Xerostomia: From Pharmacological Treatments to Traditional Medicine—An Overview on the Possible Clinical Management and Prevention Using Systemic Approaches
Abstract
:1. Introduction
- (1)
- What approaches are there to prevent xerostomia in predisposed patients?
- (2)
- Which systemic drugs are effective in antagonizing the disease?
- (3)
- Is TM a valid method and an alternative to chemicals in the treatment of the disease?
2. Results
2.1. Systemic Chemical Treatments
2.2. Para-Sympathomimetic Drugs
2.3. Para-Sympatholytic Drugs
2.4. Cytoprotective Agents
2.5. Antioxidant Agents
2.6. Biological Agents
2.7. Traditional Medicine
2.7.1. Traditional East Asian Medicine
2.7.2. Traditional Western Countries’ Medicine
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Almeida, P.D.V.; Azevedo, L.R.; De Lima, A.A.S.; Machado, M.Â.N.; Grégio, A.M.T. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar] [PubMed]
- Pedersen, A.M.; Bardow, A.; Jensen, S.B.; Nauntofte, B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002, 8, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Baumann, T.; Bereiter, R.; Lussi, A.; Carvalho, T.S. The effect of different salivary calcium concentrations on the erosion protection conferred by the salivary pellicle. Sci. Rep. 2017, 7, 12999. [Google Scholar] [CrossRef]
- Sreebny, L.M. Saliva in health and disease: An appraisal and update. Int. Dent. J. 2000, 50, 140–161. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.R.; Scully, C.; Hegarty, A.M. An update of the etiology and management of xerostomia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004, 97, 28–46. [Google Scholar] [CrossRef] [PubMed]
- Proctor, G.B.; Carpenter, G.H. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci. 2007, 133, 3–18. [Google Scholar] [CrossRef]
- Ghezzi, E.M.; Lange, L.A.; Ship, J.A. Determination of variation of stimulated salivary flow rates. J. Dent. Res. 2000, 79, 1874–1878. [Google Scholar] [CrossRef]
- Ship, J.A.; McCutcheon, J.A.; Spivakovsky, S.; Kerr, A.R. Safety, and effectiveness of topical dry mouth products containing olive oil, betaine, and xylitol in reducing xerostomia for polypharmacy-induced dry mouth. J. Oral Rehabil. 2007, 34, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Agostini, B.A.; Cericato, G.O.; da Silveira, E.R.; Nascimento, G.G.; dos Santos Costa, F.; Thomson, W.M.; Demarco, F.F. How Common is Dry Mouth? Systematic Review and Meta-Regression Analysis of Prevalence Estimates. Braz. Dent. J. 2018, 29, 606–618. [Google Scholar] [CrossRef]
- Furness, S.; Worthington, H.V.; Bryan, G.; Birchenough, S.; McMillan, R. Interventions for the management of dry mouth: Topical therapies. Cochrane Database Syst. Rev. 2011, 12, CD008934. [Google Scholar] [CrossRef]
- Epstein, J.B.; Robertson, M.; Emerton, S.; Phillips, N.; Stevenson-Moore, P. Quality of life and oral function in patients treated with radiation therapy for head and neck cancer. Head Neck 2001, 23, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Vissink, A.; Jansma, J.; Spijkervet, F.K.; Burlage, F.R.; Coppes, R.P. Oral sequelae of head and neck radiotherapy. Crit. Rev. Oral Biol. Med. 2003, 14, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Guggenheimer, J.; Moore, P.A. Xerostomia: Etiology, recognition, and treatment. J. Am. Dent. Assoc. 2003, 134, 61–69. [Google Scholar] [CrossRef]
- Fantozzi, P.J.; Pampena, E.; Di Vanna, D.; Pellegrino, E.; Corbi, D.; Mammucari, S.; Alessi, F.; Pampena, R.; Bertazzoni, G.; Minisola, S.; et al. Xerostomia, gustatory and olfactory dysfunctions in patients with COVID-19. Am. J. Otolaryngol. 2020, 41, 102721. [Google Scholar] [CrossRef]
- Riley, P.; Glenny, A.M.; Hua, F.; Worthington, H.V. Pharmacological interventions for preventing dry mouth and salivary gland dysfunction following radiotherapy. Cochrane Database Syst. Rev. 2017, 7, CD012744. [Google Scholar] [CrossRef] [PubMed]
