Modern Treatment of Skeletal Metastases: Multidisciplinarity and the Concept of Oligometastasis in the Recent Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Oligometastatic Disease
3.2. Medical Therapy
3.3. Radiotherapy
3.4. Surgery
3.5. Multidisciplinarity
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Dillekås, H.; Rogers, M.S.; Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019, 8, 5574–5576. [Google Scholar] [CrossRef] [PubMed]
- Hage, W.D.; Aboulafia, A.J.; Aboulafia, D.M. Incidence, Location, and Diagnostic Evaluation of Metastatic Bone Disease. Orthop. Clin. N. Am. 2000, 31, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Riccio, A.I.; Wodajo, F.M.; Malawer, M. Metastatic carcinoma of the long bones. Am. Fam. Physician 2007, 76, 1489–1494. [Google Scholar]
- Jiang, W.; Rixiati, Y.; Zhao, B.; Li, Y.; Tang, C.; Liu, J. Incidence, prevalence, and outcomes of systemic malignancy with bone metastases. J. Orthop. Surg. 2020, 28, 2309499020915989. [Google Scholar] [CrossRef]
- Landis, S.H.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics, 1998. CA Cancer J. Clin. 1998, 48, 6–29. [Google Scholar] [CrossRef]
- Li, S.; Peng, Y.; Weinhandl, E.D.; Blaes, A.H.; Cetin, K.; Chia, V.M.; Stryker, S.; Pinzone, J.J.; Acquavella, J.F.; Arneson, T.J. Estimated number of prevalent cases of metastatic bone disease in the US adult population. Clin. Epidemiol. 2012, 87, 87–93. [Google Scholar] [CrossRef]
- Roodman, G.D. Mechanisms of Bone Metastasis. N. Engl. J. Med. 2004, 350, 1655–1664. [Google Scholar] [CrossRef]
- Boissier, S.; Magnetto, S.; Frappart, L.; Cuzin, B.; Ebetino, F.H.; Delmas, P.D.; Clezardin, P. Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res. 1997, 57, 3890–3894. [Google Scholar]
- Bussard, K.M.; Gay, C.V.; Mastro, A.M. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008, 27, 41–55. [Google Scholar] [CrossRef]
- Anwar, S.L.; Avanti, W.S.; Dwianingsih, E.; Cahyono, R.; Suwardjo, S. Risk Factors, Patterns, and Distribution of Bone Metastases and Skeletal-Related Events in High-Risk Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2022, 23, 4109–4117. [Google Scholar] [CrossRef] [PubMed]
- Lipton, A. Implications of Bone Metastases and the Benefits of Bone-Targeted Therapy. Semin. Oncol. 2010, 37, S15–S29. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.D. Metastatic disease of the spine. J. Bone Jt. Surg. Am. 1986, 68, 1110–1115. [Google Scholar] [CrossRef]
- Brauer, D.G.; Strand, M.S.; Sanford, D.E.; Kushnir, V.M.; Lim, K.-H.; Mullady, D.K.; Tan, B.R.; Wang-Gillam, A.; Morton, A.E.; Ruzinova, M.B.; et al. Utility of a multidisciplinary tumor board in the management of pancreatic and upper gastrointestinal diseases: An observational study. HPB 2017, 19, 133–139. [Google Scholar] [CrossRef]
- Tamburini, N.; Maniscalco, P.; Mazzara, S.; Maietti, E.; Santini, A.; Calia, N.; Stefanelli, A.; Frassoldati, A.; Santi, I.; Rinaldi, R.; et al. Multidisciplinary management improves survival at 1 year after surgical treatment for non-small-cell lung cancer: A propensity score-matched study†. Eur. J. Cardiothorac. Surg. 2018, 53, 1199–1204. [Google Scholar] [CrossRef]
- Ioannidis, A.; Konstantinidis, M.; Apostolakis, S.; Koutserimpas, C.; Machairas, N.; Konstantinidis, K. Impact of multidisciplinary tumor boards on patients with rectal cancer. Mol. Clin. Oncol. 2018, 9, 135–137. [Google Scholar] [CrossRef]
- Aboulafia, A.J.; Levine, A.M.; Schmidt, D.; Aboulafia, D. Surgical Therapy of Bone Metastases. Semin. Oncol. 2007, 34, 206–214. [Google Scholar] [CrossRef]
- Coleman, R.E. Clinical Features of Metastatic Bone Disease and Risk of Skeletal Morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s. [Google Scholar] [CrossRef]
- Tsuzuki, S.; Park, S.H.; Eber, M.R.; Peters, C.M.; Shiozawa, Y. Skeletal complications in cancer patients with bone metastases. Int. J. Urol. 2016, 23, 825–832. [Google Scholar] [CrossRef]
- Kaneda, H.; Saito, Y. Oligometastases: Defined by prognosis and evaluated by cure. Cancer Treat. Commun. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Lu, X.; Gu, W.; Zhang, H.; Zhu, Y.; Shi, G.; Ye, D. Oligometastatic state predicts a favorable outcome for renal cell carcinoma patients with bone metastasis under the treatment of sunitinib. Oncotarget 2016, 7, 26879–26887. [Google Scholar] [CrossRef] [PubMed]
- Salah, S.; Watanabe, K.; Welter, S.; Park, J.S.; Park, J.W.; Zabaleta, J.; Ardissone, F.; Kim, J.; Riquet, M.; Nojiri, K.; et al. Colorectal cancer pulmonary oligometastases: Pooled analysis and construction of a clinical lung metastasectomy prognostic model. Ann. Oncol. 2012, 23, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Cappellari, A.; Trovarelli, G.; Crimì, A.; Pala, E.; Angelini, A.; Berizzi, A.; Ruggieri, P. New concepts in the surgical treatment of actual and impending pathological fractures in metastatic disease. Injury 2023, 54, S31–S35. [Google Scholar] [CrossRef]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; deSouza, N.M.; Dingemans, A.-M.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.E.; et al. Characterisation and classification of oligometastatic disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef]
