Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Questions
- 1.
- What is the effect of patient factors (smoking status, body mass index, breast size, age), comorbidities (diabetes, hypertension), or oncologic factors (previous breast surgery, previous radiotherapy (RT) to the breast/chest, inflammatory breast cancer, skin involvement) on post-mastectomy breast reconstruction outcomes?
- 2a.
- In patients with breast cancer undergoing therapeutic mastectomy, is there a difference in outcomes in immediate versus delayed reconstruction for patients who do not receive RT?
- 2b.
- In patients with breast cancer undergoing therapeutic mastectomy, is there a difference in outcomes in immediate versus delayed reconstruction for patients who receive RT?
- 3a.
- In patients with breast cancer who are candidates for SSM/NSM and reconstruction, is there a difference in outcomes between NSM and SSM?
- 3b.
- In patients with breast cancer, do oncologic outcomes for NSM vary according to the criteria used in selecting patients for NSM (e.g., tumour to nipple distance) or how nipple/areolar involvement is assessed (e.g., clinical examination, mammography, MRI, other imaging, biopsy of areola/nipple/nipple core, frozen/intraoperative or permanent section)?
- 3c.
- In patients with breast cancer and NSM, what surgical factors have been reported that influence the rates of nipple viability or necrosis and retention of sensation after NSM?
- 4.
- Does the use of prepectoral implants for postmastectomy breast construction result in differences in outcomes than subpectoral implants?
- 5.
- After therapeutic mastectomy, do outcomes differ for breast reconstruction using human-derived ADM, synthetic absorbable matrix, or no scaffolding/matrix? Are there differences in outcomes between different human ADMs or different synthetic absorbable matrices?
- 6.
- What are the benefits and risks of autologous fat grafting (lipofilling) as an adjunct to breast reconstruction?
2.2. Literature Search
2.3. Study Selection Criteria
2.3.1. Systematic Reviews
2.3.2. Primary Studies
2.3.3. Outcomes of Interest
- (a)
- Surgical complications:
- Short-term (<30 days): seroma, hematoma (bleeding), infection, flap necrosis, nipple necrosis, wound complications, reoperations, pulmonary embolus or deep vein thrombosis
- Long-term: flap failure, loss of implant, fat necrosis, reoperation, capsular contracture (implants only), implant malfunction (leaking, rupture, shift), chronic breast pain, hypertrophic scarring
- (b)
- Donor site problems: hernia, wound complications, abdominal weakness
- (c)
- Functional: restricted mobility, decreased strength, pectoralis tightness, animation deformity, lymphedema. This may also be phrased as being able/unable to perform work and leisure-related activities and assessed using a validated instrument
- (d)
- Aesthetics (acceptable cosmetic outcome: volume, shape, symmetry, scarring, skin quality) assessed by surgeons and/or patients (see also PROs)
- (e)
- PROs: patient satisfaction with breasts, satisfaction with the overall outcome, psychosocial well-being, physical well-being, sexual well-being, health-related QoL, body image, sexual functioning
- (f)
