Incidence Rates of Cutaneous Immune-Related Adverse Events in Patients with Lung Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Outcomes
2.4. Quality Assessment
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.3. Incidence Rate of Cutaneous Immune-Related Adverse Events
3.4. Subgroup Analysis
3.5. Meta Regression
3.6. Risk Factors for cirAEs in Patients with Lung Cancer Receiving ICIs
3.7. Publication Bias
4. Discussion
4.1. Limitations
4.2. Implications for Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Immune checkpoint inhibitors | ICIs |
Cutaneous immune-related adverse events | cirAEs |
Non-small-cell lung cancer | NSCLC |
Confidence interval | CI |
Randomized controlled trial | RCT |
Non-randomized controlled trial | nRCT |
CTCAE V | Common Terminology Criteria for Adverse Events Version |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Garrett, N.F.M.; Da Costa, A.C.C.; Damiani, G.; Vasques, C.I. Patients with lung cancer undergoing immune checkpoint inhibitors: A meta-analysis of dermatological toxicities. Crit. Rev. Oncol. Hematol. 2020, 152, 102983. [Google Scholar] [CrossRef]
- Collins, L.K.; Chapman, M.S.; Carter, J.B.; Samie, F.H. Cutaneous adverse effects of the immune checkpoint inhibitors. Curr. Probl. Cancer 2017, 41, 125–128. [Google Scholar] [CrossRef]
- Russo, A.; Franchina, T.; Ricciardi, G.R.R.; Toscano, G.; Schifano, S.; Lo Certo, G.; Battaglia, A.; Pantò, E.; Scaffidi Fonti, M.; Adamo, V. The changing scenario of 1st line therapy in non-oncogene addicted NSCLCs in the era of immunotherapy. Crit. Rev. Oncol. Hematol. 2018, 130, 1–12. [Google Scholar] [CrossRef]
- Murakami, S. Durvalumab for the treatment of non-small cell lung cancer. Expert. Rev. Anticancer. Ther. 2019, 19, 1009–1016. [Google Scholar] [CrossRef]
- Wu, L.X.; Li, S.L.; Du, X.P.; Han, Z.X. Cutaneous adverse events (AEs) of immunotherapy in patients with advanced non-small-cell lung cancer(NSCLC):A Meta-analysis and systematic review. J. Mod. Oncol. 2022, 30, 1388–1393. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Berner, F.; Bomze, D.; Diem, S.; Ali, O.H.; Fässler, M.; Ring, S.; Niederer, R.; Ackermann, C.J.; Baumgaertner, P.; Pikor, N.; et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 2019, 5, 1043–1047. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Chiu, M.N.; Pilkhwal Sah, S. Adverse cutaneous toxicities by PD-1/PD-L1 immune checkpoint inhibitors: Pathogenesis, treatment, and surveillance. Cutan. Ocul. Toxicol. 2022, 41, 73–90. [Google Scholar] [CrossRef]
- Patel, A.; Tattersall, I. Cutaneous Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors. 2025. Available online: https://www.uptodate.com/contents/cutaneous-immune-related-adverse-events-associated-with-immune-checkpoint-inhibitors (accessed on 10 March 2025).
- Sibaud, V.; Meyer, N.; Lamant, L.; Vigarios, E.; Mazieres, J.; Delord, J.P. Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol. 2016, 28, 254–263. [Google Scholar] [CrossRef]
- Sibaud, V. Dermatologic reactions to immune checkpoint inhibitors: Skin toxicities and immunotherapy. Am. J. Clin. Dermatol. 2018, 19, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wu, X.; Chi, Z.; Si, L.; Sheng, X.; Kong, Y.; Mao, L.; Lian, B.; Tang, B.; Yan, X.; et al. Safety, activity, and pharmacokinetics of camrelizumab in advanced Asian melanoma patients: A phase I study. BMC Cancer 2022, 22, 565. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Progress of immunotherapy-related adverse events. Chin. J. Intern. Med. 2021, 60, 84–89. [Google Scholar] [CrossRef]
- Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie6, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 2016, 13, 473–486. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Yang, F.; Qi, X.; Wang, X.; Guan, X.; Shen, C.; Duma, N.; Aguilera, J.V.; Chinatakuntlawar, A.; et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, O.; Elhalawani, H.; Fouad, M. Risk of cutaneous toxicities in patients with solid tumors treated with immune checkpoint inhibitors: A meta-analysis. Future Oncol. 2015, 11, 2471–2484. [Google Scholar] [CrossRef]
- Chen, T.; Razak, A.; Bedard, P.; Siu, L.; Hansen, A. A systematic review of immune-related adverse event reporting in clinical trials of immune checkpoint inhibitors. Ann. Oncol. 2015, 26, 1824–1829. [Google Scholar] [CrossRef]
- Khoja, L.; Day, D.; Chen, T.W.W.; Siu, L.; Hansen, A.R. Tumour-and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Aromataris, E.; Munn, Z. Chapter 2: Systematic reviews of qualitative evidence. In JBI Manual for Evidence Synthesis; Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., Jordan, Z., Eds.; JBI: Adelaide, Australia, 2020. [Google Scholar] [CrossRef]
- Lynch, T.J.; Bondarenko, I.; Luft, A.; Serwatowski, P.; Barlesi, F.; Chacko, R.; Sebastian, M.; Neal, J.; Lu, H.; Cuillerot, J.-M.; et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: Results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 2012, 30, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef]