- Iyengar, P.; Wardak, Z.; Gerber, D.E.; Tumati, V.; Ahn, C.; Hughes, R.S.; Dowell, J.E.; Cheedella, N.; Nedzi, L.; Westover, K.D.; et al. Consolidative Radiotherapy for Limited Metastatic Non–Small-Cell Lung Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e173501. [Google Scholar] [CrossRef]
- Ruers, T.; Van Coevorden, F.; Punt, C.J.A.; Pierie, J.-P.E.N.; Borel-Rinkes, I.; Ledermann, J.A.; Poston, G.; Bechstein, W.; Lentz, M.-A.; Mauer, M.; et al. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. JNCI J. Natl. Cancer Inst. 2017, 109, djx015. [Google Scholar] [CrossRef]
- Gomez, D.R.; Blumenschein, G.R.; Lee, J.J.; Hernandez, M.; Ye, R.; Camidge, D.R.; Doebele, R.C.; Skoulidis, F.; Gaspar, L.E.; Gibbons, D.L.; et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: A multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016, 17, 1672–1682. [Google Scholar] [CrossRef]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non–Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Ziehr, D.R.; Guo, H.; Ng, M.R.; Barry, W.T.; Higgins, M.J.; Isakoff, S.J.; Brock, J.E.; Ivanova, E.V.; Paweletz, C.P.; et al. Phase II and Biomarker Study of Cabozantinib in Metastatic Triple-Negative Breast Cancer Patients. Oncologist 2017, 22, 25–32. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; De Marinis, F.; Rinaldi, M.; Crinò, L.; Gridelli, C.; Ricci, S.; Zhao, Y.D.; Liepa, A.M.; Peterson, P.; Tonato, M. The Role of Histology with Common First-line Regimens for Advanced Non-small Cell Lung Cancer: A Brief Report of the Retrospective Analysis of a Three-arm Randomized Trial. J. Thorac. Oncol. 2009, 4, 1568–1571. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, S.; Jiang, Z.; Tian, J.; Wang, T.; Song, S. Bone metabolism markers: Indicators of loading dose intravenous ibandronate treatment for bone metastases from breast cancer. Clin. Exp. Pharmacol. Physiol. 2017, 44, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Altundag, K.; Dizdar, O.; Ozsaran, Z.; Ozkok, S.; Saip, P.; Eralp, Y.; Komurcu, S.; Kuzhan, O.; Ozguroglu, M.; Karahoca, M. Phase II Study of Loading-Dose Ibandronate Treatment in Patients with Breast Cancer and Bone Metastases Suffering from Moderate to Severe Pain. Onkologie 2012, 35, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef]
- Body, J.-J. Zoledronic acid: An advance in tumour bone disease therapy and a new hope for osteoporosis. Expert Opin. Pharmacother. 2003, 4, 567–580. [Google Scholar] [CrossRef]
- Wellington, K.; Goa, K.L. Zoledronic Acid: A Review of its Use in the Management of Bone Metastases and Hypercalcaemia of Malignancy. Drugs 2003, 63, 417–437. [Google Scholar] [CrossRef]
- Verì, A.; D’Andrea, M.R.; Bonginelli, P.; Gasparini, G. Clinical Usefulness of Bisphosphonates in Oncology: Treatment of Bone Metastases, antitumoral Activity and Effect on Bone Resorption Markers. Int. J. Biol. Markers 2007, 22, 24–33. [Google Scholar] [CrossRef]
- Van Holten-Verzantvoort, A.T.; Papapoulos, S.E. Oral pamidronate in the prevention and treatment of skeletal metastases in patients with breast cancer. Medicina 1997, 57 (Suppl. S1), 109–113. [Google Scholar]
- Henry, D.H.; Costa, L.; Goldwasser, F.; Hirsh, V.; Hungria, V.; Prausova, J.; Scagliotti, G.V.; Sleeboom, H.; Spencer, A.; Vadhan-Raj, S.; et al. Randomized, Double-Blind Study of Denosumab Versus Zoledronic Acid in the Treatment of Bone Metastases in Patients With Advanced Cancer (Excluding Breast and Prostate Cancer) or Multiple Myeloma. J. Clin. Oncol. 2011, 29, 1125–1132. [Google Scholar] [CrossRef]
- Lam, D.K.; Sándor, G.K.B.; Holmes, H.I.; Evans, A.W.; Clokie, C.M.L. A review of bisphosphonate-associated osteonecrosis of the jaws and its management. J. Can. Dent. Assoc. 2007, 73, 417–422. [Google Scholar]
- Costa, C.R.; Morrison, W.B.; Carrino, J.A. Medial Meniscus Extrusion on Knee MRI: Is Extent Associated with Severity of Degeneration or Type of Tear? Am. J. Roentgenol. 2004, 183, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Biskup, E.; Cai, F.; Vetter, M. Bone targeted therapies in advanced breast cancer. Swiss Med. Wkly. 2017, 147, w14440. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G. Adjuvant Therapy for Breast Cancer. Annu. Rev. Med. 2000, 51, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Russell, R.G.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 2008, 19, 733–759. [Google Scholar] [CrossRef]
- Carter, J.A.; Ji, X.; Botteman, M.F. Clinical, economic and humanistic burdens of skeletal-related events associated with bone metastases. Expert Rev. Pharmacoecon. Outcomes Res. 2013, 13, 483–496. [Google Scholar] [CrossRef]
- Coleman, R. Metastasis prevention with bone-targeted agents: A complex interaction between the microenvironment and tumour biology. J. Bone Miner. Metab. 2023, 41, 290–300. [Google Scholar] [CrossRef]
- Adjuvant bisphosphonate treatment in early breast cancer: Meta-analyses of individual patient data from randomised trials. Lancet 2015, 386, 1353–1361. [CrossRef]
- Zhou, Z.; Liu, S.; Mei, J.; Liu, T.; Liu, F.; Zhang, G. Systemic therapies for high-volume metastatic hormone-sensitive prostate cancer: A network meta-analysis. Acta Oncol. 2023, 62, 1083–1090. [Google Scholar] [CrossRef]
