33% Unclassified: 0% | mTTF: 4.0mths (95% CI 2.8–5.5) |
Gupta et al. [47] | 2020 | Ipilimumab/ Nivolumab | n = 18 | N/A | 7.1 | Overall: 33.3% Chromophobe: 20% Medullary: 0% Papillary T2: 50% Translocation: 0% Unclassified: 33.3% | N/A |
Chahoud et al. [48] | 2020 | Nivolumab | n = 40 Papillary: 30% Unclassified: 27.5% Chromophobe: 12.5% Translocation: 7.5% | 21.7 (95% CI 7.83–NR) | 4.9 (95% CI 3.53–10.27) | Overall: 21.6% Papillary T1: 25% Papillary T2: 0% Chromophobe: 0% Translocation: 0% Unclassified: 44.4% | DCR: 53.4% |
Koshkin et al. [49] | 2018 | Nivolumab | n = 41 Papillary: 39% Unclassified: 34% Chromophobe: 12% Collecting duct: 10% | NR | 3.5 (95% CI 1.9–5.0) | Overall: 20% Papillary: 14% Chromophobe: 0% Collecting duct: 25% Translocation: 0% Unclassified: 36% | 10mth OS: 68% |
Schwartzmann et al. [50] | 2020 | Nivolumab: 46% Ipilimumab/ nivolumab: 54% | n = 28 Unclassified: 42.9% Papillary: 28.6% Chromophobe: 10.7% HLRCC: 10.7% | 15.9 (95% CI 5.9–25.9) | N/A | 10.7% | mTNT: 4.9 (95% CI 1.7–8.1) |
ORACLE [51] | 2021 | IO/VEGF (Pembrolizumab/ axitinib, atezolizumab/ bevacizumab, avelumab/ axitinib) | n = 19 | 24.7 | 16.8 | 21% | mDOR: 23.6mths DCR: 69% |
IO/IO (ipilimumab/ nivolumab) | n = 40 | 19.2 | 13.6 | 19% | mDOR: 13.6mths DCR: 46% | ||
VEGF/mTORi (lenvatinib/ everolimus) | n = 7 | 23.1 | NR | 0% | mDOR: NR DCR: 72% |
Trial | Phase | Cohort | Treatment | Sample Size | Efficacy | ||
---|---|---|---|---|---|---|---|
mOS (mths) | mPFS (mths) | ORR | |||||
KEYNOTE-427 [55] | II | A (Clear Cell) | Pembrolizumab | n = 110 | NR | 7.1 (95% CI 5.6–11.0) | 36.4% |
B (Non-clear cell) | n = 165 Papillary: 71.5% Unclassified: 15.8% Chromophobe: 12.7% | 28.9 (95% CI 24.3-NR) | 4.2 (95% CI 2.9–5.6) | 26.7% Papillary: 28.8% Chromophobe: 9.5% Unclassified: 30.8% | |||
CheckMate-374 [56] | III/IV | A (Clear Cell) | Nivolumab | n = 97 | 21.8 (95% CI 17.4-NE) | 3.6 (95% CI 2.0–5.5) | 22.7% |
B (Non-clear cell) | n = 44 Papillary: 54.5% Chromophobe: 15.9% Unclassified: 18.2% Translocation: 5% Other: 6% | 16.3 (95% CI 9.2-NE) | 2.2 (95% CI 1.8–5.4) | 13.6% | |||
CheckMate-920 [58] | III/IV | Cohort 2 (nccRCC with KPS ≥70%) ^ | Ipilimumab/ nivolumab > nivolumab | n = 52 Unclassified: 42.3% Papillary: 34.6% Chromophobe: 13.5% Translocation: 3.8% Collecting duct: 3.8% Medullary: 1.9% | 21.2 (95% CI 16.6-NE) | 3.7 (95% CI 2.7–4.6) | 19.6% |
HCRN GU16-260 [57] | II | A (Clear Cell) | Nivolumab (Part A) +/− ipilimumab * (Part B) | n = 123 | N/A | 7.4 (95% CI 5.5–10.9) | Part A: 29.3% Part B: 11% |
B (Non-clear cell) | n = 35 Papillary: 54% Chromophobe: 17% Unclassified: 29% Part B: n = 16 | N/A | 4.0 (95% CI 2.7–4.3) | Part A: 14.3% Part B: 6% | |||
UNISoN (ANZUP 1602) [59] | II | N/A (nccRCC cohort only) | Nivolumab +/− ipilimumab ** | n = 85 | Part 1+2: 24 (95% CI 16–28) Part 2 (nivo+ipi): 10 (95% CI 6–17) | Part 2: 2.6 (95% CI 2.2–3.8) | Nivo: 17% Nivo + ipi: 10% |
Trial | Phase | Treatment | Comparator | Sample Size | Efficacy | ||
---|---|---|---|---|---|---|---|
mOS (mths) | mPFS (mths) | ORR | |||||
ASPEN [62] | II | Sunitinib | Everolimus | n = 108 | 31.5 vs. 13.2 HR 1.12 (95% CI 0.7–2.1, p = 0.60) | 8.3 vs. 5.6 HR 1.41 (80% CI 1.03–1.92, p = 0.16) | 18% vs. 9% |
ESPN [63] | II | Sunitinib | Everolimus | n = 68 (Crossover allowed at PD) | 16.2 vs. 14.9 (p = 0.18) | 1L: 6.1 vs. 4.1 (p = 0.6) 2L: 1.8 vs. 2.8 (p = 0.6) | 1L: 9% vs. 3% 2L: 9.5% vs. 8.6% |