- Gettinger, S.N.; Horn, L.; Gandhi, L.; Spigel, D.R.; Antonia, S.J.; Rizvi, N.A.; Powderly, J.D.; Heist, R.S.; Carvajal, R.D.; Jackman, D.M.; et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 2015, 33, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Langer, C.J.; Gadgeel, S.M.; Borghaei, H.; Papadimitrakopoulou, V.A.; Patnaik, A.; Powell, S.F.; Gentzler, R.D.; Martins, R.G.; Stevenson, J.P.; Jalal, S.I.; et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016, 17, 1497–1508. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Luft, A.; Szczesna, A.; Havel, L.; Kim, S.-W.; Akerley, W.; Pietanza, M.C.; Wu, Y.-L.; Zielinski, C.; Thomas, M.; et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J. Clin. Oncol. 2016, 34, 3740–3748. [Google Scholar] [CrossRef]
- Govindan, R.; Szczesna, A.; Ahn, M.-J.; Schneider, C.-P.; Gonzalez Mella, P.F.; Barlesi, F.; Han, B.; Ganea, D.E.; von Pawel, J.; Vladimirov, V.; et al. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J. Clin. Oncol. 2017, 35, 3449–3457. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Cobo Dols, M.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017, 18, 31–41. [Google Scholar] [CrossRef]
- Hida, T.; Kaji, R.; Satouchi, M.; Ikeda, N.; Horiike, A.; Nokihara, H.; Seto, T.; Kawakami, T.; Nakagawa, S.; Kubo, T. Atezolizumab in Japanese patients with previously treated advanced non-small-cell lung cancer: A subgroup analysis of the Phase 3 OAK study. Clin. Lung Cancer 2018, 19, e405–e415. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lu, S.; Cheng, Y.; Zhou, C.; Wang, J.; Mok, T.; Zhang, L.; Tu, H.Y.; Wu, L.; Feng, J.; et al. Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase III clinical trial. J. Thorac. Oncol. 2019, 14, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Gubens, M.A.; Sequist, L.V.; Stevenson, J.P.; Powell, S.F.; Villaruz, L.C.; Gadgeel, S.M.; Langer, C.J.; Patnaik, A.; Borghaei, H.; Jalal, S.I.; et al. Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non-small-cell lung cancer: KEYNOTE-021 cohorts D and H. Lung Cancer 2019, 130, 59–66. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.J.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, W.Y. Explore the clinical effects of PD-1/PD-L1 inhibitors in the treatment of non-small cell lung cancer. Shenzhen J. Integr. Tradit. Chin. Western. Med. 2021, 31, 26–28. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, D.Q.; Zhang, X.; Zhu, G.J.; Lang, L.L.; Cao, Q. PD-1 inhibitor combined with chemotherapy in preoperative neoadjuvant treatment of stage III non-small cell lung cancer: A randomized controlled trial. Chin. J. Clin. Thorac. Cardiovasc. Surg. 2021, 28, 963–971. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, J.; Sheng, C. The short-term efficacy and safety of camrelizumab combined with concurrent radiochemotherapy in non-squamous NSCLC patients with driver gene-negative and brain metastases. Anti-Tumor Pharm. 2021, 11, 491–496. [Google Scholar] [CrossRef]
- He, M.; Ceng, F. Application Effect of Predictive Nursing in Immunotherapy of Lung Cancer Patients. Guide China Med. 2021, 19, 159–160. [Google Scholar] [CrossRef]
- Li, L.R. The application effect of self-care in lung cancer immunotherapy. Zhonghua Yangsheng Baojian 2022, 40, 101–103. [Google Scholar]
- Rizvi, N.A.; Mazières, J.; Planchard, D.; Stinchcombe, T.E.; Dy, G.K.; Antonia, S.J.; Horn, L.; Lena, H.; Minenza, E.; Mennecier, B.; et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 2015, 16, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Nishio, M.; Hida, T.; Atagi, S.; Sakai, H.; Nakagawa, K.; Takahashi, T.; Nogami, N.; Saka, H.; Takenoyama, M.; Maemondo, M.; et al. Multicentre phase II study of nivolumab in Japanese patients with advanced or recurrent non-squamous non-small cell lung cancer. ESMO Open. 2017, 2, e000108. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef]
- Gettinger, S.; Rizvi, N.A.; Chow, L.Q.; Borghaei, H.; Brahmer, J.; Ready, N.; Gerber, D.E.; Shepherd, F.A.; Antonia, S.; Goldman, J.W.; et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol. 2016, 34, 2980–2987. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Gettinger, S.N.; Mahajan, A.; Chiang, A.C.; Herbst, R.S.; Sznol, M.; Tsiouris, A.J.; Cohen, J.; Vortmeyer, A.; Jilaveanu, L.; et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 976–983. [Google Scholar] [CrossRef]
- Antonia, S.; Goldberg, S.B.; Balmanoukian, A.; Chaft, J.E.; Sanborn, R.E.; Gupta, A.; Narwal, R.; Steele, K.; Gu, Y.; Karakunnel, J.J.; et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. Lancet Oncol. 2016, 17, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Hida, T.; Nishio, M.; Nogami, N.; Ohe, Y.; Nokihara, H.; Sakai, H.; Satouchi, M.; Nakagawa, K.; Takenoyama, M.; Isobe, H.; et al. Efficacy and safety of nivolumab in Japanese patients with advanced or recurrent squamous non-small cell lung cancer. Cancer Sci. 2017, 108, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Gettinger, S.; Johnson, M.L.; Jänne, P.A.; Garassino, M.C.; Christoph, D.; Toh, C.K.; Rizvi, N.A.; Chaft, J.E.; Costa, E.C.; et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J. Clin. Oncol. 2017, 35, 2781–2789. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, K.H.; Cho, E.K.; Kim, D.-W.; Kim, S.-W.; Kim, J.-H.; Cho, B.C.; Kang, J.H.; Han, J.-Y.; Min, Y.J.; et al. Nivolumab in advanced non-small-cell lung cancer patients who failed prior platinum-based chemotherapy. Lung Cancer 2018, 122, 234–242. [Google Scholar] [CrossRef]