- Oncologic outcomes: delay in adjuvant therapy (radiation or chemotherapy), recurrence, disease-free survival (DFS), overall survival (OS)
2.4. Data Extraction and Assessment of Evidence Quality/Certainty
2.5. Synthesizing the Evidence
3. Results
3.1. Overview of the Literature Search Results
3.2. Risk of Bias and Quality of Evidence
3.2.1. Randomized Controlled Trials
3.2.2. Other Studies
3.2.3. Mastectomy Reconstruction Outcomes Consortium Study
3.3. Question 1: Patient Factors
3.3.1. Age
3.3.2. Diabetes
3.3.3. Smoking
3.3.4. BMI
3.3.5. Hypertension
3.3.6. Previous Surgery
3.3.7. Neoadjuvant Chemotherapy
3.3.8. Radiotherapy
3.4. Question 2: Immediate Versus Delayed Reconstruction
3.4.1. Question 2a: Studies Without RT Comparing Delayed to Immediate Reconstruction
3.4.2. Question 2b: Studies Comparing Delayed Versus Immediate Reconstruction and Timing of Radiotherapy
3.4.3. Interval Between Radiotherapy and Further Reconstruction
3.5. Question 3: Nipple-Sparing Mastectomy Issues
3.5.1. Question 3a: NSM and SSM
3.5.2. Questions 3b and 3c: Patient Selection and Surgical Factors
3.5.3. Effect of Tumour-to-Nipple Distance
3.5.4. Recurrence, Survival, and Necrosis
3.5.5. Total Skin-Sparing Mastectomy
3.5.6. Incision Location and Other Risk Factors
3.5.7. Other Factors Affecting Necrosis Rates
3.5.8. Studies at the University of California
3.5.9. Nipple Sensation and Erection
3.5.10. Treatment of Patients with Tumour Detected in Resection Specimens
3.5.11. Intraoperative Frozen Section Versus Definitive/Final Pathology
3.5.12. Sensation
3.6. Question 4: Implant Location
3.6.1. Prepectoral Versus Submuscular
3.6.2. Prepectoral Versus Subpectoral (Either Submuscular or Dual-Plane)
3.6.3. Prepectoral Versus Dual-Plane
3.6.4. Conversion from Subpectoral to Prepectoral
3.6.5. Studies Where Plane of Implant and ADM Use Are Both Varied
3.6.6. Plane of Implants Summary
3.7. Question 5: Acellular Dermal Matrix
3.7.1. Background
3.7.2. Overview of Results
3.7.3. ADM Versus No ADM—Studies with AlloDerm
3.7.4. ADM Versus No ADM—Studies with AlloDerm RTU
3.7.5. ADM Versus No ADM—Studies with Type of ADM Not Specified
3.7.6. Comparison of Different ADM
3.7.7. Different ADM Preparations/Treatments
3.7.8. ADM Plus Synthetic Mesh Versus ADM Alone
3.8. Question 6: Autologous Fat Grafting
4. Discussion
4.1. Question 1: Patient and Disease Factors
4.2. Question 2: Timing of Reconstruction
4.3. Question 3: Nipple-Sparing Mastectomy
4.4. Question 4: Plane of Implants
4.5. Question 5: Acellular Dermal Matrix Use
4.6. Question 6: Autologous Fat Grafting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Analysis | Study ID | Experimental | Comparator | Outcome | D1 | D2 | D3 | D4 | D5 | Overall |
---|---|---|---|---|---|---|---|---|---|---|
Intention-to-treat | NCT00639106 McCarthy, 2012 [280] | ADM | None | Postoperative pain; pain in the expansion phase | ||||||
Intention-to-treat | BREASTrial, stage I NCT00872859 Mendenhall, 2015 [290] | AlloDerm | DermaMatrix | Overall complications; other complication | ||||||
Intention-to-treat | BREASTrial, stage II NCT00872859 Mendenhall, 2017 [291] | AlloDerm | DermaMatrix | Overall complications; other complication | ||||||
Intention-to-treat | BREASTrial, stage III NCT00872859 Mendenhall, 2023 [292] | AlloDerm | DermaMatrix | Overall complications | ||||||