- Pinna, R.; Campus, G.; Cumbo, E.; Mura, I.; Milia, E. Xerostomia induced by radiotherapy: An overview of the physiopathology, clinical evidence, and management of the oral damage. Ther. Clin. Risk Manag. 2015, 11, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Omur-Ozbek, P.; Stanek, B.T.; Dietrich, A.M.; Duncan, S.E.; Lee, Y.W.; Lesser, G. Taste and odor abnormalities in cancer patients. J. Support. Oncol. 2009, 7, 58–65. [Google Scholar]
- Wolff, A.; Fox, P.C.; Porter, S.; Konttinen, Y.T. Established and novel approaches for the management of hyposalivation and xerostomia. Curr. Pharm. Des. 2012, 18, 5515–5521. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Farhadi, S.; Esmaili, M. Efficacy of Pilocarpine and Bromhexine in Improving Radiotherapy-induced Xerostomia. J. Dent. Res. Dent. Clin. Dent. Prospects 2013, 7, 86–90. [Google Scholar] [CrossRef]
- Pimentel, M.J.; Filho, M.M.; Araújo, M.; Gomes, D.Q.; DA Costa, L.J. Evaluation of radioprotective effect of pilocarpine ingestion on salivary glands. Anticancer Res. 2014, 34, 1993–1999. [Google Scholar]
- Witsell, D.L.; Stinnett, S.; Chambers, M.S. Effectiveness of cevimeline to improve oral health in patients with postradiation xerostomia. Head Neck 2012, 34, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Jaguar, G.C.; Lima, E.N.; Kowalski, L.P.; Pellizzon, A.C.; Carvalho, A.L.; Boccaletti, K.W.; Alves, F.A. Double blind randomized prospective trial of bethanechol in the prevention of radiation-induced salivary gland dysfunction in head and neck cancer patients. Radiother. Oncol. 2015, 115, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Ryo, K.; Ito, A.; Takatori, R.; Tai, Y.; Arikawa, K.; Seido, T.; Yamada, T.; Shinpo, K.; Tamaki, Y.; Fujii, K.; et al. Effects of coenzyme Q10 on salivary secretion. Clin. Biochem. 2011, 44, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Ushikoshi-Nakayama, R.; Ryo, K.; Yamazaki, T.; Kaneko, M.; Sugano, T.; Ito, Y.; Matsumoto, N.; Saito, I. Effect of gummy candy containing ubiquinol on secretion of saliva: A randomized, double-blind, placebo-controlled parallel-group comparative study and an in vitro study. PLoS ONE 2019, 14, e0214495. [Google Scholar] [CrossRef]
- Chung, M.K.; Kim do, H.; Ahn, Y.C.; Choi, J.Y.; Kim, E.H.; Son, Y.I. Randomized Trial of Vitamin C/E Complex for Prevention of Radiation-Induced Xerostomia in Patients with Head and Neck Cancer. Otolaryngol. Head Neck Surg. 2016, 155, 423–430. [Google Scholar] [CrossRef]
- Davies, A.N.; Thompson, J. Parasympathomimetic drugs for the treatment of salivary gland dysfunction due to radiotherapy. Cochrane Database Syst. Rev. 2015, 2015, CD003782. [Google Scholar] [CrossRef]
- Luo, W.; Latchney, L.R.; Culp, D.J. G protein coupling to M1 and M3 muscarinic receptors in sublingual glands. Am. J. Physiol. Cell Physiol. 2001, 280, C884–C896. [Google Scholar] [CrossRef]
- Turner, R.J.; Sugiya, H. Understanding salivary fluid and protein secretion. Oral Dis. 2002, 8, 3–11. [Google Scholar] [CrossRef]
- Scully, C. Drug effects on salivary glands: Dry mouth. Oral Dis. 2003, 9, 165–176. [Google Scholar] [CrossRef]
- Tobin, G.; Giglio, D.; Götrick, B. Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Auton. Neurosci. 2002, 100, 1–9. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Tzioufas, A.G.; Stone, J.H.; Sisó, A.; Bosch, X. Treatment of primary Sjögren syndrome: A systematic review. JAMA 2010, 304, 452–460. [Google Scholar] [CrossRef]
- Mercadante, V.; Al Hamad, A.; Lodi, G.; Porter, S.; Fedele, S. Interventions for the management of radiotherapy-induced xerostomia and hyposalivation: A systematic review and meta-analysis. Oral Oncol. 2017, 66, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.S.; Posner, M.; Jones, C.U.; Biel, M.A.; Hodge, K.M.; Vitti, R.; Armstrong, I.; Yen, C.; Weber, R.S. Cevimeline for the treatment of postirradiation xerostomia in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Brizel, D.M.; Wasserman, T.H.; Henke, M.; Strnad, V.; Rudat, V.; Monnier, A.; Eschwege, F.; Zhang, J.; Russell, L.; Oster, W.; et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J. Clin. Oncol. 2000, 18, 3339–3345. [Google Scholar] [CrossRef] [PubMed]
- Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist 2007, 12, 738–747. [Google Scholar] [CrossRef]