- Nishio, M.; Takahashi, T.; Yoshioka, H.; Nakagawa, K.; Fukuhara, T.; Yamada, K.; Ichiki, M.; Tanaka, H.; Seto, T.; Sakai, H.; et al. KEYNOTE-025: Phase 1b study of pembrolizumab in Japanese patients with previously treated programmed death ligand 1-positive advanced non-small-cell lung cancer. Cancer Sci. 2019, 110, 1012–1020. [Google Scholar] [CrossRef]
- Li, J.W.; Zhou, Y.; Cao, S.H.; Wang, Y.; Zhong, H. The single-center analysis of the efficacy and safety of nivolumab monoclonal antibody in advanced non-small cell lung cancer. China Oncol. 2019, 29, 803–808. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, B.J.; Liu, Y. Observation and nursing of adverse reactions in the treatment of advanced lung cancer with anti-PD-1 monoclonal antibody. J. Nurses Train. 2020, 35, 138–140. [Google Scholar] [CrossRef]
- Deng, W.J.; Zhou, Y.; Lin, X.X.; Yu, G.S. Efficacy Observation on effectiveness and safety of PD-1 monoclonal antibody Pembrolizumab in 28 patients with advanced lung cancer. China Pract. Med. 2020, 15, 9–11. [Google Scholar] [CrossRef]
- Gan, W.L.; Han, C.Y.; Liu, X.X.; Zhang, M. A research on symptoms of skin toxicity induced by immunotherapy in patients with lung cancer. J. Pract. Clin. Med. 2021, 25, 21–25. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, D.Q.; Zhang, X.; Zhu, G.J.; Lang, L.L.; Cao, Q. Clinical study of PD-1 monoclonal antibody combined with chemotherapy in the preoperative neoadjuvant treatment of stage ⅢA non-small cell lung cancer. Chin. J. Thorac. Cardiovasc. Surg. 2022, 38, 96–101. [Google Scholar] [CrossRef]
- Ali, O.H.; Diem, S.; Markert, E.; Jochum, W.; Kerl, K.; French, L.E.; Speiser, D.E.; Früh, M.; Flatz, L. Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer. Oncoimmunology 2016, 5, e1231292. [Google Scholar] [CrossRef]
- Teraoka, S.; Fujimoto, D.; Morimoto, T.; Kawachi, H.; Ito, M.; Sato, Y.; Nagata, K.; Nakagawa, A.; Otsuka, K.; Uehara, K.; et al. Early immune-related adverse events and association with outcome in advanced non-small cell lung cancer patients treated with nivolumab: A prospective cohort study. J. Thorac. Oncol. 2017, 12, 1798–1805. [Google Scholar] [CrossRef]
- Hui, R.; Garon, E.B.; Goldman, J.W.; Leighl, N.B.; Hellmann, M.D.; Patnaik, A.; Gandhi, L.; Eder, J.P.; Ahn, M.-J.; Horn, L.; et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: A phase 1 trial. Ann. Oncol. 2017, 28, 874–881. [Google Scholar] [CrossRef]
- Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al. Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol. 2018, 4, 374–378. [Google Scholar] [CrossRef]
- Lee, C.K.M.; Li, S.; Tran, D.C.; Zhu, G.A.; Kim, J.; Kwong, B.Y.; Chang, A.L.S. Characterization of dermatitis after PD-1/PD-L1 inhibitor therapy and association with multiple oncologic outcomes: A retrospective case-control study. J. Am. Acad. Dermatol. 2018, 79, 1047–1052. [Google Scholar] [CrossRef]
- Sato, K.; Akamatsu, H.; Murakami, E.; Sasaki, S.; Kanai, K.; Hayata, A.; Tokudome, N.; Akamatsu, K.; Koh, Y.; Ueda, H.; et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer 2018, 115, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Fiorica, F.; Belluomini, L.; Stefanelli, A.; Santini, A.; Urbini, B.; Giorgi, C.; Frassoldati, A. Immune checkpoint inhibitor nivolumab and radiotherapy in pretreated lung cancer patients: Efficacy and safety of combination. Am. J. Clin. Oncol. 2018, 41, 1101–1105. [Google Scholar] [CrossRef]
- Owen, D.H.; Wei, L.; Bertino, E.M.; Edd, T.; Villalona-Calero, M.A.; He, K.; Shields, P.G.; Carbone, D.P.; Otterson, G.A. Incidence, risk factors, and effect on survival of immune-related adverse events in patients with non-small-cell lung cancer. Clin. Lung Cancer 2018, 19, e893–e900. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, R.; Nicolas, E.; Paciencia, M.; Jonville-Béra, A.-P.; Madroszyk, A.; Cecile, M.; Braticevic, C.; Duran, S.; Tassy, L.; Rouby, F.; et al. Nivolumab in routine practice for older patients with advanced or metastatic non-small cell lung cancer. J. Geriatr. Oncol. 2018, 9, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Schouten, R.D.; Muller, M.; de Gooijer, C.J.; Baas, P.; van den Heuvel, M. Real life experience with nivolumab for the treatment of non-small cell lung carcinoma: Data from the expanded access program and routine clinical care in a tertiary cancer centre—The Netherlands Cancer Institute. Lung Cancer 2018, 126, 210–216. [Google Scholar] [CrossRef]
- Areses Manrique, M.C.; Mosquera Martínez, J.; García González, J.; Afonso Afonso, F.J.; Quintela, M.L.; Fernández Núñez, N.; Azpitarte Raposeiras, C.; Amenedo Gancedo, M.; Santomé Couto, L.; García Campelo, M.R.; et al. Real world data of nivolumab for previously treated non-small cell lung cancer patients: A Galician lung cancer group clinical experience. Transl. Lung Cancer Res. 2018, 7, 404–415. [Google Scholar] [CrossRef]
- Grossi, F.; Crinò, L.; Logroscino, A.; Canova, S.; Delmonte, A.; Melotti, B.; Proto, C.; Gelibter, A.; Cappuzzo, F.; Turci, D.; et al. Use of nivolumab in elderly patients with advanced squamous non-small-cell lung cancer: Results from the Italian cohort of an expanded access programme. Eur. J. Cancer 2018, 100, 126–134. [Google Scholar] [CrossRef]