- Zekri, J.; Farag, K.; Yousof, O.; Zabani, Y.; Mohamed, W.; Ahmed, G.A. Bone modifying agents for patients with bone metastases from breast cancer managed in routine practice setting: Treatment patterns and outcome. J. Oncol. Pharm. Pract. 2020, 26, 906–911. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Wang, C.; He, Y.; Zheng, S.; Wu, K. Efficacy and safety of endocrine monotherapy as first-line treatment for hormone-sensitive advanced breast cancer: A network meta-analysis. Medicine 2017, 96, e7846. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Carducci, M.; Smith, M.; Damião, R.; Brown, J.; Karsh, L.; Milecki, P.; Shore, N.; Rader, M.; Wang, H.; et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet 2011, 377, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Wang, M. Latent class joint model of ovarian function suppression and DFS for premenopausal breast cancer patients. Stat. Med. 2010, 29, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, F.; Zucchini, G.; Geuna, E.; Milani, A.; Aversa, C.; Martinello, R. Clinical utility of exemestane in the treatment of breast cancer. Int. J. Women’s Health 2015, 7, 551–563. [Google Scholar] [CrossRef]
- Zekri, J.; Farag, K. Assessment of bone health in breast cancer patients starting adjuvant aromatase inhibitors: A quality improvement clinical audit. J. Bone Oncol. 2016, 5, 159–162. [Google Scholar] [CrossRef]
- Vasconcelos De Matos, L.; Fernandes, L.; Neves, M.T.; Alves, F.; Baleiras, M.; Ferreira, A.; Giesteira Cotovio, P.; Dias Domingues, T.; Malheiro, M.; Plácido, A.; et al. From Theory to Practice: Bone Health in Women with Early Breast Cancer Treated with Aromatase Inhibitors. Curr. Oncol. 2021, 28, 1067–1076. [Google Scholar] [CrossRef]
- Ribi, K.; Luo, W.; Bernhard, J.; Francis, P.A.; Burstein, H.J.; Ciruelos, E.; Bellet, M.; Pavesi, L.; Lluch, A.; Visini, M.; et al. Adjuvant Tamoxifen Plus Ovarian Function Suppression Versus Tamoxifen Alone in Premenopausal Women With Early Breast Cancer: Patient-Reported Outcomes in the Suppression of Ovarian Function Trial. J. Clin. Oncol. 2016, 34, 1601–1610. [Google Scholar] [CrossRef]
- Berruti, A.; Pia, A.; Terzolo, M. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2011, 365, 766–768. [Google Scholar] [CrossRef]
- Zuo, M.; Xu, X.; Xie, Z.; Ge, R.; Zhang, Z.; Li, Z.; Bian, J. Design and synthesis of indoline thiohydantoin derivatives based on enzalutamide as antiproliferative agents against prostate cancer. Eur. J. Med. Chem. 2017, 125, 1002–1022. [Google Scholar] [CrossRef]
- Zukotynski, K.A.; Emmenegger, U.; Hotte, S.; Kapoor, A.; Fu, W.; Blackford, A.L.; Valliant, J.; Bénard, F.; Kim, C.K.; Markowski, M.C.; et al. Prospective, Single-Arm Trial Evaluating Changes in Uptake Patterns on Prostate-Specific Membrane Antigen–Targeted18 F-DCFPyL PET/CT in Patients with Castration-Resistant Prostate Cancer Starting Abiraterone or Enzalutamide. J. Nucl. Med. 2021, 62, 1430–1437. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kawase, M.; Ebara, S.; Tatenuma, T.; Sasaki, T.; Ikehata, Y.; Nakayama, A.; Toide, M.; Yoneda, T.; Sakaguchi, K.; et al. Efficacy and safety of neoadjuvant chemohormonal therapy for high-risk prostate cancer treated with robot-assisted laparoscopic radical prostatectomy: A propensity score-matched analysis (the MSUG94 group). Int. Urol. Nephrol. 2024, 57, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Hadji, P.; Coleman, R.E.; Wilson, C.; Powles, T.J.; Clézardin, P.; Aapro, M.; Costa, L.; Body, J.-J.; Markopoulos, C.; Santini, D.; et al. Adjuvant bisphosphonates in early breast cancer: Consensus guidance for clinical practice from a European Panel. Ann. Oncol. 2016, 27, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Zivi, A.; Cerbone, L.; Recine, F.; Sternberg, C.N. Safety and tolerability of pazopanib in the treatment of renal cell carcinoma. Expert Opin. Drug Saf. 2012, 11, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.-L.; Thongprasert, S.; Yang, C.-H.; Chu, D.-T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
- Zhang, D.; Weng, H.; Zhu, Z.; Gong, W.; Ma, Y. Evaluating first-line therapeutic strategies for metastatic castration-resistant prostate cancer: A comprehensive network meta-analysis and systematic review. Front. Oncol. 2024, 14, 1378993. [Google Scholar] [CrossRef]
- Zuo, W.; Wang, Z.; Qian, J.; Ma, X.; Niu, Z.; Ou, J.; Mo, Q.; Sun, J.; Li, X.; Wang, Q.; et al. QL1209 (pertuzumab biosimilar) versus reference pertuzumab plus trastuzumab and docetaxel in neoadjuvant treatment for HER2-positive, ER/PR-negative, early or locally advanced breast cancer: A multicenter, randomized, double-blinded, parallel-controlled, phase III equivalence trial. Br. J. Cancer 2024, 131, 668–675. [Google Scholar] [CrossRef]
- Slamon, D. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin. Oncol. 2001, 28, 13–19. [Google Scholar] [CrossRef]
- Morris, M.J.; Heller, G.; Hillman, D.W.; Bobek, O.; Ryan, C.; Antonarakis, E.S.; Bryce, A.H.; Hahn, O.; Beltran, H.; Armstrong, A.J.; et al. Randomized Phase III Study of Enzalutamide Compared With Enzalutamide Plus Abiraterone for Metastatic Castration-Resistant Prostate Cancer (Alliance A031201 Trial). J. Clin. Oncol. 2023, 41, 3352–3362. [Google Scholar] [CrossRef]
- Falvello, V.; Van Poznak, C. Updates in Management of Bone Metastatic Disease in Primary Solid Tumors with Systemic Therapies. Curr. Osteoporos. Rep. 2021, 19, 452–461. [Google Scholar] [CrossRef]