- Bourhis, J.; De Crevoisier, R.; Abdulkarim, B.; Deutsch, E.; Lusinchi, A.; Luboinski, B.; Wibault, P.; Eschwege, F. A randomized study of very accelerated radiotherapy with and without amifostine in head and neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1105–1108. [Google Scholar] [CrossRef]
- ellema, A.P.; Slotman, B.; Muller, M.J.; Leemans, C.R.; Smeele, L.E.; Hoekman, K.; Aaronson, N.K.; Langendijk, J.A. Radiotherapy alone, versus radiotherapy with amifostine 3 times weekly, versus radiotherapy with amifostine 5 times weekly: A prospective randomized study in squamous cell head and neck cancer. Cancer 2006, 107, 544–553. [Google Scholar] [CrossRef]
- Antonadou, D.; Pepelassi, M.; Synodinou, M.; Puglisi, M.; Throuvalas, N. Prophylactic use of amifostine to prevent radiochemotherapy-induced mucositis and xerostomia in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 739–747. [Google Scholar] [CrossRef]
- Veerasarn, V.; Phromratanapongse, P.; Suntornpong, N.; Lorvidhaya, V.; Sukthomya, V.; Chitapanarux, I.; Tesavibul, C.; Swangsilpa, T.; Khorprasert, C.; Shotelersuk, K.; et al. Effect of Amifostine to prevent radiotherapy-induced acute and late toxicity in head and neck cancer patients who had normal or mild impaired salivary gland function. J. Med. Assoc. Thai 2006, 89, 2056–2067. [Google Scholar] [CrossRef]
- Buentzel, J.; Micke, O.; Adamietz, I.A.; Monnier, A.; Glatzel, M.; de Vries, A. Intravenous amifostine during chemoradiotherapy for head-and-neck cancer: A randomized placebo-controlled phase III study. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 684–691. [Google Scholar] [CrossRef]
- Zalewska, A.; Knaś, M.; Gińdzieńska-Sieśkiewicz, E.; Waszkiewicz, N.; Klimiuk, A.; Litwin, K.; Sierakowski, S.; Waszkiel, D. Salivary antioxidants in patients with systemic sclerosis. J. Oral Pathol. Med. 2014, 43, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Crane, F.L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 2001, 20, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.; Olsson, J.; Dallner, G. Metabolism, and function of coenzyme Q. Biochim. Biophys. Acta 2004, 1660, 171–199. [Google Scholar] [CrossRef]
- Navarro Morante, A.; Wolff, A.; Bautista Mendoza, G.R.; López-Jornet, P. Natural products for the management of xerostomia: A randomized, double-blinded, placebo-controlled clinical trial. J. Oral Pathol. Med. 2017, 46, 154–160. [Google Scholar] [CrossRef]
- Chitra, S.; Shyamala Devi, C.S. Effects of radiation and alpha tocopherol on saliva flow rate, amylase activity, total protein, and electrolyte levels in oral cavity cancer. Indian J. Dent. Res. 2008, 19, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Fielding, J.M.; Rowley, K.G.; Cooper, P.; O’Dea, K. Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. Asia Pac. J. Clin. Nutr. 2005, 14, 131–136. [Google Scholar]
- Garrido, M.; González-Flores, D.; Marchena, A.M.; Prior, E.; García-Parra, J.; Barriga, C.; Rodríguez Moratinos, A.B. A lycopene-enriched virgin olive oil enhances antioxidant status in humans. J. Sci. Food Agric. 2013, 93, 1820–1826. [Google Scholar] [CrossRef]
- Moody, L.; Crowder, S.L.; Fruge, A.D.; Locher, J.L.; Demark-Wahnefried, W.; Rogers, L.Q.; Delk-Licata, A.; Carroll, W.R.; Spencer, S.A.; Black, M.; et al. Epigenetic stratification of head and neck cancer survivors reveals differences in lycopene levels, alcohol consumption, and methylation of immune regulatory genes. Clin. Epigenet. 2020, 12, 138. [Google Scholar] [CrossRef]
- Fox, R.I.; Fox, C.M.; Gottenberg, J.E.; Dörner, T. Treatment of Sjögren’s syndrome: Current therapy and future directions. Rheumatology 2021, 60, 2066–2074. [Google Scholar] [CrossRef]
- Meijer, J.M.; Meiners, P.M.; Vissink, A.; Spijkervet, F.K.L.; Abdulahad, W.; Kamminga, N.; Brouwer, E.; Kallenberg, C.G.M.; Bootsma, H. Effectiveness of rituximab treatment in primary Sjögren’s syndrome: A randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010, 62, 960–968. [Google Scholar] [CrossRef]