- Akano, Y.; Kuribayashi, K.; Funaguchi, N.; Koda, Y.; Fujimoto, E.; Mikami, K.; Minami, T.; Takahashi, R.; Yokoi, T.; Kijima, T. Analysis of pleiotropic effects of nivolumab in pretreated advanced or recurrent non-small cell lung cancer cases. Vivo 2019, 33, 507–514. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, H.T.; Won, C.H.; Chang, S.E.; Lee, M.W.; Choi, J.H.; Lee, W.J. Characterization and prognostic significance of cutaneous adverse events to anti-programmed cell death-1 therapy. J. Korean Med. Sci. 2019, 34, e186. [Google Scholar] [CrossRef]
- Krefting, F.; Basara, N.; Schütte, W.; Späth-Schwalbe, E.; Alt, J.; Thiel, S.; Kimmich, M.; Fischer, J.R.; Kurz, S.; Griesinger, F.; et al. Clinical experience of immunotherapy treatment: Efficacy and toxicity analysis of the compassionate use program of nivolumab in patients with advanced squamous cell non-small cell lung cancer. Oncol. Res. Treat. 2019, 42, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.C.; Pyo, K.-H.; Xin, C.-F.; Jung, D.; Shim, H.S.; Lee, C.Y.; Park, S.Y.; Yoon, H.I.; Hong, M.H.; Cho, B.C.; et al. Comprehensive analysis of the characteristics and treatment outcomes of patients with non-small cell lung cancer treated with anti-PD-1 therapy in real-world practice. J. Cancer Res. Clin. Oncol. 2019, 145, 1613–1623. [Google Scholar] [CrossRef]
- Cortellini, A.; Chiari, R.; Ricciuti, B.; Metro, G.; Perrone, F.; Tiseo, M.; Bersanelli, M.; Bordi, P.; Santini, D.; Giusti, R.; et al. Correlations between the immune-related adverse events spectrum and efficacy of anti-PD1 immunotherapy in NSCLC patients. Clin. Lung Cancer 2019, 20, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Ksienski, D.; Wai, E.S.; Croteau, N.; Fiorino, L.; Brooks, E.; Poonja, Z.; Fenton, D.; Geller, G.; Glick, D.; Lesperance, M. Efficacy of nivolumab and pembrolizumab in patients with advanced non-small-cell lung cancer needing treatment interruption because of adverse events: A retrospective multicenter analysis. Clin. Lung Cancer 2019, 20, e97–e106. [Google Scholar] [CrossRef]
- Muchnik, E.; Loh, K.P.; Strawderman, M.; Magnuson, A.; Mohile, S.G.; Estrah, V.; Maggiore, R.J. Immune checkpoint inhibitors in real-world treatment of older adults with non-small cell lung cancer. J. Am. Geriatr. Soc. 2019, 67, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Genova, C.; De Giglio, A.; Bassanelli, M.; Dal Bello, M.G.; Metro, G.; Brambilla, M.; Baglivo, S.; Grossi, F.; Chiari, R. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: Long-term outcomes from a multi-institutional analysis. J. Cancer Res. Clin. Oncol. 2019, 145, 479–485. [Google Scholar] [CrossRef]
- Ksienski, D.; Wai, E.S.; Croteau, N.; Freeman, A.T.; Chan, A.; Fiorino, L.; Brooks, E.G.; Poonja, Z.; Fenton, D.; Geller, G.; et al. Pembrolizumab for advanced non-small cell lung cancer: Efficacy and safety in everyday clinical practice. Lung Cancer 2019, 133, 110–116. [Google Scholar] [CrossRef]
- Pavan, A.; Calvetti, L.; Dal Maso, A.; Attili, I.; Del Bianco, P.; Pasello, G.; Guarneri, V.; Aprile, G.; Conte, P.; Bonanno, L.; et al. Peripheral blood markers identify risk of immune-related toxicity in advanced non-small cell lung cancer treated with immune-checkpoint inhibitors. Oncologist 2019, 24, 1128–1136. [Google Scholar] [CrossRef]
- Toi, Y.; Sugawara, S.; Sugisaka, J.; Ono, H.; Kawashima, Y.; Aiba, T.; Kawana, S.; Saito, R.; Aso, M.; Tsurumi, K.; et al. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol. 2019, 5, 376–383. [Google Scholar] [CrossRef]
- Dupont, R.; Bérard, E.; Puisset, F.; Comont, T.; Delord, J.-P.; Guimbaud, R.; Meyer, N.; Mazieres, J.; Alric, L. The prognostic impact of immune-related adverse events during anti-PD1 treatment in melanoma and non-small-cell lung cancer: A real-life retrospective study. Oncoimmunology 2020, 9, 1682383. [Google Scholar] [CrossRef]
- Tang, S.H.; Hou, L.L.; Wang, H. Longitudinal study of skin toxicity caused by immunotherapy in patients with non-small cell lung cancer. J. Nurs. Sci. 2020, 35, 35–37. [Google Scholar] [CrossRef]
- Hosoya, K.; Fujimoto, D.; Morimoto, T.; Kumagai, T.; Tamiya, A.; Taniguchi, Y.; Yokoyama, T.; Ishida, T.; Hirano, K.; Matsumoto, H.; et al. Association between early immune-related adverse events and clinical outcomes in patients with non-small cell lung cancer treated with immune checkpoint inhibitors. Clin. Lung Cancer 2020, 21, e315–e328. [Google Scholar] [CrossRef]
- Aso, M.; Toi, Y.; Sugisaka, J.; Aiba, T.; Kawana, S.; Saito, R.; Ogasawara, T.; Tsurumi, K.; Ono, K.; Shimizu, H.; et al. Association between skin reaction and clinical benefit in patients treated with anti-programmed cell death 1 monotherapy for advanced non-small cell lung cancer. Oncologist 2020, 25, e536–e544. [Google Scholar] [CrossRef]
- Ali, O.H.; Bomze, D.; Ring, S.S.; Berner, F.; Fässler, M.; Diem, S.; Abdou, M.-T.; Hammers, C.; Emtenani, S.; Braun, A.; et al. BP180-specific IgG is associated with skin adverse events, therapy response, and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors. J. Am. Acad. Dermatol. 2020, 82, 854–861. [Google Scholar] [CrossRef]