- Swain, S.M.; Baselga, J.; Kim, S.-B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.-M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2015, 372, 724–734. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Ro, J.; André, F.; Loi, S.; Verma, S.; Iwata, H.; Harbeck, N.; Loibl, S.; Huang Bartlett, C.; Zhang, K.; et al. Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2015, 373, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Abi-Ghanem, A.S.; McGrath, M.A.; Jacene, H.A. Radionuclide Therapy for Osseous Metastases in Prostate Cancer. Semin. Nucl. Med. 2015, 45, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; Von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Abe, M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int. J. Hematol. 2011, 94, 334–343. [Google Scholar] [CrossRef]
- Munshi, P.N.; Ujjani, C. The acceleration of CAR-T therapy in non-Hodgkin lymphoma. Hematol. Oncol. 2019, 37, 233–239. [Google Scholar] [CrossRef]
- Vanni, S.; Caputo, T.M.; Cusano, A.M.; De Vita, A.; Cusano, A.; Cocchi, C.; Mulè, C.; Principe, S.; Liverani, C.; Celetti, G.; et al. Engineered anti-HER2 drug delivery nanosystems for the treatment of breast cancer. Nanoscale, 2025; Advance Article. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int. J. Nanomedicine 2024, 19, 1867–1886. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Zhang, Z.; Gao, H.; Qin, Y. Cancer bone metastases and nanotechnology-based treatment strategies. Expert Opin. Drug Deliv. 2022, 19, 1217–1232. [Google Scholar] [CrossRef]
- Nahta, R.; Yu, D.; Hung, M.-C.; Hortobagyi, G.N.; Esteva, F.J. Mechanisms of Disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Pract. Oncol. 2006, 3, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, T. Immune microenvironment of cancer bone metastasis. Bone 2025, 191, 117328. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.G.; Meyers, D.E.; Elmi-Assadzadeh, G.; Stukalin, I.; Marro, A.; Puloski, S.K.T.; Morris, D.G.; Cheung, W.Y.; Monument, M.J. Effectiveness of immune checkpoint inhibitor therapy on bone metastases in non-small-cell lung cancer. Front. Immunol. 2024, 15, 1379056. [Google Scholar] [CrossRef] [PubMed]
- Angrisani, A.; Bosetti, D.G.; Vogl, U.M.; Castronovo, F.M.; Zilli, T. Oligometastatic Urothelial Cancer and Stereotactic Body Radiotherapy: A Systematic Review and an Updated Insight of Current Evidence and Future Directions. Cancers 2024, 16, 3201. [Google Scholar] [CrossRef]
- Doyle, E.; Killean, A.J.; Harrow, S.; Phillips, I.D. Systematic review of the efficacy of stereotactic ablative radiotherapy for oligoprogressive disease in metastatic cancer. Radiother. Oncol. 2024, 196, 110288. [Google Scholar] [CrossRef]
- Le Guevelou, J.; Sargos, P.; Siva, S.; Ploussard, G.; Ost, P.; Gillessen, S.; Zilli, T. The Emerging Role of Extracranial Stereotactic Ablative Radiotherapy for Metastatic Renal Cell Carcinoma: A Systematic Review. Eur. Urol. Focus 2023, 9, 114–124. [Google Scholar] [CrossRef]
- Timmerman, R.D.; Herman, J.; Cho, L.C. Emergence of Stereotactic Body Radiation Therapy and Its Impact on Current and Future Clinical Practice. J. Clin. Oncol. 2014, 32, 2847–2854. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial. Lancet 2019, 393, 2051–2058. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Correa, R.J.M.; Schneiders, F.; Haasbeek, C.J.A.; Rodrigues, G.B.; Lock, M.; Yaremko, B.P.; Bauman, G.S.; et al. Stereotactic ablative radiotherapy for the comprehensive treatment of 4–10 oligometastatic tumors (SABR-COMET-10): Study protocol for a randomized phase III trial. BMC Cancer 2019, 19, 816. [Google Scholar] [CrossRef]
- Olson, R.; Mathews, L.; Liu, M.; Schellenberg, D.; Mou, B.; Berrang, T.; Harrow, S.; Correa, R.J.M.; Bhat, V.; Pai, H.; et al. Stereotactic ablative radiotherapy for the comprehensive treatment of 1–3 Oligometastatic tumors (SABR-COMET-3): Study protocol for a randomized phase III trial. BMC Cancer 2020, 20, 380. [Google Scholar] [CrossRef]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J. Clin. Oncol. 2018, 36, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 650. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.T.; Phillips, R.; Shi, W.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.; Gorin, M.A.; Deville, C.; Greco, S.C.; et al. A phase II randomized trial of Observation versus stereotactic ablative RadiatIon for OLigometastatic prostate CancEr (ORIOLE). J. Clin. Oncol. 2020, 38, 116. [Google Scholar] [CrossRef]
- Hardcastle, N.; Hofman, M.S.; Lee, C.-Y.; Callahan, J.; Selbie, L.; Foroudi, F.; Shaw, M.; Chander, S.; Lim, A.; Chesson, B.; et al. NaF PET/CT for response assessment of prostate cancer bone metastases treated with single fraction stereotactic ablative body radiotherapy. Radiat. Oncol. 2019, 14, 164. [Google Scholar] [CrossRef]
- Zacho, H.D.; Nielsen, J.B.; Afshar-Oromieh, A.; Haberkorn, U.; deSouza, N.; De Paepe, K.; Dettmann, K.; Langkilde, N.C.; Haarmark, C.; Fisker, R.V.; et al. Prospective comparison of 68Ga-PSMA PET/CT, 18F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1884–1897. [Google Scholar] [CrossRef]
- Uprimny, C.; Svirydenka, A.; Fritz, J.; Kroiss, A.S.; Nilica, B.; Decristoforo, C.; Haubner, R.; Von Guggenberg, E.; Buxbaum, S.; Horninger, W.; et al. Comparison of [68Ga]Ga-PSMA-11 PET/CT with [18F]NaF PET/CT in the evaluation of bone metastases in metastatic prostate cancer patients prior to radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1873–1883. [Google Scholar] [CrossRef]