Intention-to-treat | NCT03145337 Broyles, 2021 [298] | AlloDerm RTU | FLEX HD pliable | Overall complications; other complication | ||||||
Per Protocol | REaCT investigators NCT03064893 Arnaout, 2021 [284] | Non-fenestrated AlloDerm RTU | DermACELL | Complications; QoL | ||||||
Intention-to-treat | Gentilucci, 2020 [53] | Expander, PMRT, fat grafting, expander-implant exchange | Expander, PMRT, expander-implant exchange (no fat grafting) | Soft adipose tissue thickness; complications; disability; aesthetics | ||||||
Per Protocol | BREAST Trial NCT02339779 Piatkowski, 2023 [54,55,56,57] | Fat grafting alone | Expander-implants | Breast-Q | ||||||
Low risk of bias | Some concerns | High risk of bias |
Appendix B
Citation | 1. PICO Components Included | 2. Protocol Prior to Review | 3. Study Design Inclusion Explanation | 4. Comprehensive Search Strategy | 5. Duplicate Study Selection | 6. Duplicate Data Extraction | 7. Details of Excluded Studies | 8. Description of Included Studies | 9a. RoB Assessment (RCTs) | 9b. RoB Assessment (NRSIs) | 10. Funding Sources | 14. Heterogeneity Absent or Discussed | 15. Publication bias Assessed | 16. Reports COI | Overall Rating of Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panayi, 2018 [71] | Y | Y | N | PY | N | N | Y | PY | N/A | Y | N | Y | N | Y | Moderate |
Tan, 2022 [72] | Y | N | N | Y | N | N | N | Y | N/A | Y | N | Y | N | Y | Moderate |
ElAbd, 2022 [73] | Y | N | N | PY | N | N | N | Y | N/A | Y | N | Y | N | Y | Moderate |
Liu, 2022 [74] | Y | Y | N | PY | Y | N | N | Y | N/A | Y | N | Y | Y | Y | Moderate |
Mortada, 2023 [75] | Y | Y | N | PY | N | N | N | Y | N/A | Y | N | Y | Y | Y | Moderate |
Theocharidis, 2018 [76] | Y | PY | N | Y | Y | N | N | Y | N/A | N | N | Y | N | Y | Low |
Mrad, 2022 [77] | Y | PY | N | Y | Y | N | N | Y | N/A | N | N | Y | N | PY | Low |
Chung, 2021 [78] | Y | N | N | PY | N | N | N | Y | N/A | N | N | Y | Y | Y | Low |
Bond, 2021 [79] | Y | N | N | Y | Y | N | Y | Y | N/A | Y | N | Y | Y | Y | Moderate |
Chicco, 2021 [80] | Y | N | N | Y | N | N | Y | Y | N/A | N | N | Y | Y | Y | Low |
Varghese, 2021 [81] | Y | Y | N | Y | Y | Y | N | Y | N/A | Y | N | Y | Y | Y | High |
Spera, 2020 [82] | Y | N | PY | PY | Y | PY | N | Y | N/A | Y | N | Y | Y | Y | Moderate |
Hong, 2021 [83] | Y | N | N | Y | Y | Y | N | Y | N/A | Y | N | Y | Y | Y | Moderate |
Zugasti, 2021 [84] | Y | PY | N | PY | N | N | Y | Y | N/A | Y | N | Y | Y | PY | Moderate |
Pu, 2018 [15] | Y | PY | N | Y | Y | N | N | Y | N/A | PY | N | Y | Y | Y | Low |
Magill, 2017 [85] | Y | Y | N | Y | N | N | N | Y | N/A | N | N | Y | N | Y | Low |
Liew, 2021 [18] | Y | Y | N | Y | Y | Y | N | Y | N/A | Y | N | Y | N | Y | High |
References
- Saiga, M.; Nakagiri, R.; Mukai, Y.; Matsumoto, H.; Kimata, Y. Trends and issues in clinical research on satisfaction and quality of life after mastectomy and breast reconstruction: A 5-year scoping review. Int. J. Clin. Oncol. 2023, 28, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Sousa, H.; Castro, S.; Abreu, J.; Pereira, M.G. A systematic review of factors affecting quality of life after postmastectomy breast reconstruction in women with breast cancer. Psychooncology 2019, 28, 2107–2118. [Google Scholar] [CrossRef]