- Noguchi, S.; Suminaga, K.; Kaki, T.; Kawachi, H.; Fukao, A.; Terashita, S.; Horikawa, S.; Ikeue, T.; Sugita, T. Correlation of immune-related adverse events and effects of pembrolizumab monotherapy in patients with non-small cell lung cancer. Lung Cancer 2020, 11, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Amrane, K.; Geier, M.; Corre, R.; Léna, H.; Léveiller, G.; Gadby, F.; Lamy, R.; Bizec, J.-L.; Goarant, E.; Robinet, G.; et al. First-line pembrolizumab for non-small cell lung cancer patients with PD-L1≥ 50% in a multicenter real-life cohort: The PEMBREIZH study. Cancer Med. 2020, 9, 2309–2316. [Google Scholar] [CrossRef]
- Kubo, T.; Watanabe, H.; Ninomiya, K.; Kudo, K.; Minami, D.; Murakami, E.; Ochi, N.; Ninomiya, T.; Harada, D.; Yasugi, M.; et al. Immune checkpoint inhibitor efficacy and safety in older non-small cell lung cancer patients. Jpn. J. Clin. Oncol. 2020, 50, 1447–1453. [Google Scholar] [CrossRef]
- Cortellini, A.; Friedlaender, A.; Banna, G.L.; Porzio, G.; Bersanelli, M.; Cappuzzo, F.; Aerts, J.G.J.V.; Giusti, R.; Bria, E.; Cortinovis, D.; et al. Immune-related adverse events of pembrolizumab in a large real-world cohort of patients with NSCLC with a PD-L1 expression≥ 50% and their relationship with clinical outcomes. Clin. Lung Cancer 2020, 21, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Kichenadasse, G.; Miners, J.O.; Mangoni, A.A.; Rowland, A.; Hopkins, A.M.; Sorich, M.J. Multiorgan immune-related adverse events during treatment with atezolizumab. J. Natl. Compr. Cancer Netw. 2020, 18, 1191–1199. [Google Scholar] [CrossRef]
- Shankar, B.; Zhang, J.; Naqash, A.R.; Forde, P.M.; Feliciano, J.L.; Marrone, K.A.; Ettinger, D.S.; Hann, C.L.; Brahmer, J.R.; Ricciuti, B.; et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer. JAMA Oncol. 2020, 6, 1952–1956. [Google Scholar] [CrossRef]
- Xie, J.L.; Li, J.Y.; Liu, Z.F. Efficacy and safety of PD-1/PD-L1 immune checkpoint inhibitors in KRAS-mutant advanced non-small cell lung cancer. Acad. J. Chin. Med. School. 2020, 41, 588–592. [Google Scholar] [CrossRef]
- Ding, Y.L.; Lin, Y.X.; Zhou, H.H.; Wang, Y.Y.; Zhou, Y.J. Investigation on the clinical application and safety of Anti-PD-1 in the treatment of NSCLC based on real world. China Pharm. 2020, 23, 895–899. [Google Scholar] [CrossRef]
- Morita, R.; Okishio, K.; Shimizu, J.; Saito, H.; Sakai, H.; Kim, Y.H.; Hataji, O.; Yomota, M.; Nishio, M.; Aoe, K.; et al. Real-world effectiveness and safety of nivolumab in patients with non-small cell lung cancer: A multicenter retrospective observational study in Japan. Lung Cancer 2020, 140, 8–18. [Google Scholar] [CrossRef]
- Gulati, N.; Donnelly, D.; Qian, Y.; Moran, U.; Johannet, P.; Zhong, J.; Osman, I. Revisiting the association between skin toxicity and better response in advanced cancer patients treated with immune checkpoint inhibitors. J. Transl. Med. 2020, 18, 430. [Google Scholar] [CrossRef]
- Ye, L.W.; Yu, X.M. Investigation report on skin toxicity caused by Immunotherapy in non small cell lung cancer patients. Orient. Tonic Diet. 2021, 13, 74. [Google Scholar]
- Sun, X.D.; Sun, H.; Fang, Y.Y. The efficacy and safety of domestic immune checkpoint inhibitors combined with chemotherapy in the treatment of advanced non-small cell lung cancer. Chin. J. Clin. Res. 2021, 34, 1474–1477. [Google Scholar] [CrossRef]
- Hu, C.; Lv, X.J. Clinical analysis of immune checkpoint inhibitors in the treatment of advanced lung cancer with immune related toxicity. Chronic Pathematology J. 2021, 22, 1646–1648, 1653. [Google Scholar] [CrossRef]
- Zhou, Y. Observation of the therapeutic effect of immune checkpoint inhibitors on advanced non-small cell lung cancer. Yiyao Qianyan 2021, 11, 119–121. [Google Scholar]
- Zhan, L.F.; Yang, Q.L.; Li, Y.Y. Clinical observation of Sintilimabplus platinum based chemotherapy as first-linetreatment for metastaticnon-small cell lung cancer (NSCLC). Guide Chin. Med. 2021, 19, 64–66, 69. [Google Scholar] [CrossRef]
- Shukla, N.A.; Althouse, S.; Meyer, Z.; Hanna, N.; Durm, G. Association of immune-related adverse events and efficacy outcomes with consolidation Pembrolizumab after Chemoradiation in patients with inoperable stage III non-small-cell lung cancer. Clin. Lung Cancer 2021, 22, 274–281. [Google Scholar] [CrossRef]
- Saito, Z.; Fujita, K.; Okamura, M.; Ito, T.; Yamamoto, Y.; Kanai, O.; Hashimoto, M.; Nakatani, K.; Sawai, S.; Mio, T. Efficacy and safety of immune checkpoint inhibitors in patients with non-small cell lung cancer aged 80 years or older. Cancer Rep. 2021, 4, e1405. [Google Scholar] [CrossRef]
- Yi, W.L.; Zhao, W.C.; Huang, D.N.; Qin, L.; Wu, X.T.; Zhou, F.; Wu, F.Y. Analysis of immune-related adverse events and its correlation with efficacy of anti-PD-1 monotherapy in advanced non-small cell lung cancer. China Oncol. 2021, 31, 203–211. [Google Scholar] [CrossRef]
- Lv, W.Y.; Zhang, S.S. Analysis of the influencing factors of adverse drug reactions in PD-1 immunotherapy for non-small cell lung cancer. China Pract. Med. 2021, 16, 134–136. [Google Scholar] [CrossRef]