- Chen, H.; Louie, A.V.; Higginson, D.S.; Palma, D.A.; Colaco, R.; Sahgal, A. Stereotactic Radiosurgery and Stereotactic Body Radiotherapy in the Management of Oligometastatic Disease. Clin. Oncol. 2020, 32, 713–727. [Google Scholar] [CrossRef]
- Ludmir, E.B.; Sherry, A.D.; Fellman, B.M.; Liu, S.; Bathala, T.; Haymaker, C.; Medina-Rosales, M.N.; Reuben, A.; Holliday, E.B.; Smith, G.L.; et al. Addition of Metastasis-Directed Therapy to Systemic Therapy for Oligometastatic Pancreatic Ductal Adenocarcinoma (EXTEND): A Multicenter, Randomized Phase II Trial. J. Clin. Oncol. 2024, 42, 3795–3805. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Lin, Y.; Ye, J.; Shen, W.; Luo, H.; Li, B.; Huang, W.; Wei, S.; Song, J.; et al. Systemic therapy with or without local intervention for oligometastatic oesophageal squamous cell carcinoma (ESO-Shanghai 13): An open-label, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2024, 9, 45–55. [Google Scholar] [CrossRef]
- Hitchcock, K.E.; Miller, E.D.; Shi, Q.; Dixon, J.G.; Gholami, S.; White, S.B.; Wu, C.; Goulet, C.C.; George, M.; Jee, K.-W.; et al. Alliance for clinical trials in Oncology (Alliance) trial A022101/NRG-GI009: A pragmatic randomized phase III trial evaluating total ablative therapy for patients with limited metastatic colorectal cancer: Evaluating radiation, ablation, and surgery (ERASur). BMC Cancer 2024, 24, 201. [Google Scholar] [CrossRef]
- Lourenco, R.D.A.; Khoo, T.; Crothers, A.; Haas, M.; Montgomery, R.; Ball, D.; Bressel, M.; Siva, S. Cost-Effectiveness of Single Versus Multifraction SABR for Pulmonary Oligometastases: The SAFRON II Trial. Int. J. Radiat. Oncol. 2022, 114, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.; Kron, T.; Bressel, M.; Haas, M.; Mai, T.; Vinod, S.; Sasso, G.; Wong, W.; Le, H.; Eade, T.; et al. A randomised phase II trial of Stereotactic Ablative Fractionated radiotherapy versus Radiosurgery for Oligometastatic Neoplasia to the lung (TROG 13.01 SAFRON II). BMC Cancer 2016, 16, 183. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.; Bressel, M.; Mai, T.; Le, H.; Vinod, S.; De Silva, H.; Macdonald, S.; Skala, M.; Hardcastle, N.; Rezo, A.; et al. Single-Fraction vs Multifraction Stereotactic Ablative Body Radiotherapy for Pulmonary Oligometastases (SAFRON II): The Trans Tasman Radiation Oncology Group 13.01 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1476. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.; Sakyanun, P.; Mai, T.; Wong, W.; Lim, A.; Ludbrook, J.; Bettington, C.; Rezo, A.; Pryor, D.; Hardcastle, N.; et al. Long-Term Outcomes of TROG 13.01 SAFRON II Randomized Trial of Single- Versus Multifraction Stereotactic Ablative Body Radiotherapy for Pulmonary Oligometastases. J. Clin. Oncol. 2023, 41, 3493–3498. [Google Scholar] [CrossRef]
- Rubini, D.; Gagliardi, F.; Menditti, V.S.; D’Ambrosio, L.; Gallo, P.; D’Onofrio, I.; Pisani, A.R.; Sardaro, A.; Rubini, G.; Cappabianca, S.; et al. Genetic profiling in radiotherapy: A comprehensive review. Front. Oncol. 2024, 14, 1337815. [Google Scholar] [CrossRef]
- Damron, T.A.; Mann, K.A. Fracture risk assessment and clinical decision making for patients with metastatic bone disease. J. Orthop. Res. 2020, 38, 1175–1190. [Google Scholar] [CrossRef]
- Wood, T.J.; Racano, A.; Yeung, H.; Farrokhyar, F.; Ghert, M.; Deheshi, B.M. Surgical Management of Bone Metastases: Quality of Evidence and Systematic Review. Ann. Surg. Oncol. 2014, 21, 4081–4089. [Google Scholar] [CrossRef]
- Piccioli, A.; Spinelli, M.S.; Forsberg, J.A.; Wedin, R.; Healey, J.H.; Ippolito, V.; Daolio, P.A.; Ruggieri, P.; Maccauro, G.; Gasbarrini, A.; et al. How do we estimate survival? External validation of a tool for survival estimation in patients with metastatic bone disease—Decision analysis and comparison of three international patient populations. BMC Cancer 2015, 15, 424. [Google Scholar] [CrossRef]
- Mirels, H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin. Orthop. Relat. Res. 1989, 249, 256–264. [Google Scholar] [CrossRef]
- Nazarian, A.; Entezari, V.; Zurakowski, D.; Calderon, N.; Hipp, J.A.; Villa-Camacho, J.C.; Lin, P.P.; Cheung, F.H.; Aboulafia, A.J.; Turcotte, R.; et al. Treatment Planning and Fracture Prediction in Patients with Skeletal Metastasis with CT-Based Rigidity Analysis. Clin. Cancer Res. 2015, 21, 2514–2519. [Google Scholar] [CrossRef]
- Steensma, M.; Healey, J.H. Trends in the Surgical Treatment of Pathologic Proximal Femur Fractures Among Musculoskeletal Tumor Society Members. Clin. Orthop. Relat. Res. 2013, 471, 2000–2006. [Google Scholar] [CrossRef] [PubMed]
- Steensma, M.; Boland, P.J.; Morris, C.D.; Athanasian, E.; Healey, J.H. Endoprosthetic Treatment is More Durable for Pathologic Proximal Femur Fractures. Clin. Orthop. Relat. Res. 2012, 470, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Wedin, R.; Bauer, H.C.F. Surgical treatment of skeletal metastatic lesions of the proximal femur: Endoprosthesis or Reconstruction Nail? J. Bone Jt. Surg. Br. 2005, 87-B, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Wedin, R.; Bauer, H.C.; Wersäll, P. Failures after operation for skeletal metastatic lesions of long bones. Clin. Orthop. Relat. Res. 1999, 358, 128–139. [Google Scholar] [CrossRef]