- Winters, Z.E.; Benson, J.R.; Pusic, A.L. A systematic review of the clinical evidence to guide treatment recommendations in breast reconstruction based on patient-reported outcome measures and health-related quality of life. Ann. Surg. 2010, 252, 929–942. [Google Scholar] [CrossRef]
- Pusic, A.L.; Klassen, A.F.; Snell, L.; Cano, S.J.; McCarthy, C.; Scott, A.; Cemal, Y.; Rubin, L.R.; Cordeiro, P.G. Measuring and managing patient expectations for breast reconstruction: Impact on quality of life and patient satisfaction. Expert Rev. Pharmacoecon. Outcomes Res. 2012, 12, 149–158. [Google Scholar] [CrossRef]
- Kronowitz, S.J. A systematic review of the clinical evidence to guide treatment recommendations in breast reconstruction based on patient-reported outcome measures and health-related quality of life: Winters ZE, Benson JR, Pusic AL (Univ of Bristol, UK; Univ of Cambridge, UK; Memorial Sloan-Kettering Cancer Ctr, NY) Ann Surg 252:929-942, 2010. Breast Dis. 2011, 22, 420–422. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Kim, H.J.; Lee, J.; Chung, I.Y.; Kim, J.; Lee, S.B.; Son, B.H.; Han, J.; Han, H.H.; Eom, J.S.; et al. Oncologic safety of nipple-sparing mastectomy in patients with breast cancer and tumor-to-nipple distance <= 1 cm: A matched cohort study. Ann. Surg. Oncol. 2021, 28, 4284–4291. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Mao, J.; Fang, J.; Chen, D. Safety of atypical ductal hyperplasia at the nipple margin in nipple-sparing mastectomy. J. Breast Cancer 2024, 16, 16. [Google Scholar] [CrossRef]
- Parvez, E.; Martel, K.; Morency, D.; Dumitra, S.; Meguerditchian, A.N.; Dionisopoulos, T.; Meterissian, S.; Basik, M.; Boileau, J.F. Surgical and oncologic outcomes of nipple-sparing mastectomy for a cohort of breast cancer patients, including cases with high-risk features. Clin. Breast Cancer 2020, 20, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.C.; McCarthy, J.T.; Park, B.C.; Chaker, S.C.; Saad, M.; Braun, S.A.; Perdikis, G.; Higdon, K. Comparison of complication rates between subpectoral vs. prepectoral techniques in prosthetic breast reconstruction. Aesthetic Surg. J. 2023, 43, 1285–1292. [Google Scholar] [CrossRef]
- Woo, K.J.; Park, J.W.; Mun, G.H.; Pyon, J.K.; Jeon, B.J.; Bang, S.I. Does the use of acellular dermal matrix increase postoperative complications of the first-stage reconstruction of immediate expander-implant breast reconstruction: A matched cohort study. Ann. Plast. Surg. 2017, 79, 341–345. [Google Scholar] [CrossRef]
- Wells, M.W.; Chang, I.A.; Gatherwright, J.R.; Festekjian, J.H.; Delong, M.R. Postsurgical outcomes with meshes for two-stage prosthetic breast reconstruction in 20,817 patients. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4699. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Kim, H.J.; Lee, J.; Chung, I.Y.; Kim, J.S.; Lee, S.B.; Son, B.H.; Eom, J.S.; Kim, S.B.; Gong, G.Y.; et al. Recurrence outcomes after nipple-sparing mastectomy and immediate breast reconstruction in patients with pure ductal carcinoma in situ. Ann. Surg. Oncol. 2020, 27, 1627–1635. [Google Scholar] [CrossRef]