- Steinfeld, S.D.; Tant, L.; Burmester, G.R.; Teoh, N.K.; Wegener, W.A.; Goldenberg, D.M.; Pradier, O. Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren’s syndrome: An open-label phase I/II study. Arthritis Res. Ther. 2006, 8, R129. [Google Scholar] [CrossRef] [PubMed]
- Gottenberg, J.E.; Dörner, T.; Bootsma, H.; Devauchelle-Pensec, V.; Bowman, S.J.; Mariette, X.; Bartz, H.; Oortgiesen, M.; Shock, A.; Koetse, W.; et al. Efficacy of Epratuzumab, an Anti-CD22 Monoclonal IgG Antibody, in Systemic Lupus Erythematosus Patients with Associated Sjögren’s Syndrome: Post Hoc Analyses From the EMBODY Trials. Arthritis Rheumatol. 2018, 70, 763–773. [Google Scholar] [CrossRef]
- Mariette, X.; Seror, R.; Quartuccio, L.; Baron, G.; Salvin, S.; Fabris, M.; Desmoulins, F.; Nocturne, G.; Ravaud, P.; De Vita, S. Efficacy and safety of belimumab in primary Sjögren’s syndrome: Results of the BELISS open-label phase II study. Ann. Rheum. Dis. 2015, 74, 526–531. [Google Scholar] [CrossRef]
- Srivastava, A.; Makarenkova, H.P. Innate Immunity and Biological Therapies for the Treatment of Sjögren’s Syndrome. Int. J. Mol. Sci. 2020, 21, 9172. [Google Scholar] [CrossRef]
- BBrito-Zerón, P.; Retamozo, S.; Kostov, B.; Baldini, C.; Bootsma, H.; De Vita, S.; Dörner, T.; Gottenberg, J.-E.; Kruize, A.A.; Mandl, T.; et al. Efficacy and safety of topical and systemic medications: A systematic literature review informing the EULAR recommendations for the management of Sjögren’s syndrome. RMD Open 2019, 5, e001064. [Google Scholar] [CrossRef]
- Adler, S.; Körner, M.; Förger, F.; Huscher, D.; Caversaccio, M.D.; Villiger, P.M. Evaluation of histologic, serologic, and clinical changes in response to abatacept treatment of primary Sjögren’s syndrome: A pilot study. Arthritis Care Res. 2013, 65, 1862–1868. [Google Scholar] [CrossRef]
- Meiners, P.M.; Vissink, A.; Kroese, F.G.; Spijkervet, F.K.; Smitt-Kamminga, N.S.; Abdulahad, W.H.; Bulthuis-Kuiper, J.; Brouwer, E.; Arends, S.; Bootsma, H. Abatacept treatment reduces disease activity in early primary Sjögren’s syndrome (open-label proof of concept ASAP study). Ann. Rheum. Dis. 2014, 73, 1393–1396. [Google Scholar] [CrossRef] [PubMed]
- Prater, E.F.; Day, A.; Patel, M.; Menter, A. A retrospective analysis of 72 patients on prior efalizumab subsequent to the time of voluntary market withdrawal in 2009. J. Drugs Dermatol. 2014, 13, 712–718. [Google Scholar]
- Cummins, M.J.; Papas, A.; Kammer, G.M.; Fox, P.C. Treatment of primary Sjögren’s syndrome with low-dose human interferon alfa administered by the oromucosal route: Combined phase III results. Arthritis Rheum. 2003, 49, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Khurshudian, A.V. A pilot study to test the efficacy of oral administration of interferon-alpha lozenges to patients with Sjögren’s syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 38–44. [Google Scholar] [CrossRef]
- Furness, S.; Bryan, G.; McMillan, R.; Birchenough, S.; Worthington, H.V. Interventions for the management of dry mouth: Non-pharmacological interventions. Cochrane Database Syst. Rev. 2013, 2013, CD009603. [Google Scholar] [CrossRef] [PubMed]
- Kooshyar, M.M.; Mozafari, P.M.; Amirchaghmaghi, M.; Pakfetrat, A.; Karoos, P.; Mohasel, M.R.; Orafai, H.; Azarian, A.A. A Randomized Placebo- Controlled Double Blind Clinical Trial of Quercetin in the Prevention and Treatment of Chemotherapy-Induced Oral Mucositis. J. Clin. Diagn. Res. 2017, 11, ZC46–ZC50. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.; Heydarirad, G.; Rezaeizadeh, H.; Choopani, R.; Ghobadi, A.; Gachkar, L. Evaluation of Efficacy of an Herbal Compound on Dry Mouth in Patients with Head and Neck Cancers: A Randomized Clinical Trial. J. Evid. Based Complement. Altern. Med. 2016, 21, 30–33. [Google Scholar] [CrossRef]
- Hsu, P.Y.; Yang, S.H.; Tsang, N.M.; Fan, K.H.; Hsieh, C.H.; Lin, J.R.; Hong, J.H.; Lin, Y.C.; Chen, H.Y.; Yang, C.T.; et al. Efficacy of Traditional Chinese Medicine in Xerostomia and Quality of Life during Radiotherapy for Head and Neck Cancer: A Prospective Pilot Study. Evid. Based Complement. Altern. Med. 2016, 2016, 8359251. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhan, J.; Li, X. Efficacy of Jiaweizengye decoction for the treatment of xerostomia after radiotherapy in patients with nasopharyngeal carcinoma. Zhongguo Weishen Biaozhun Guanli 2015, 6, 123–125. [Google Scholar]