- Peterson, J.R.; Decilveo, A.P.; O’Connor, I.T.; Golub, I.; Wittig, J.C. What Are the Functional Results and Complications With Long Stem Hemiarthroplasty in Patients With Metastases to the Proximal Femur? Clin. Orthop. Relat. Res. 2017, 475, 745–756. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Z.; Wang, B.; Guo, A. Clinical and functional comparison of endoprosthetic replacement with intramedullary nailing for treating proximal femur metastasis. Chin. J. Cancer Res. 2016, 28, 209–214. [Google Scholar] [CrossRef]
- Harvey, N.; Ahlmann, E.R.; Allison, D.C.; Wang, L.; Menendez, L.R. Endoprostheses Last Longer Than Intramedullary Devices in Proximal Femur Metastases. Clin. Orthop. Relat. Res. 2012, 470, 684–691. [Google Scholar] [CrossRef]
- Angelini, A.; Trovarelli, G.; Berizzi, A.; Pala, E.; Breda, A.; Maraldi, M.; Ruggieri, P. Treatment of pathologic fractures of the proximal femur. Injury 2018, 49, S77–S83. [Google Scholar] [CrossRef]
- Owen, A.R.; Uvodich, M.E.; Somasundaram, V.; Yuan, B.J.; Rose, P.S.; Houdek, M.T. Outcomes of Intramedullary Nail Fixation for Metastatic Disease: Impending and Pathologic Fractures. Anticancer Res. 2022, 42, 919–922. [Google Scholar] [CrossRef]
- Janssen, S.J.; Teunis, T.; Hornicek, F.J.; Van Dijk, C.N.; Bramer, J.A.M.; Schwab, J.H. Outcome after fixation of metastatic proximal femoral fractures: A systematic review of 40 studies: Metastatic Proximal Femoral Fractures. J. Surg. Oncol. 2016, 114, 507–519. [Google Scholar] [CrossRef]
- Di Martino, A.; Martinelli, N.; Loppini, M.; Piccioli, A.; Denaro, V. Is endoprosthesis safer than internal fixation for metastatic disease of the proximal femur? A systematic review. Injury 2017, 48, S48–S54. [Google Scholar] [CrossRef] [PubMed]
- Thornley, P.; Vicente, M.; MacDonald, A.; Evaniew, N.; Ghert, M.; Velez, R. Causes and Frequencies of Reoperations After Endoprosthetic Reconstructions for Extremity Tumor Surgery: A Systematic Review. Clin. Orthop. Relat. Res. 2019, 477, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Willeumier, J.J.; Van Der Wal, C.W.P.G.; Schoones, J.W.; Van Der Wal, R.J.; Dijkstra, P.D.S. Pathologic fractures of the distal femur: Current concepts and treatment options. J. Surg. Oncol. 2018, 118, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Calabró, T.; Van Rooyen, R.; Piraino, I.; Pala, E.; Trovarelli, G.; Panagopoulos, G.N.; Megaloikonomos, P.D.; Angelini, A.; Mavrogenis, A.F.; Ruggieri, P. Reconstruction of the proximal femur with a modular resection prosthesis. Eur. J. Orthop. Surg. Traumatol. 2016, 26, 415–421. [Google Scholar] [CrossRef]
- Trovarelli, G.; Cappellari, A.; Angelini, A.; Pala, E.; Ruggieri, P. What Is the Survival and Function of Modular Reverse Total Shoulder Prostheses in Patients Undergoing Tumor Resections in Whom an Innervated Deltoid Muscle Can Be Preserved? Clin. Orthop. Relat. Res. 2019, 477, 2495–2507. [Google Scholar] [CrossRef]
- Topkar, O.M.; Sofulu, Ö.; Şirin, E.; Erol, B. Limb salvage surgery of primary and metastatic bone tumors of the lower extremity: Functional outcomes and survivorship of modular endoprosthetic reconstruction. Acta Orthop. Traumatol. Turc. 2021, 55, 147–153. [Google Scholar] [CrossRef]
- Johnson, J.D.; Satcher, R.L.; Feng, L.; Lewis, V.O.; Moon, B.S.; Bird, J.E.; Lin, P.P. What Is the Prosthetic Survival After Resection and Intercalary Endoprosthetic Reconstruction for Diaphyseal Bone Metastases of the Humerus and Femur? Clin. Orthop. Relat. Res. 2023, 481, 2200–2210. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Pala, E.; Romagnoli, C.; Romantini, M.; Calabro, T.; Ruggieri, P. Survival analysis of patients with femoral metastases. J. Surg. Oncol. 2012, 105, 135–141. [Google Scholar] [CrossRef]
- Hayashi, K.; Tsuchiya, H. The role of surgery in the treatment of metastatic bone tumor. Int. J. Clin. Oncol. 2022, 27, 1238–1246. [Google Scholar] [CrossRef]
- Forsberg, J.A.; Wedin, R.; Bauer, H.C.; Hansen, B.H.; Laitinen, M.; Trovik, C.S.; Keller, J.Ø.; Boland, P.J.; Healey, J.H. External validation of the Bayesian Estimated Tools for Survival (BETS) models in patients with surgically treated skeletal metastases. BMC Cancer 2012, 12, 493. [Google Scholar] [CrossRef]
- Forsberg, J.A.; Wedin, R.; Boland, P.J.; Healey, J.H. Can We Estimate Short- and Intermediate-term Survival in Patients Undergoing Surgery for Metastatic Bone Disease? Clin. Orthop. Relat. Res. 2017, 475, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Overmann, A.L.; Clark, D.M.; Tsagkozis, P.; Wedin, R.; Forsberg, J.A. Validation of PATHFx 2.0: An open-source tool for estimating survival in patients undergoing pathologic fracture fixation. J. Orthop. Res. 2020, 38, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Ratasvuori, M.; Wedin, R.; Hansen, B.H.; Keller, J.; Trovik, C.; Zaikova, O.; Bergh, P.; Kalen, A.; Laitinen, M. Prognostic role of en-bloc resection and late onset of bone metastasis in patients with bone-seeking carcinomas of the kidney, breast, lung, and prostate: SSG study on 672 operated skeletal metastases: Surgery of Bone Metastases. J. Surg. Oncol. 2014, 110, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Scolaro, J.A.; Lackman, R.D. Surgical Management of Metastatic Long Bone Fractures: Principles and Techniques. J. Am. Acad. Orthop. Surg. 2014, 22, 90–100. [Google Scholar] [CrossRef]