- Seth, A.K.; Hirsch, E.M.; Fine, N.A.; Kim, J.Y.S. Utility of acellular dermis-assisted breast reconstruction in the setting of radiation: A comparative analysis. Plast. Reconstr. Surg. 2012, 130, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, J.P.; Mendenhall, S.D.; Anderson, L.A.; Ying, J.; Boucher, K.M.; Liu, T.; Neumayer, L.A. The breast reconstruction evaluation of acellular dermal matrix as a sling trial (BREASTrial): Design and methods of a prospective randomized trial. Plast. Reconstr. Surg. 2015, 135, 20e–28e. [Google Scholar] [CrossRef]
- Pu, Y.; Mao, T.C.; Zhang, Y.M.; Wang, S.L.; Fan, D.L. The role of postmastectomy radiation therapy in patients with immediate prosthetic breast reconstruction: A meta-analysis. Medicine 2018, 97, e9548. [Google Scholar] [CrossRef] [PubMed]
- Christopher, A.N.; Morris, M.P.; Broach, R.B.; Serletti, J.M. A comparative analysis of immediate and delayed-immediate breast reconstruction after postmastectomy radiation therapy. J. Reconstr. Microsurg. 2022, 38, 499–505. [Google Scholar] [CrossRef]
- Prantl, L.; Moellhoff, N.; von Fritschen, U.; Giunta, R.E.; Germann, G.; Kehrer, A.; Lonic, D.; Zeman, F.; Broer, P.N.; Heidekrueger, P.I. Immediate versus secondary DIEP flap breast reconstruction: A multicenter outcome study. Arch. Gynecol. Obstet. 2020, 302, 1451–1459. [Google Scholar] [CrossRef]
- Liew, B.; Southall, C.; Kanapathy, M.; Nikkhah, D. Does post-mastectomy radiation therapy worsen outcomes in immediate autologous breast flap reconstruction? A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 3260–3280. [Google Scholar] [CrossRef]
- Beugels, J.; Bod, L.; van Kuijk, S.M.J.; Qiu, S.S.; Tuinder, S.M.H.; Heuts, E.M.; Piatkowski, A.; van der Hulst, R. Complications following immediate compared to delayed deep inferior epigastric artery perforator flap breast reconstructions. Breast Cancer Res. Treat. 2018, 169, 349–357. [Google Scholar] [CrossRef]
- Zhong, T.; Spithoff, K.; Kellett, S.; Boyd, K.; Brackstone, M.; Hanrahan, R.; Whelan, T.; Breast Reconstruction Expert Panel. Breast Cancer Reconstruction Surgery (Immediate and Delayed) Across Ontario: Patient Indications and Appropriate Surgical Options; [Warning on Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) Added 2019 Nov 26 and Interim Revision 2021 Nov]; Program in Evidence-Based Care Guideline No.: 17-10; Contact the Program in Evidence-Based Care by Email at ccopgi@mcmaster.ca.
- Fletcher, G.; Zhong, T.; Frank, S.; Hanrahan, R.; Vesprini, D.; Stevens, C.; Wright, F.; Stotland, P.; Miragias, V.; Vito, A.; et al. Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer. PROSPERO 2023 CRD42023409083. Updated 25 March 2025. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023409083 (accessed on 25 March 2025).
- Zhong, T.; Fletcher, G.G.; Brackstone, M.; Frank, S.; Hanrahan, R.; Miragias, V.; Stevens, C.; Vesprini, D.; Vito, A.; Wright, F.C.; et al. Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer; Program in Evidence-Based Care Guideline No.: 17-10 v2; Ontario Health (Cancer Care Ontario): Toronto, ON, Canada, 2025; Available online: https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/31721 (accessed on 24 March 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. Available online: http://www.prisma-statement.org/ (accessed on 11 July 2024).