- Conde-Estévez, D.; Monge-Escartín, I.; Ríos-Hoyo, A.; Monzonis, X.; Echeverría-Esnal, D.; Moliner, L.; Duran-Jordà, X.; Taus, Á.; Arriola, E. Prognostic factors and effect on survival of immune-related adverse events in patients with non-small-cell lung cancer treated with immune checkpoint blockage. J. Chemother. 2020, 33, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Soon, Y.Y.; Aminkeng, F.; Tay, S.H.; Ang, Y.; Kee, A.C.L.; Goh, B.C.; Wong, A.S.C.; Soo, R.A. Risk factors for immune-related adverse events from anti-PD-1 or anti-PD-L1 treatment in an Asian cohort of nonsmall cell lung cancer patients. Int. J. Cancer 2022, 150, 636–644. [Google Scholar] [CrossRef]
- Sonehara, K.; Tateishi, K.; Araki, T.; Komatsu, M.; Yamamoto, H.; Koizumi, T.; Hanaoka, M. The role of immune-related adverse events in prognosis and efficacy prediction for patients with non-small cell lung cancer treated with immunotherapy: A retrospective clinical analysis. Oncology 2021, 99, 271–279. [Google Scholar] [CrossRef]
- Zhu, W.J.; Zhu, H.H.; Liu, Y.T.; Lin, L.; Xing, P.Y.; Zhao, X.Z.; Cong, M.H.; Wang, H.Y.; Wang, Y.; Li, J.L.; et al. Real-world study on the efficacy and prognostic predictive biomarker of patients with metastatic non-small cell lung cancer treated with programmed death-1/programmed death ligand 1 inhibitors. Chin. J. Oncol. 2022, 44, 416–424. [Google Scholar] [CrossRef]
- Zhang, X.J.; Guo, W.X.; Wang, L.P. Effect of Camrelizumab combined with chemotherapy in the first-line treatment of advanced lung adenocarcinoma without sensitive gene mutation. Henan Med. Res. 2022, 31, 45–48. [Google Scholar] [CrossRef]
- Shi, Y.; Fang, J.; Zhou, C.; Liu, A.; Wang, Y.; Meng, Q.; Ding, C.; Ai, B.; Gu, Y.; Yao, Y.; et al. Immune checkpoint inhibitor-related adverse events in lung cancer: Real-world incidence and management practices of 1905 patients in China. Thorac. Cancer 2022, 13, 412–422. [Google Scholar] [CrossRef]
- Yoneda, T.; Sone, T.; Koba, H.; Shibata, K.; Suzuki, J.; Tani, M.; Nishitsuji, M.; Nishi, K.; Kobayashi, T.; Shirasaki, H.; et al. Long-term survival of patients with non-small cell lung cancer treated with immune checkpoint inhibitor monotherapy in real-world settings. Clin. Lung Cancer 2022, 23, 467–476. [Google Scholar] [CrossRef]
- Curkovic, N.B.; Bai, K.; Ye, F.; Johnson, D.B. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 340. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.Y.; Zhou, S.H.; Peterson, C.B.; Wang, Y.C.; Fang, X.Y.; Wang, M.L.; Shen, C. Meta-analysis of Censored Adverse Events. N. Engl. J. Stat. Data Sci. 2024, 2, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Shi, V.J.; Rodic, N.; Gettinger, S.; Leventhal, J.S.; Neckman, J.P.; Girardi, M.; Bosenberg, M.; Choi, J.N. Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell death 1 and anti-programmed cell death ligand 1 immunotherapy. JAMA Dermatol. 2016, 152, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.E.; Carlos, G.; Wakade, D.; Byth, K.; Kong, B.Y.; Chou, S.; Carlino, M.S.; Kefford, R.; Fernandez-Penas, P. Cutaneous adverse events (AEs) of anti-programmed cell death (PD)-1 therapy in patients with metastatic melanoma: A single-institution cohort. J. Am. Acad. Dermatol. 2016, 74, 455–461. [Google Scholar] [CrossRef]
- Du, Y.; Wu, W.; Chen, M.; Dong, Z.; Wang, F. Cutaneous Adverse Events and Cancer Survival Prognosis with Immune Checkpoint Inhibitor Treatment: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2023, 159, 1093–1101. [Google Scholar] [CrossRef]
- Indini, A.; Di Guardo, L.; Cimminiello, C.; Prisciandaro, M.; Randon, G.; De Braud, F.; Del Vecchio, M. Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J. Cancer Res. Clin. Oncol. 2019, 145, 511–521. [Google Scholar] [CrossRef]
No. | Author (Year) | Countries | Continent | Language | Design | Sample Size | Diagnostic Criteria | Incidence Rate |
---|---|---|---|---|---|---|---|---|
1 | Lynch TJ (2012) [24] | NA | NA | English | RCT | 138 | CTCAE V3.0 | 72.46% |
2 | Borghaei H (2015) [25] | USA | America | English | RCT | 287 | CTCAE V4.0 | 27.18% |
3 | Brahmer J (2015) [26] | USA | America | English | RCT | 131 | / | 9.16% |
4 | Gettinger SN (2015) [27] | USA | America | English | RCT | 129 | CTCAE V3.0 | 15.50% |
5 | Garon EB (2015) [28] | USA | America | English | RCT | 495 | CTCAE V4.0 | 27.88% |
6 | Fehrenbacher L (2016) [29] | USA | America | English | RCT | 142 | CTCAE V4.0 | 1.41% |
7 | Langer CJ (2016) [30] | USA, Taiwan | NA | English | RCT | 59 | CTCAE V4.0 | 57.63% |
8 | Reck M (2016) [31] | NA | NA | English | RCT | 154 | CTCAE V4.0 | 3.90% |
9 | Herbst RS (2016) [32] | Argentina, Australia, Belgium, Brazil, Canada, Chile, Czech Republic, Denmark, France, Germany, Greece, Hungary, Italy, Japan, Lithuania, The Netherlands, Portugal, Russia, South Africa, Republic of Korea, Spain, Taiwan, UK, USA | NA | English | RCT | 682 | CTCAE V4.0 | 25.07% |
10 | Reck M (2016) [33] | USA, Australia, Korea | NA | English | RCT | 478 | CTCAE V3.0 | 35.56% |
11 | Govindan R (2017) [34] | USA | America | English | RCT | 388 | CTCAE V3.0 | 40.46% |
12 | Rittmeyer A (2017) [35] | USA | America | English | RCT | 609 | CTCAE V4.0 | 3.61% |
13 | Antonia SJ (2017) [36] | USA | America | English | RCT | 475 | CTCAE V4.0 | 24.42% |