- Capanna, R.; Campanacci, D.A. The treatment of metastases in the appendicular skeleton. J. Bone Jt. Surg. Br. 2001, 83-B, 471–481. [Google Scholar] [CrossRef]
- Clara-Altamirano, M.A.; Garcia-Ortega, D.Y.; Martinez-Said, H.; Caro-Sánchez, C.H.S.; Herrera-Gomez, A.; Cuellar-Hubbe, M. Tratamiento quirúrgico de las metástasis óseas en el esqueleto apendicular. Rev. Esp. Cir. Ortopédica Traumatol. 2018, 62, 185–189. [Google Scholar] [CrossRef]
- Murray, J.A.; Parrish, F.F. Surgical management of secondary neoplastic fractures about the hip. Orthop. Clin. N. Am. 1974, 5, 887–901. [Google Scholar] [CrossRef]
- Fabian, A.; Pyschny, F.; Krug, D. Lokal konsolidierende Strahlentherapie beim oligometastasierten Nicht-kleinzelligen Bronchialkarzinom. Strahlenther. Onkol. 2019, 195, 1113–1115. [Google Scholar] [CrossRef]
- Soran, A.; Ozbas, S.; Ozcinar, B.; Isik, A.; Dogan, L.; Senol, K.; Dag, A.; Karanlik, H.; Aytac, O.; Karadeniz Cakmak, G.; et al. Intervention for Hepatic and Pulmonary Metastases in Breast Cancer Patients: Prospective, Multi-institutional Registry Study–IMET, Protocol MF 14-02. Ann. Surg. Oncol. 2022, 29, 6327–6336. [Google Scholar] [CrossRef]
- Ferriero, M.; Cacciatore, L.; Ochoa, M.; Mastroianni, R.; Tuderti, G.; Costantini, M.; Anceschi, U.; Misuraca, L.; Brassetti, A.; Guaglianone, S.; et al. The Impact of Metastasectomy on Survival Outcomes of Renal Cell Carcinoma: A 10-Year Single Center Experience. Cancers 2023, 15, 3332. [Google Scholar] [CrossRef]
- Ortiz-Cruz, E.J.; García-Mauriño Peñín, C.; Moriel-Garceso, D.J.; Peleteiro Pensado, M.; Barrientos Ruiz, I.; Redondo Sánchez, A.; Pozo-Kreilinger, J.J.; Belinchón-Olmeda, B.; Tapia-Viñe, M. [Translated article] Oligometastases in oncological orthopaedic surgery. Our experience. Rev. Esp. Cir. Ortopédica Traumatol. 2022, 66, T389–T396. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Goch, A.; Murphy, D.; Wang, J.; Charubhumi, V.; Fox, J.; Sen, M.; Hoang, B.; Geller, D. A Novel Tripod Percutaneous Reconstruction Technique in Periacetabular Lesions Caused by Metastatic Cancer. J. Bone Jt. Surg. 2020, 102, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Toombs, C.; Conway, D.; Munger, A.M.; Alder, K.D.; Latich, I.; Lee, F.Y. Ablation, Osteoplasty, Reinforcement, and Internal Fixation for Percutaneous Endoskeletal Reconstruction of Periacetabular and Other Periarticular Osteolytic Metastases. Instr. Course Lect. 2021, 70, 503–514. [Google Scholar] [PubMed]
- Angelini, A.; D’Amico, A.; Paolilli, S.; Signori, R.; Baldin, G.; Di Rubbo, G.; Denaro, L.; Ruggieri, P. Electrochemotherapy in Spine Metastases: A Case Series Focused on Technical Aspects, Surgical Strategies and Results. Diagnostics 2024, 14, 936. [Google Scholar] [CrossRef]
- Lee, F.Y.; Latich, I.; Toombs, C.; Mungur, A.; Conway, D.; Alder, K.; Ibe, I.; Lindskog, D.; Friedlaender, G. Minimally Invasive Image-Guided Ablation, Osteoplasty, Reinforcement, and Internal Fixation (AORIF) for Osteolytic Lesions in the Pelvis and Periarticular Regions of Weight-Bearing Bones. J. Vasc. Interv. Radiol. 2020, 31, 649–658.e1. [Google Scholar] [CrossRef]
- Errani, C. Treatment of Bone Metastasis. Curr. Oncol. 2022, 29, 5195–5197. [Google Scholar] [CrossRef]
- Barnum, K.J.; Weiss, S.A. Prognostic and Predictive Biomarkers in Oligometastatic Disease. Cancer J. 2020, 26, 100–107. [Google Scholar] [CrossRef]
- Grosinger, A.J.; Alcorn, S.R. An Update on the Management of Bone Metastases. Curr. Oncol. Rep. 2024, 26, 400–408. [Google Scholar] [CrossRef]
- Van De Ven, S.; Van Den Bongard, D.; Pielkenrood, B.; Kasperts, N.; Eppinga, W.; Peters, M.; Verkooijen, H.; Van Der Velden, J. Patient-Reported Outcomes of Oligometastatic Patients After Conventional or Stereotactic Radiation Therapy to Bone Metastases: An Analysis of the PRESENT Cohort. Int. J. Radiat. Oncol. 2020, 107, 39–47. [Google Scholar] [CrossRef]
- Bongiovanni, A.; Foca, F.; Oboldi, D.; Diano, D.; Bazzocchi, A.; Fabbri, L.; Mercatali, L.; Vanni, S.; Maltoni, M.; Bianchini, D.; et al. 3-T magnetic resonance–guided high-intensity focused ultrasound (3 T-MR-HIFU) for the treatment of pain from bone metastases of solid tumors. Support. Care Cancer 2022, 30, 5737–5745. [Google Scholar] [CrossRef]
- Bertrand, A.-S.; Iannessi, A.; Natale, R.; Beaumont, H.; Patriti, S.; Xiong-Ying, J.; Baudin, G.; Thyss, A. Focused ultrasound for the treatment of bone metastases: Effectiveness and feasibility. J. Ther. Ultrasound 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Kidney Cancer Version 2.2023. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (accessed on 1 September 2024).
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Prostate Cancer Version 4.2022. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 1 September 2024).
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Non-Small Cell Lung Cancer Version 3.2022. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 1 September 2024).
- ESMO Consensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer. 2016. Available online: https://www.annalsofoncology.org/article/S0923-7534(19)34754-4/pdf (accessed on 1 September 2024).
- ESMO Clinical Practice Guidelines Metastatic NSCLC. 2020. Available online: https://www.esmo.org/content/download/347819/6934778/1/ESMOCPG-mNSCLC-15SEPT2020.pdf (accessed on 1 September 2024).