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, B.; Goodman, M. Multivariate or multivariable regression? Am. J. Public Health 2013, 103, 39–40. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi Kalan, M.; Jebai, R.; Zarafshan, E.; Bursac, Z. Distinction between two statistical terms: Multivariable and multivariate logistic regression. Nicotine Tob. Res. 2020, 23, 1446–1447. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.H. Multivariable analysis: A primer for readers of medical research. Ann. Intern. Med. 2003, 138, 644–650. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.I.; Turin, T.C. Variable selection strategies and its importance in clinical prediction modelling. Fam. Med. Community Health 2020, 8, e000262. [Google Scholar] [CrossRef]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef]
- Riley, R.D.; Snell, K.I.; Ensor, J.; Burke, D.L.; Harrell, F.E., Jr.; Moons, K.G.; Collins, G.S. Minimum sample size for developing a multivariable prediction model: PART II—Binary and time-to-event outcomes. Stat. Med. 2019, 38, 1276–1296. [Google Scholar] [CrossRef]
- Riley, R.D.; Snell, K.I.E.; Ensor, J.; Burke, D.L.; Harrell, F.E., Jr.; Moons, K.G.M.; Collins, G.S. Minimum sample size for developing a multivariable prediction model: Part I—Continuous outcomes. Stat. Med. 2019, 38, 1262–1275. [Google Scholar] [CrossRef]
- VanVoorhis, C.R.W.; Morgan, B.L. Understanding power and rules of thumb for determining sample sizes. Tutor. Quant. Methods Psychol. 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Ogundimu, E.O.; Altman, D.G.; Collins, G.S. Adequate sample size for developing prediction models is not simply related to events per variable. J. Clin. Epidemiol. 2016, 76, 175–182. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, M.; Moons, K.G.; de Groot, J.A.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat. Methods Med. Res. 2019, 28, 2455–2474. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, M.; de Groot, J.A.; Moons, K.G.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med. Res. Methodol. 2016, 16, 163. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Savović, J.; Page, M.; Elbers, R.; Sterne, J. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.1 (Updated September 2020); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane Library: London, UK, 2020; Available online: https://training.cochrane.org/handbook.2020 (accessed on 15 November 2024).
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions Version 6.1 [Internet]; Note: Version 6.3, 2022 Was Subsequently released; Cochrane: London, UK, 2020; Available online: https://training.cochrane.org/handbook/archive/v6.1 (accessed on 13 August 2021).
- Higgins, J.; Sterne, J.; Savović, J.; Page, M.; Hróbjartsson, A.; Boutron, I.; Reeves, B.; Eldridge, S. A revised tool for assessing risk of bias in randomized trials. In Cochrane Database of Systematic Reviews 2016; Chandler, J., McKenzie, J., Boutron, I., Welch, V., Eds.; Cochrane Methods: London, UK, 2016; Issue 10, (Suppl. S1). [Google Scholar] [CrossRef]
- Sterne, J.; Higgins, J.; Elers, R.; Reeves, B.; Development Group for ROBINS-I. Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I): Detailed Guidance [Internet]. Updated 12 October 2016. Available online: http://www.riskofbias.info (accessed on 16 July 2021).
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Ontario Health (Cancer Care Ontario); Program in Evidence-Based Care, McMaster University. Program in Evidence-Based Care Handbook, June 2020. Hamilton: Program in Evidence-Based Care. June 2022. Available online: https://www.cancercareontario.ca/sites/ccocancercare/files/assets/CCOPEBCHandbook.pdf (accessed on 2 December 2024).
- Program in Evidence-Based Care, McMaster University. OH-CCO Program in Evidence-Based Care (PEBC) Methods Guide. 31 March 2025. Hamilton (ON): Program in Evidence-Based Care. Available online: https://pebc.healthsci.mcmaster.ca/resources/pebc-methods-guide/ (accessed on 10 April 2025).
- Brouwers, M.C.; Kho, M.E.; Browman, G.P.; Burgers, J.S.; Cluzeau, F.; Feder, G.; Fervers, B.; Graham, I.D.; Grimshaw, J.; Hanna, S.E.; et al. AGREE II: Advancing guideline development, reporting and evaluation in health care. Can. Med. Assoc. J. 2010, 182, E839–E842. [Google Scholar] [CrossRef]
- The Cochrane Collaboration. Review Manager (RevMan), Version 5.4. Computer Program on Internet. Cochrane: London, UK, 2020. Available online: https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman/revman-5-download (accessed on 6 May 2021).