RECORD-3 [64] | II | 1L everolimus/ 2L sunitinib | 1L sunitinib/ 2L everolimus | n = 471 | 22.4 (95% CI 18.6-33.3) vs 29.5 (95% CI 22.8–33.1) | 21.7 (95% CI 15.1–26.7) vs 22.2 (95% CI 16.0–29.8) | N/A |
RAPTOR [65] | II | Everolimus | N/A | n = 92 Papillary: 78% | 21.4 (95% CI 15.4–28.4) | T1 Papillary: 7.9 (95% CI 2.1–11.0) T2 Papillary: 5.1 (95% CI 3.3–5.5) | 1% |
ARCC [66] | III | Interferon alfa | Temsirolimus/Combination therapy | n = 626 | 7.3 vs. 10.9 vs. 8.4 | 3.1 vs. 5.5 vs. 4.7 | 4.8% vs. 8.6% vs. 8.1% |
BONSAI [67] | II | Cabozantinib | N/A | n = 23 (Collecting duct RCC only) | 7.0 (95% CI 3–31) | 4.0 (95% CI 3–13) | 35% (95% CI 15–57) |
Trial | Phase | Treatment | Sample Size | Efficacy | ||
---|---|---|---|---|---|---|
mOS (mths) | mPFS (mths) | ORR | ||||
CREATE (T1 Papillary RCC) [69] | II | Crizotinib | n = 23 (MET-altered: n = 4) | N/A | N/A | MET positive cohort: 50% (2/4 patients) MET negative cohort: 6.3% (1/16 patients) |
NCT00726323 [70] | II | Foretinib | n = 74 (MET-altered: n = 36) | NR | 9.3 | Overall population: 13.5% Germline MET mutation positive: 50% (5/10 patients) Germline MET mutation negative: 9% (5/57 patients) |
SWOG S1107 [71] | II | Tivantinib/erlotinib vs Tivantinib | n = 50 Tivantinib/ erlotinib: n = 25 Tivantinib: n = 25 (MET-altered: n = 1) | 10.3 vs. 11.3 | 5.4 vs. 2.0 | 0% in both arms |
SAVOIR [72] | III | Savolitinib vs. Sunitinib | n = 60 (all MET-driven) Savolitinib: n = 33 Sunitinib: n = 27 | NR vs. 13.2 (HR 0.51, 95% CI 0.2–1.2; p = 0.11) | 7.0 vs. 5.6 (HR 0.71; 95% CI 0.4–1.4) | 27% vs. 7% |
PAPMET [73] | II | Savolitinib/ Crizotinib/ Sunitinib/ Cabozantinib | n = 152 (MET testing not performed) | N/A | No improvement in PFS with savolitinib/ crizotinib vs. VEGFi (halted early after prespecified futility analysis) | N/A |
Cabozantinib vs. Sunitinib | N/A | 9.0 vs. 5.6 HR 0.60 |
Trial | Phase | Treatment | Sample Size | Efficacy |
---|---|---|---|---|
NCT02724878 [81] | II | Atezolizumab/ Bevacizumab | n = 60 Papillary: n = 12 Chromophobe: n = 10 Unclassified: n = 9 Collecting duct: n = 5 Medullary: n = 1 | ORR: 33% Papillary: 25% Chromophobe: 10% Unclassified: 33% Collecting duct: 40% Medullary: 100% |
COSMIC-021 [82] | Ib/II | Atezolizumab/ Cabozantinib | n = 32 (nccRCC cohort) Papillary: n = 15 Chromophobe: n = 9 Other: n = 7 | mPFS: 9.5mths ORR 31% (80% CI: 20-44) Papillary: 40% Chromophobe: 14% Other: 60% |
CALYPSO [79] | I/II | Durvalumab/ Savolitinib | n = 41 Papillary: n = 40 | ORR 27% mOS: 12.3mths mPFS: 4.9mths |
NCT03635892 [78] | II | Nivolumab/ Cabozantinib | n = 47 Cohort 1 (papillary, unclassified, translocation associated RCC): n = 40 Cohort 2 (chromophobe): n = 7 | Cohort 1: ORR 47.5%, mPFS 12.5mths, mOS: 28mths Cohort 2: ORR 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, A.; Spain, L.; Hamid, A.A. Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature. Curr. Oncol. 2023, 30, 923-937. https://doi.org/10.3390/curroncol30010070
John A, Spain L, Hamid AA. Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature. Current Oncology. 2023; 30(1):923-937. https://doi.org/10.3390/curroncol30010070
Chicago/Turabian StyleJohn, Alexius, Lavinia Spain, and Anis A. Hamid. 2023. "Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature" Current Oncology 30, no. 1: 923-937. https://doi.org/10.3390/curroncol30010070
APA StyleJohn, A., Spain, L., & Hamid, A. A. (2023). Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature. Current Oncology, 30(1), 923-937. https://doi.org/10.3390/curroncol30010070