- Charalambous, A.; Lambrinou, E.; Katodritis, N.; Vomvas, D.; Raftopoulos, V.; Georgiou, M.; Paikousis, L.; Charalambous, M. The effectiveness of thyme honey for the management of treatment-induced xerostomia in head and neck cancer patients: A feasibility randomized control trial. Eur. J. Oncol. Nurs. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Marucci, L.; Farneti, A.; Di Ridolfi, P.; Pinnaro, P.; Pellini, R.; Giannarelli, D.; Vici, P.; Conte, M.; Landoni, V.; Sanguineti, G. Double-blind randomized phase III study comparing a mixture of natural agents versus placebo in the prevention of acute mucositis during chemoradiotherapy for head and neck cancer. Head Neck 2017, 39, 1761–1769. [Google Scholar] [CrossRef]
- Steinmann, D.; Eilers, V.; Beynenson, D.; Buhck, H.; Fink, M. Effect of Traumeel S on pain and discomfort in radiation-induced oral mucositis: A preliminary observational study. Altern. Ther. Health Med. 2012, 18, 12–18. [Google Scholar]
- Park, B.; Noh, H.; Choi, D.J. Herbal Medicine for Xerostomia in Cancer Patients: A Systematic Review of Randomized Controlled Trials. Integr. Cancer Ther. 2018, 17, 179–191. [Google Scholar] [CrossRef]
- Adom, M.B.; Taher, M.; Mutalabisin, M.F.; Amri, M.S.; Abdul Kudos, M.B.; Wan Sulaiman, M.W.A.; Sengupta, P.; Susanti, D. Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother. 2017, 96, 348–360. [Google Scholar] [CrossRef]
- Cabrera-Jaime, S.; Martínez, C.; Ferro-García, T.; Giner-Boya, P.; Icart-Isern, T.; Estrada-Masllorens, J.M.; Fernández-Ortega, P. Efficacy of Plantago major, chlorhexidine 0.12% and sodium bicarbonate 5% solution in the treatment of oral mucositis in cancer patients with solid tumour: A feasibility randomised triple-blind phase III clinical trial. Eur. J. Oncol. Nurs. 2018, 32, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K.; Aoyama, T.; Oba, M.S.; Yoshikawa, T.; Matsuda, C.; Munemoto, Y.; Takiguchi, N.; Tanabe, K.; Nagata, N.; Imano, M.; et al. The clinical impact of Hangeshashinto (TJ-14) in the treatment of chemotherapy-induced oral mucositis in gastric cancer and colorectal cancer: Analyses of pooled data from two phase II randomized clinical trials (HANGESHA-G and HANGESHA-C). J. Cancer 2018, 9, 1725–1730. [Google Scholar] [CrossRef]
- Kamide, D.; Yamashita, T.; Araki, K.; Tomifuji, M.; Shiotani, A. Hangeshashinto (TJ-14) prevents radiation-induced mucositis by suppressing cyclooxygenase-2 expression and chemotaxis of inflammatory cells. Clin. Transl. Oncol. 2017, 19, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Seyyedi, S.A.; Sanatkhani, M.; Pakfetrat, A.; Olyaee, P. The therapeutic effects of chamomilla tincture mouthwash on oral aphthae: A Randomized Clinical Trial. J. Clin. Exp. Dent. 2014, 6, e535–e538. [Google Scholar] [CrossRef]
- Gomes, V.T.S.; Nonato Silva Gomes, R.; Gomes, M.S.; Joaquim, W.M.; Lago, E.C.; Nicolau, R.A. Effects of Matricaria Recutita (L.) in the Treatment of Oral Mucositis. Sci. World J. 2018, 2018, 4392184. [Google Scholar] [CrossRef] [PubMed]
- Hitomi, S.; Ono, K.; Terawaki, K.; Matsumoto, C.; Mizuno, K.; Yamaguchi, K.; Imai, R.; Omiya, Y.; Hattori, T.; Kase, Y.; et al. (6)-gingerol and (6)-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via action on Na+ channels. Pharmacol. Res. 2017, 117, 288–302. [Google Scholar] [CrossRef]
- Nik Nabil, W.N.; Lim, R.J.; Chan, S.Y.; Lai, N.M.; Liew, A.C. A systematic review on Chinese herbal treatment for radiotherapy-induced xerostomia in head and neck cancer patients. Complement. Ther. Clin. Pract. 2018, 30, 6–13. [Google Scholar] [CrossRef]
- Vogl, S.; Picker, P.; Mihaly-Bison, J.; Fakhrudin, N.; Atanasov, A.G.; Heiss, E.H.; Wawrosch, C.; Reznicek, G.; Dirsch, V.M.; Saukel, J.; et al. Ethnopharmacological in vitro studies on Austria’s folk medicine--an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 2013, 149, 750–771. [Google Scholar] [CrossRef]