- McKenzie, D.P.; Thomas, C. Relative risks and odds ratios: Simple rules on when and how to use them. Eur. J. Clin. Investig. 2020, 50, e13249. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, K.F. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998, 280, 1690–1691. [Google Scholar] [CrossRef]
- Doi, S.A.; Furuya-Kanamori, L.; Xu, C.; Lin, L.; Chivese, T.; Thalib, L. Controversy and debate: Questionable utility of the relative risk in clinical research: Paper 1: A call for change to practice. J. Clin. Epidemiol. 2022, 142, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Aggarwal, R.; Pramesh, C.S. Common pitfalls in statistical analysis: Odds versus risk. Perspect. Clin. Res. 2015, 6, 222–224. [Google Scholar] [CrossRef]
- Gentilucci, M.; Mazzocchi, M.; Alfano, C. Effects of prophylactic lipofilling after radiotherapy compared to non-fat injected breasts: A randomized, objective study. Aesthetic Surg. J. 2020, 40, NP597–NP607. [Google Scholar] [CrossRef]
- Wederfoort, J.L.M.; Schop, S.; van der Broeck, L.C.A.; Hommes, J.E.; van Kuijk, S.M.J.; Timmermans, F.; Smit, J.M.; Heuts, E.M.; de Wit, T.; van der Hulst, R.; et al. Superior sensibility after full breast reconstruction with autologous fat transfer. Plast. Reconstr. Surg. 2024, 153, 316–323. [Google Scholar] [CrossRef]
- Piatkowski, A.A.; Wederfoort, J.L.M.; Hommes, J.E.; Schop, S.S.J.; Krastev, T.K.; van Kuijk, S.M.J.; van der Hulst, R. Effect of total breast reconstruction with autologous fat transfer using an expansion device vs. implants on quality of life among patients with breast cancer: A randomized clinical trial. JAMA Surg. 2023, 158, 456–464. [Google Scholar] [CrossRef]
- Wederfoort, J.L.M.; Kleeven, A.; Hommes, J.E.; Van Kuijk, S.M.J.; van der Hulst, R.; Piatkowski, A.; Breast Trial Investigators. Aesthetic evaluation of breast reconstruction with autologous fat transfer vs. Implants. Aesthetic Plast. Surg. 2023, 47, 593–604. [Google Scholar] [CrossRef]
- Schop, S.S.J.; Hommes, J.E.; Krastev, T.K.; Derks, D.; Larsen, M.; Rakhorst, H.; Schmidbauer, U.; Smit, J.M.; Tan, T.; Wehrens, K.; et al. BREAST trial study protocol: Evaluation of a non-invasive technique for breast reconstruction in a multicentre, randomised controlled trial. BMJ Open 2021, 11, e051413. [Google Scholar] [CrossRef] [PubMed]
- Bennett, K.G.; Qi, J.; Kim, H.M.; Hamill, J.B.; Wilkins, E.G.; Mehrara, B.J.; Kozlow, J.H. Association of fat grafting with patient-reported outcomes in postmastectomy breast reconstruction. JAMA Surg. 2017, 152, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, E.G. The Mastectomy Reconstruction Outcomes Consortium (MROC) Study. ClinicalTrials.gov NCT01723423. Last Updated 13 July 2017. Available online: https://clinicaltrials.gov/study/NCT01723423 (accessed on 12 July 2024).