14 | Carbone DP (2017) [37] | USA | America | English | RCT | 267 | / | 27.72% |
15 | Hellmann MD (2017) [38] | USA | America | English | RCT | 77 | CTCAE V4.0 | 48.05% |
16 | Hida T (2018) [39] | Japan, North America, South America, Europe, and Asia | Asia | English | RCT | 609 | CTCAE V4.0 | 25.94% |
17 | Socinski MA (2018) [40] | USA | America | English | RCT | 1202 | CTCAE V4.0 | 41.26% |
18 | Hellmann MD (2018) [41] | USA | America | English | RCT | 967 | CTCAE V4.0 | 25.85% |
19 | Paz-Ares L (2018) [42] | NA | NA | English | RCT | 278 | CTCAE V4.0 | 62.95% |
20 | Gandhi L (2018) [43] | USA | America | English | RCT | 405 | CTCAE V4.0 | 20.25% |
21 | Hellmann MD (2019) [44] | USA | America | English | RCT | 967 | CTCAE V4.0 | 28.85% |
22 | Wu YL (2019) [45] | China, Russia, Singapore | NA | English | RCT | 337 | CTCAE V4.0 | 21.07% |
23 | Gubens MA (2019) [46] | USA | America | English | RCT | 51 | CTCAE V4.0 | 31.37% |
24 | Mok TSK (2019) [47] | Argentina, Brazil, Bulgaria, Canada, Chile, China, Hong Kong Special Administrative Region, Colombia, Czech Republic, Estonia, Guatemala, Hungary, Japan, Latvia, Lithuania, Malaysia, Mexico, Peru, Philippines, Poland, Portugal, Romania, Russia, South Africa, Republic of Korea, Sweden, Switzerland, Taiwan, Thailand, Turkey, Ukraine, Vietnam | NA | English | RCT | 636 | CTCAE V4.0 | 16.67% |
25 | Reck M (2019) [48] | NA | NA | English | RCT | 154 | CTCAE V4.0 | 29.87% |
26 | Li K (2021) [49] | China | Asia | Chinese | RCT | 25 | / | 4.00% |
27 | Bai Y (2021) [50] | China | Asia | Chinese | RCT | 34 | CTCAE V3.0 | 85.29% |
28 | Lv Y (2021) [51] | China | Asia | Chinese | RCT | 31 | CTCAE V4.0 | 48.39% |
29 | He M (2021) [52] | China | Asia | Chinese | RCT | 76 | / | 2.63% |
30 | Li LR (2022) [53] | China | Asia | Chinese | RCT | 80 | / | 8.75% |
No. | Author (Year) | Countries | Continent | Language | Design | Sample Size | Diagnostic Criteria | Incidence Rate |
---|---|---|---|---|---|---|---|---|
1 | Rizvi NA (2015) [54] | France, Germany, Italy, USA | NA | English | nRCT | 117 | CTCAE V4.0 | 17.09% |
2 | Nishio M (2016) [55] | Japan | Asia | English | nRCT | 76 | CTCAE V4.0 | 28.95% |
3 | Antonia SJ (2016) [56] | Finland, Germany, Italy, Spain, UK, USA | NA | English | nRCT | 216 | CTCAE V4.0 | 26.39% |
4 | Gettinger S (2016) [57] | USA, Canada | America | English | nRCT | 52 | CTCAE V4.0 | 30.77% |
5 | Goldberg SB (2016) [58] | USA | America | English | nRCT | 18 | CTCAE V4.0 | 22.22% |
6 | Antonia S (2016) [59] | USA | America | English | nRCT | 99 | CTCAE V4.0 | 40.40% |
7 | Hida T (2017) [60] | Japan | Asia | English | nRCT | 35 | CTCAE V4.0 | 31.43% |
8 | Peters S (2017) [61] | USA | America | English | nRCT | 659 | CTCAE V4.0 | 22.46% |
9 | Lee J S (2018) [62] | Republic of Korea | Asia | English | nRCT | 100 | CTCAE V4.0 | 6.00% |
10 | Nishio M (2019) [63] | Japan | Asia | English | nRCT | 38 | CTCAE V4.0 | 42.11% |
11 | Li JW (2019) [64] | China | Asia | Chinese | nRCT | 30 | CTCAE V4.0 | 23.33% |
12 | Wang R (2020) [65] | China | Asia | Chinese | nRCT | 54 | / | 7.41% |
13 | Deng WJ (2020) [66] | China | Asia | Chinese | nRCT | 28 | CTCAE | 7.14% |
14 | Gan WL (2021) [67] | China | Asia | Chinese | nRCT | 115 | CTCAE V5.0 | 72.17% |
15 | Bai Y (2022) [68] | China | Asia | Chinese | nRCT | 34 | CTCAE V3.0 | 52.94% |
No. | Author (Year) | Countries | Continent | Language | Design | Sample Size | Diagnostic Criteria | Incidence Rate |
---|---|---|---|---|---|---|---|---|
1 | Hasan AliO (2016) [69] | Switzerland | Europe | English | Retrospective cohort | 40 | CTCAE V4.0 | 17.50% |
2 | Teraoka S (2017) [70] | Japan | Asia | English | Prospective cohort | 43 | CTCAE V4.0 | 27.91% |
3 | Hui R (2017) [71] | Australia | Oceania | English | Prospective cohort | 101 | CTCAE V4.0 | 31.68% |
4 | Haratani K (2018) [72] | Japan | Asia | English | Retrospective cohort | 134 | CTCAE V4.0 | 32.09% |
5 | Min Lee CK (2018) [73] | California, USA | America | English | Retrospective cohort | 32 | / | 3.13% |
6 | Sato K (2018) [74] | Japan | Asia | English | Prospective cohort | 38 | CTCAE V4.0 | 2.63% |
7 | Fiorica F (2018) [75] | Italy | Europe | English | Retrospective cohort | 35 | CTCAE V3.0 | 22.86% |
8 | Owen DH (2018) [76] | USA | America | English | Retrospective cohort | 91 | CTCAE V4.0 | 6.59% |
9 | Sabatier R (2018) [77] | France | Europe | English | Retrospective cohort | 30 | CTCAE V4.0 | 6.67% |
10 | Schouten RD (2018) [78] | The Netherlands | Europe | English | Retrospective cohort | 248 | CTCAE V4.0 | 2.42% |
11 | Areses Manrique MC (2018) [79] | Spain | Europe | English | Retrospective cohort | 188 | CTCAE V4.0 | 14.89% |
12 | Grossi F (2018) [80] | Italy | Europe | English | Prospective cohort | 371 | CTCAE V4.0 | 19.68% |
13 | Akano Y (2019) [81] | Japan | Asia | English | Retrospective cohort | 79 | CTCAE V4.0 | 17.72% |
14 | Lee YJ (2019) [82] | Korea | Asia | English | Retrospective cohort | 106 | CTCAE V4.0 | 14.15% |
15 | Krefting F (2019) [83] | Germany | Europe | English | Retrospective cohort | 40 | CTCAE V4.0 | 2.50% |
16 | Ahn BC (2019) [84] | Republic of Korea | Asia | English | Retrospective cohort | 155 | CTCAE V4.0 | 19.35% |