- Menale, B.; De Castro, O.; Cascone, C.; Muoio, R. Ethnobotanical investigation on medicinal plants in the Vesuvio National Park (Campania, Southern Italy). J. Ethnopharmacol. 2016, 192, 320–349. [Google Scholar] [CrossRef]
- Milia, E.; Usai, M.; Szotáková, B.; Elstnerová, M.; Králová, V.; D’hallewin, G.; Spissu, Y.; Barberis, A.; Marchetti, M.; Bortone, A.; et al. The Pharmaceutical Ability of Pistacia lentiscus L. Leaves Essential Oil Against Periodontal Bacteria and Candida sp. and Its Anti-Inflammatory Potential. Antibiotics 2020, 9, 281. [Google Scholar] [CrossRef]
- Molassiotis, A.; Scott, J.A.; Kearney, N.; Pud, D.; Magri, M.; Selvekerova, S.; Bruyns, I.; Fernadez-Ortega, P.; Panteli, V.; Margulies, A.; et al. Complementary and alternative medicine use in breast cancer patients in Europe. Support. Care Cancer 2006, 14, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, H.; von Bornemann Hjelmborg, J.; Pasquarelli, E.; Fiorentini, G.; Di Costanzos, F.; Miccinesi, G. Prevalence in the use of complementary medicine among cancer patients in Tuscany, Italy. Tumori J. 2008, 94, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Clerici, C.A.; Veneroni, L.; Giacon, B.; Mariani, L.; Fossati-Bellani, F. Complementary and alternative medical therapies used by children with cancer treated at an Italian pediatric oncology unit. Pediatr. Blood Cancer 2009, 53, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Italia, S.; Brand, H.; Heinrich, J.; Berdel, D.; von Berg, A.; Wolfenstetter, S.B. Utilization of complementary and alternative medicine (CAM) among children from a German birth cohort (GINIplus): Patterns, costs, and trends of use. BMC Complement. Altern. Med. 2015, 15, 49. [Google Scholar] [CrossRef]
- Schröder, S.; Lee, S.; Efferth, T.; Motoo, Y. Acupuncture, and herbal medicine for cancer patients. Evid. Based Complement. Altern. Med. 2013, 2013, 313751. [Google Scholar] [CrossRef]
- Hubbert, M.; Sievers, H.; Lehnfeld, R.; Kehrl, W. Efficacy, and tolerability of a spray with Salvia officinalis in the treatment of acute pharyngitis—A randomised, double-blind, placebo-controlled study with adaptive design and interim analysis. Eur. J. Med. Res. 2006, 11, 20–26. [Google Scholar]
- Schapowal, A.; Berger, D.; Klein, P.; Suter, A. Echinacea/sage, or chlorhexidine/lidocaine for treating acute sore throats: A randomized double-blind trial. Eur. J. Med. Res. 2009, 14, 406–412. [Google Scholar] [CrossRef]
- Shrivastava, R.; John, G.W. Treatment of Aphthous Stomatitis with topical Alchemilla vulgaris in glycerine. Clin. Drug Investig. 2006, 26, 567–573. [Google Scholar] [CrossRef]
- Bardellini, E.; Amadori, F.; Conti, G.; Majorana, A. Clinical efficacy of a solution composed by sodium bicarbonate and alginate, aloe vera, propoli, chamomile, calendula, and honey, in the treatment of minor recurrent aphthous stomatitis in children. Minerva Pediatr. 2016, 68, 507–509. [Google Scholar]
- Braga, P.C.; Dal Sasso, M.; Culici, M.; Bianchi, T.; Bordoni, L.; Marabini, L. Anti-inflammatory activity of thymol: Inhibitory effect on the release of human neutrophil elastase. Pharmacology 2006, 77, 130–136. [Google Scholar] [CrossRef]
- Wienkötter, N.; Begrow, F.; Kinzinger, U.; Schierstedt, D.; Verspohl, E.J. The effect of thyme extract on beta2-receptors and mucociliary clearance. Planta Med. 2007, 73, 629–635. [Google Scholar] [CrossRef]
- Cutillo, F.; D’Abrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry 2006, 67, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C. Leaves, flowers, immature fruits, and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol. 2010, 48, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, P.; Toelg, M.; Ramos, F.M.H. Administration of Ratanhia-based herbal oral care products for the prophylaxis of oral mucositis in cancer chemotherapy patients: A clinical trial. Evid. Based Complement. Altern. Med. 2007, 4, 361–366. [Google Scholar] [CrossRef]
- Manconi, M.; Petretto, G.; D’hallewin, G.; Escribano, E.; Milia, E.; Pinna, R.; Palmieri, A.; Firoznezhad, M.; Peris, J.E.; Usach, I.; et al. Thymus essential oil extraction, characterization, and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf. B Biointerfaces 2018, 171, 115–122. [Google Scholar] [CrossRef]