- Christ, S.M.; Heesen, P.; Muehlematter, U.J.; Pohl, K.; William Thiel, G.; Willmann, J.; Ahmadsei, M.; Kroese, T.E.; Mayinger, M.; Balermpas, P.; et al. Recognition of and treatment recommendations for oligometastatic disease in multidisciplinary tumor boards. Clin. Transl. Radiat. Oncol. 2023, 38, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Galata, C.; Wimmer, E.; Kasper, B.; Wenz, F.; Reißfelder, C.; Jakob, J. Multidisciplinary Tumor Board Recommendations for Oligometastatic Malignancies: A Prospective Single-Center Analysis. Oncol. Res. Treat. 2019, 42, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Chow, F.C.-L.; Chok, K.S.-H. Colorectal liver metastases: An update on multidisciplinary approach. World J. Hepatol. 2019, 11, 150–172. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Sun, R.; Yang, Z.; Zhu, Z. Retrospective analysis of patients with rare-site and metastatic giant cell tumor. Chin J. Cancer Res. 2013, 25, 585. [Google Scholar]
- Choi, S.H.; Yang, G.; Koom, W.S.; Yang, S.Y.; Kim, S.; Lim, J.S.; Kim, H.S.; Shin, S.J.; Chang, J.S. Active involvement of patients, radiation oncologists, and surgeons in a multidisciplinary team approach: Guiding local therapy in recurrent, metastatic rectal cancer. Cancer Med. 2023, 12, 21057–21067. [Google Scholar] [CrossRef]
- Lee, J.; Koom, W.S.; Byun, H.K.; Yang, G.; Kim, M.S.; Park, E.J.; Ahn, J.B.; Beom, S.-H.; Kim, H.S.; Shin, S.J.; et al. Metastasis-Directed Radiotherapy for Oligoprogressive or Oligopersistent Metastatic Colorectal Cancer. Clin. Colorectal Cancer 2022, 21, e78–e86. [Google Scholar] [CrossRef]
- Brown, G.T.F.; Bekker, H.L.; Young, A.L. Quality and efficacy of Multidisciplinary Team (MDT) quality assessment tools and discussion checklists: A systematic review. BMC Cancer 2022, 22, 286. [Google Scholar] [CrossRef]
- Martinez-Recio, S.; Barba, A.; Farré, N.; Majem, M. Oligometastatic disease: A need for consensus to cure the incurable in a multidisciplinary approach. Chin. Clin. Oncol. 2024, 13, 28. [Google Scholar] [CrossRef]
- Smith, E.A.; Ey, J.D.; Senthil, V.; Barbaro, A.; Edwards, S.; Bradshaw, E.L.; Maddern, G.J. Do Surgical Oncology Multidisciplinary Team Meetings Make a Difference? Ann. Surg. Oncol. 2025, 32, 1222–1231. [Google Scholar] [CrossRef]
Therapy Type | Mechanism of Action | Indications | Advantages | Limitations |
---|---|---|---|---|
Bone-Modifying Agents | Inhibit osteoclast activity and bone resorption | Multiple cancers (breast, prostate, lung, myeloma) | Reduce skeletal-related events, improve quality of life | Renal toxicity (bisphosphonates), risk of osteonecrosis of the jaw |
Hormone Therapy | Blocks hormone-driven tumor growth | Hormone-sensitive cancers | Targets tumor-specific pathways, fewer systemic side effects | Resistance development, side effects like osteoporosis, fatigue |
Targeted Therapy | Inhibits cancer-specific molecular pathways | Cancers with specific genetic mutations | Precision therapy, fewer off-target effects | Requires biomarker testing, resistance can develop |
Immunotherapy | Enhances immune response against cancer cells | Renal cell carcinoma, NSCLC, melanoma with bone metastases | Durable response in some patients, potential for long-term remission | Limited efficacy in bone metastases due to bone microenvironment |
CAR-T Therapy | T cells genetically modified to attack tumor cells | Multiple myeloma with bone involvement | Highly specific, promising results in hematologic malignancies | Requires specialized centers, high cost, potential severe immune-related toxicities |
Therapy Type | Mechanism of Action | Indications | Advantages | Limitations |
---|---|---|---|---|
Conventional Radiotherapy | Lower radiation doses over multiple sessions | Palliation of bone pain, prevention of fractures in advanced disease | Pain relief, prevents disease progression | Less effective for oligometastatic disease, may require multiple sessions |
Stereotactic Ablative Radiotherapy (SABR/SBRT) | High-dose radiation to a small, precise area | Oligometastatic disease, bone metastases in controlled primary tumors | Improves survival, systemic immune activation | Requires specialized equipment, potential treatment-related toxicity |
Radiopharmaceuticals | Radium-223 | Bone-targeting radioactive agents for widespread bone metastases | Selectively targets bone metastases with minimal damage to normal tissue | High cost, selected tumor types (e.g., prostate cancer) |
Genetic Profiling in Radiotherapy | Biomarker-based approach (Oncotype DX, KEAP1/NFE2L2 mutations, TMB levels) | Predicts radiosensitivity | Tailors radiotherapy for better outcomes | Requires advanced testing, not widely available |
Therapy Type | Mechanism of Action | Indications | Advantages | Limitations |
---|---|---|---|---|
Intramedullary Nailing | Stabilization without tumor removal | Impending or established pathological fractures (e.g., long bones) | Minimally invasive, preserves function, rapid recovery | Risk of implant failure in long-term survivors |
Resection with Endoprosthetic Reconstruction | Bone removal + prosthetic replacement | Single lesion Oligometastatic disease Large metastases in weight-bearing bones (proximal femur, humerus) | Durable, reduces reoperation rates, improves local control | Higher cost, longer recovery, potential complications (infection, dislocation) |
Minimally Invasive Techniques | Cement augmentation or tumor ablation | Spinal, pelvic, or non-weight-bearing bone metastases | Reduced morbidity, pain relief, shorter hospital stay | Does not eliminate tumor burden, requires combination with systemic therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trovarelli, G.; Rizzo, A.; Zinnarello, F.D.; Cerchiaro, M.; Angelini, A.; Pala, E.; Ruggieri, P. Modern Treatment of Skeletal Metastases: Multidisciplinarity and the Concept of Oligometastasis in the Recent Literature. Curr. Oncol. 2025, 32, 226. https://doi.org/10.3390/curroncol32040226
Trovarelli G, Rizzo A, Zinnarello FD, Cerchiaro M, Angelini A, Pala E, Ruggieri P. Modern Treatment of Skeletal Metastases: Multidisciplinarity and the Concept of Oligometastasis in the Recent Literature. Current Oncology. 2025; 32(4):226. https://doi.org/10.3390/curroncol32040226
Chicago/Turabian StyleTrovarelli, Giulia, Arianna Rizzo, Felicia Deborah Zinnarello, Mariachiara Cerchiaro, Andrea Angelini, Elisa Pala, and Pietro Ruggieri. 2025. "Modern Treatment of Skeletal Metastases: Multidisciplinarity and the Concept of Oligometastasis in the Recent Literature" Current Oncology 32, no. 4: 226. https://doi.org/10.3390/curroncol32040226
APA StyleTrovarelli, G., Rizzo, A., Zinnarello, F. D., Cerchiaro, M., Angelini, A., Pala, E., & Ruggieri, P. (2025). Modern Treatment of Skeletal Metastases: Multidisciplinarity and the Concept of Oligometastasis in the Recent Literature. Current Oncology, 32(4), 226. https://doi.org/10.3390/curroncol32040226