17 | Cortellini A (2019) [85] | Italy | Europe | English | Retrospective cohort | 231 | CTCAE V4.0 | 25.54% |
18 | Ksienski D (2019) [86] | Canada | America | English | Retrospective cohort | 190 | CTCAE V4.0 | 10.53% |
19 | Muchnik E (2019) [87] | USA, Canada | America | English | Retrospective cohort | 75 | CTCAE V4.0 | 9.33% |
20 | Ricciuti B (2019) [88] | NA | NA | English | Retrospective cohort | 195 | CTCAE V4.0 | 13.85% |
21 | Ksienski D (2019) [89] | Canada | America | English | Retrospective cohort | 271 | CTCAE V4.0 | 13.28% |
22 | Pavan A (2019) [90] | Italy | Europe | English | Retrospective cohort | 184 | / | 5.98% |
23 | Toi Y (2019) [91] | Japan | Asia | English | Retrospective cohort | 137 | CTCAE V4.0 | 30.66% |
24 | Dupont R (2019) [92] | France | Europe | English | Retrospective cohort | 191 | CTCAE V5.0 | 13.09% |
25 | Tang SH (2020) [93] | China | Asia | Chinese | Retrospective cohort | 110 | CTCAE V5.0 | 50.00% |
26 | Hosoya K (2020) [94] | Japan | Asia | English | Retrospective cohort and Prospective cohort | 224 | CTCAE V4.0 | 18.30% |
27 | Aso M (2020) [95] | Japan | Asia | English | Retrospective cohort | 155 | CTCAE V4.0 | 32.90% |
28 | Hasan AliO (2020) [96] | Switzerland | Europe | English | Retrospective cohort | 40 | CTCAE V5.0 | 40.00% |
29 | Noguchi S (2020) [97] | Japan | Asia | English | Retrospective cohort | 94 | CTCAE V4.0 | 27.66% |
30 | Amrane K (2020) [98] | French | Europe | English | Retrospective cohort | 108 | CTCAE V4.0 | 22.22% |
31 | Kubo T (2020) [99] | Japan | Asia | English | Retrospective cohort | 95 | / | 26.32% |
32 | Cortellini A (2020) [100] | Italy, The Netherlands, Switzerland, UK | Europe | English | Retrospective cohort | 1010 | CTCAE V4.0 | 9.90% |
33 | Kichenadasse G (2020) [101] | USA | America | English | Retrospective cohort | 1548 | CTCAE V4.0 | 19.77% |
34 | Shankar B (2020) [102] | NA | NA | English | Retrospective cohort | 623 | / | 7.54% |
35 | Xie JL (2020) [103] | China | Asia | Chinese | Retrospective cohort | 58 | CTCAE V4.0 | 3.45% |
36 | Ding YL (2020) [104] | China | Asia | Chinese | Retrospective cohort | 57 | CTCAE V4.0 | 49.12% |
37 | Morita R (2020) [105] | Japan | Asia | English | Retrospective cohort | 901 | CTCAE V4.0 | 16.76% |
38 | Gulati N (2020) [106] | USA | America | English | Prospective cohort | 184 | CTCAE V5.0 | 28.80% |
39 | Ye LW (2021) [107] | China | Asia | Chinese | Prospective cohort | 88 | / | 55.68% |
40 | Sun XD (2021) [108] | China | Asia | Chinese | Retrospective cohort | 32 | / | 6.25% |
41 | Hu C (2021) [109] | China | Asia | Chinese | Retrospective cohort | 36 | CTCAE V5.0 | 11.11% |
42 | Zhou Y (2021) [110] | China | Asia | Chinese | Retrospective cohort | 36 | CTCAE | 27.78% |
43 | Zhan LF (2021) [111] | China | Asia | Chinese | Prospective cohort | 43 | CTCAE V5.0 | 37.21% |
44 | Shukla NA (2021) [112] | Indiana | Asia | English | Retrospective cohort | 92 | / | 18.48% |
45 | Saito Z (2021) [113] | Japan | Asia | English | Retrospective cohort | 45 | CTCAE V5.0 | 4.44% |
46 | Yi WL (2021) [114] | China | Asia | Chinese | Retrospective cohort | 109 | CTCAE V4.0 | 33.94% |
47 | Lv WY (2021) [115] | China | Asia | Chinese | Prospective cohort | 42 | CTCAE V5.0 | 16.67% |
48 | Conde-Estévez D (2021) [116] | Spain | Europe | English | Retrospective cohort | 70 | CTCAE V5.0 | 21.43% |
49 | Huang Y (2021) [117] | Singapore | Asia | English | Retrospective cohort | 141 | CTCAE V5.0 | 27.66% |
50 | Sonehara K (2021) [118] | Japan | Asia | English | Retrospective cohort | 80 | CTCAE V4.0 | 6.25% |
51 | Zhu WJ (2022) [119] | China | Asia | Chinese | Retrospective cohort | 174 | / | 0.57% |
52 | Zhang XJ (2022) [120] | China | Asia | Chinese | Retrospective cohort | 40 | CTCAE V5.0 | 22.50% |
53 | Shi Y (2022) [121] | China | Asia | English | Retrospective cohort | 1905 | / | 7.61% |
54 | Yoneda T (2022) [122] | Japan | Asia | English | Retrospective cohort | 435 | / | 10.57% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Luo, Y.; Lu, R.; Liu, X.; Liu, H.; Liu, S.; Huang, C.; Tian, J.; Zhang, L. Incidence Rates of Cutaneous Immune-Related Adverse Events in Patients with Lung Cancer: A Systematic Review and Meta-Analysis. Curr. Oncol. 2025, 32, 195. https://doi.org/10.3390/curroncol32040195
Yang Z, Luo Y, Lu R, Liu X, Liu H, Liu S, Huang C, Tian J, Zhang L. Incidence Rates of Cutaneous Immune-Related Adverse Events in Patients with Lung Cancer: A Systematic Review and Meta-Analysis. Current Oncology. 2025; 32(4):195. https://doi.org/10.3390/curroncol32040195
Chicago/Turabian StyleYang, Zhihui, Yuanyuan Luo, Ruiqi Lu, Xinqi Liu, Hanyu Liu, Suting Liu, Chen Huang, Jinhui Tian, and Lili Zhang. 2025. "Incidence Rates of Cutaneous Immune-Related Adverse Events in Patients with Lung Cancer: A Systematic Review and Meta-Analysis" Current Oncology 32, no. 4: 195. https://doi.org/10.3390/curroncol32040195
APA StyleYang, Z., Luo, Y., Lu, R., Liu, X., Liu, H., Liu, S., Huang, C., Tian, J., & Zhang, L. (2025). Incidence Rates of Cutaneous Immune-Related Adverse Events in Patients with Lung Cancer: A Systematic Review and Meta-Analysis. Current Oncology, 32(4), 195. https://doi.org/10.3390/curroncol32040195