- Pinna, R.; Filigheddu, E.; Juliano, C.; Palmieri, A.; Manconi, M.; D’hallewin, G.; Petretto, G.; Maioli, M.; Caddeo, C.; Manca, M.L.; et al. Antimicrobial Effect of Thymuscapitatus and Citruslimon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics 2019, 11, 234. [Google Scholar] [CrossRef]
- Mandrone, M.; Bonvicini, F.; Lianza, C.; Sanna, C.; Maxia, A.; Gentilomi, G.A.; Poli, F. Sardinian plants with antimicrobial potential. Biological screening with T multivariate data treatment of thirty-six extracts. Ind. Crops Prod. 2019, 137, 557–565. [Google Scholar] [CrossRef]
- Piccolella, S.; Nocera, P.; Carillo, P.; Woodrow, P.; Greco, V.; Manti, L.; Fiorentino, A.; Pacifico, S. An apolar Pistacia lentiscus L. leaf extract: GC-MS metabolic profiling and evaluation of cytotoxicity and apoptosis inducing effects on SH-SY5Y and SK-N-BE (2)C cell lines. Food Chem. Toxicol. 2016, 95, 64–74. [Google Scholar] [CrossRef]
- Oalđe, M.M.; Kolarević, S.M.; Živković, J.C.; Vuković-Gačić, B.S.; Jovanović Marić, J.M.; Kračun Kolarević, M.J.; Đorđević, J.Z.; Alimpić Aradski, A.Z.; Marin, P.D.; Šavikin, K.P.; et al. The impact of different extracts of six Lamiaceae species on deleterious effects of oxidative stress assessed in acellular, prokaryotic, and eukaryotic models in vitro. Saudi Pharm. J. 2020, 28, 1592–1604. [Google Scholar] [CrossRef] [PubMed]
- Buentzel, J.; Bauer, C.; Buentzel, J. How to bridge the gap? European medical plants used for treating oral mucositis: On the search for evidence. J. Cancer Res. Clin. Oncol. 2020, 146, 985–1001. [Google Scholar] [CrossRef]
- McDowell, L.J.; Rock, K.; Xu, W.; Chan, B.; Waldron, J.; Lu, L.; Ezzat, S.; Pothier, D.; Bernstein, L.J.; So, N.; et al. Long-Term Late Toxicity, Quality of Life, and Emotional Distress in Patients with Nasopharyngeal Carcinoma Treated with Intensity Modulated Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 340–352. [Google Scholar] [CrossRef] [PubMed]
Reference | Experimental Preparation | Vector | Sample Characteristics | Time Treatment | Sialometry | Assessment | Time Points Assessment | Results |
---|---|---|---|---|---|---|---|---|
[19] | Pilocarpine vs. bromhexine | Tablets | 25 HNC patients with radiotherapy-induced xerostomia | 2 weeks | UWS | Xerostomia inventory questionnaire | Baseline vs. 2 weeks | Pilocarpine significantly improved saliva vs. bromhexine. |
[20] | Pilocarpine vs. placebo | Bottled solution | 11 HNC patients undergoing radiotherapy | 5 weeks | UWS, WSS | WHO criteria | Baseline vs. 1, 2, 3, 4, 5-week controls | Pilocarpine increased saliva. Xerostomia and complication lowered. |
[21] | Cevimeline vs. placebo | Capsules | 54 HNC patients after radiotherapy | 6 weeks | Not assessed | OHIP-49, QoL | Baseline vs. 6-week controls | No difference reported. |
[22] | Bethanecol vs. placebo | Tablets | 97 HNC patients with radiotherapy-induced xerostomia | From the beginning to 1 month after radiotherapy completion | UWS, WSS | Observer-based grade and scores according to subjective measures | Baseline vs. 3 months after the treatment | Bethanechol significantly improved salivary parameters. |
[23] | Ubiquinol, Ubiquinone vs. placebo | Capsules | 20 Sjogren vs. 22 healthy patients | 4 weeks | WSS | Mental, physical, and oral conditions questionnaire | Baseline vs. 4-week control | Ubiquinone and ubiquinol increased significantly saliva. Questioner parameters significantly improved vs. control. |
[24] | Ubiquinol vs. placebo | Gummy Candy | 40 healthy patients suffering from xerostomia | 8 weeks | WSS | Mental, physical, and oral conditions questionnaire | Baseline vs. 8-week control | WSS significantly improved vs. control. |
[25] | Vitamin E + Vitamin C vs. placebo | Pills | 23 HNC patients undergoing radio therapy | 12 weeks | Not assessed | VAS scale | Baseline vs. 1- and 6-months after radiotherapy | Vit E + C lowered xerostomia |
Reference | Experimental Preparation | Vector | Sample Characteristics | Time Treatment | Sialometry | Assessment | Time Points Assessment | Results |
---|---|---|---|---|---|---|---|---|
[62] | Quercetin hydrate vs. placebo | Capsules | 20 patients under chemotherapy | From the beginning of radiotherapy up to the 4-week | Not assessed | WHO criteria | Baseline vs. daily control up to the completion of chemotherapy | No differences were reported. |
[63] | Herbal compound (Malva sylvestris and Alcea digitata) vs. artificial saliva (Hypozalix) | Mouth rinse | 62 irradiated patients | From the beginning of radiotherapy up to the 4-week | Not assessed | VAS | Baseline vs. 2- and 4-week controls | Xerostomia was significantly reduced vs. control. |
[64] | Gan Lu Yin (unspecified composition) vs. control | Powder | 91 HNC patients under radiotherapy/chemoradiotherapy | From the beginning of radiotherapy up to the 6-week | Not assessed | RTOG criteria | Baseline vs. 4, 7-week control, and at the completion of radiotherapy | Xerostomia was reduced, QoL improved significantly vs. control. |
[65] | Jiaweizengye (Glycyrrhizae Radix, Trichosanthis Radix, Scrophulariae Radix, Liriopes Radix, Adenophorae Radix, Dendrobii Herba, Mume Fructus, Puerariae Radix, Rehmanniae Radix) vs. human epidermal growth factor | Decoction | 60 HNC patients under radiotherapy | From the beginning to radiotherapy completion | WSS | RTOG criteria | Baseline vs. the completion of radiotherapy | WSS improved significantly. Xerostomia was lowered vs. control. |
[66] | Thyme honey vs. saline solution | Mouth rinse | 72 HNC patients under radiotherapy or/and chemotherapy | From the beginning of radiotherapy up to the 4-week after completion | Not assessed | NCI; QoL, VAS | Baseline vs. 1 and 6 months after the completion of radiotherapy | QoL improved significantly. |
[67] | Faringel (Propolis powder extract 6%, Aloe vera 30%, Calendula powder extract 2%, Chamomile aqueous solution 0,3%, Honey, Sodium alginate, Sodium Carbonate) vs. placebo | Mouth rinse | 107 HNC patients under radiotherapy | From the beginning of radiotherapy up to the 5-week | Not assessed | CTCAE | Baseline vs. weekly controls up to the completion of the radiotherapy | No differences were reported. |
[68] | Traumeel S (Arnica montana, Calendula officinalis, Achillea millefolium, Chamomilla recutita, Symphytum officinale, Atropa belladonna, Aconitum napellus, Bellis perennis, Hypericum perforatum, Echinacea angustifolia, Echinacea purpurea, Hamamelis virginica, Mercurius solubilis, and Hepar sulfuris) vs. sage tea | Mouth rinse | 20 HNC patients under radiotherapy or radio-chemotherapy | From the beginning to the radiotherapy completion | Not assessed | QLQ-C30; H&N35, CTCA, patients’ diaries, taste perceptions; oral inspection | Baseline vs. the completion of the treatment | No differences were reported. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardellitti, L.; Bortone, A.; Filigheddu, E.; Serralutzu, F.; Milia, E.P. Xerostomia: From Pharmacological Treatments to Traditional Medicine—An Overview on the Possible Clinical Management and Prevention Using Systemic Approaches. Curr. Oncol. 2023, 30, 4412-4426. https://doi.org/10.3390/curroncol30050336
Sardellitti L, Bortone A, Filigheddu E, Serralutzu F, Milia EP. Xerostomia: From Pharmacological Treatments to Traditional Medicine—An Overview on the Possible Clinical Management and Prevention Using Systemic Approaches. Current Oncology. 2023; 30(5):4412-4426. https://doi.org/10.3390/curroncol30050336
Chicago/Turabian StyleSardellitti, Luigi, Antonella Bortone, Enrica Filigheddu, Francesca Serralutzu, and Egle Patrizia Milia. 2023. "Xerostomia: From Pharmacological Treatments to Traditional Medicine—An Overview on the Possible Clinical Management and Prevention Using Systemic Approaches" Current Oncology 30, no. 5: 4412-4426. https://doi.org/10.3390/curroncol30050336
APA StyleSardellitti, L., Bortone, A., Filigheddu, E., Serralutzu, F., & Milia, E. P. (2023). Xerostomia: From Pharmacological Treatments to Traditional Medicine—An Overview on the Possible Clinical Management and Prevention Using Systemic Approaches. Current Oncology, 30(5), 4412-4426. https://doi.org/10.3390/curroncol30050336