- Sinha, I.; Pusic, A.L.; Wilkins, E.G.; Hamill, J.B.; Chen, X.; Kim, H.M.; Guldbrandsen, G.; Chun, Y.S. Late surgical-site infection in immediate implant-based breast reconstruction. Plast. Reconstr. Surg. 2017, 139, 20–28. [Google Scholar] [CrossRef]
- Pusic, A.L.; Matros, E.; Fine, N.; Buchel, E.; Gordillo, G.M.; Hamill, J.B.; Kim, H.M.; Qi, J.; Albornoz, C.; Klassen, A.F.; et al. Patient-reported outcomes 1 year after immediate breast reconstruction: Results of the Mastectomy Reconstruction Outcomes Consortium Study. J. Clin. Oncol. 2017, 35, 2499–2506. [Google Scholar] [CrossRef]
- Wilkins, E.G.; Cederna, P.S.; Lowery, J.C.; Davis, J.A.; Kim, H.M.; Roth, R.S.; Goldfarb, S.; Izenberg, P.H.; Houin, H.P.; Shaheen, K.W. Prospective analysis of psychosocial outcomes in breast reconstruction: One-year postoperative results from the Michigan Breast Reconstruction Outcome Study. Plast. Reconstr. Surg. 2000, 106, 1014–1025, discussion 1026–1027. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.P.; Qi, J.; Brown, D.L.; Kim, H.M.; Hamill, J.B.; Erdmann-Sager, J.; Pusic, A.L.; Wilkins, E.G. Outcomes of immediate versus delayed breast reconstruction: Results of a multicenter prospective study. Breast 2018, 37, 72–79. [Google Scholar] [CrossRef]
- Voineskos, S.H.; Klassen, A.F.; Cano, S.J.; Pusic, A.L.; Gibbons, C.J. Giving meaning to differences in BREAST-Q scores: Minimal important difference for breast reconstruction patients. Plast. Reconstr. Surg. 2020, 145, 11e–20e. [Google Scholar] [CrossRef]
- Kulkarni, A.R.; Pusic, A.L.; Hamill, J.B.; Kim, H.M.; Qi, J.; Wilkins, E.G.; Roth, R.S. Factors associated with acute postoperative pain following breast reconstruction. JPRAS Open 2017, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, E.G.; Hamill, J.B.; Kim, H.M.; Kim, J.Y.; Greco, R.J.; Qi, J.; Pusic, A.L. Complications in postmastectomy breast reconstruction: One-year outcomes of the Mastectomy Reconstruction Outcomes Consortium (MROC) Study. Ann. Surg. 2018, 267, 164–170. [Google Scholar] [CrossRef]
- Billig, J.; Jagsi, R.; Qi, J.; Hamill, J.B.; Kim, H.M.; Pusic, A.L.; Buchel, E.; Wilkins, E.G.; Momoh, A.O. Should immediate autologous breast reconstruction be considered in women who require postmastectomy radiation therapy? A prospective analysis of outcomes. Plast. Reconstr. Surg. 2017, 139, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.P.; Qi, J.; Kim, H.M.; Hamill, J.B.; Jagsi, R.; Pusic, A.L.; Wilkins, E.G.; Kozlow, J.H. Patient-reported outcomes after irradiation of tissue expander versus permanent implant in breast reconstruction: A multicenter prospective study. Plast. Reconstr. Surg. 2020, 145, 917e–926e. [Google Scholar] [CrossRef]
- Sorkin, M.; Qi, J.; Kim, H.M.; Hamill, J.B.; Kozlow, J.H.; Pusic, A.L.; Wilkins, E.G. Acellular dermal matrix in immediate expander/implant breast reconstruction: A multicenter assessment of risks and benefits. Plast. Reconstr. Surg. 2017, 140, 1091–1100. [Google Scholar] [CrossRef]
- Ganesh Kumar, N.; Berlin, N.L.; Kim, H.M.; Hamill, J.B.; Kozlow, J.H.; Wilkins, E.G. Development of an evidence-based approach to the use of acellular dermal matrix in immediate expander-implant-based breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 30–40. [Google Scholar] [CrossRef]
- Panayi, A.C.; Agha, R.A.; Sieber, B.A.; Orgill, D.P. Impact of obesity on outcomes in breast reconstruction: A systematic review and meta-analysis. J. Reconstr. Microsurg. 2018, 34, 363–375. [Google Scholar] [CrossRef]
- Tan, M.Y.L.; Onggo, J.; Serag, S.; Phan, K.; Dusseldorp, J.R. Deep inferior epigastric perforator (DIEP) flap safety profile in slim versus non-slim BMI patients: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2180–2189. [Google Scholar] [CrossRef] [PubMed]
- ElAbd, R.; Prabhu, N.; Alibrahim, A.; Burke, E.; Williams, J.; Samargandi, O. Autologous versus alloplastic reconstruction for patients with obesity: A systematic review and meta-analysis. Aesthetic Plast. Surg. 2022, 46, 597–609. [Google Scholar] [CrossRef]
- Liu, Q.; Aggarwal, A.; Wu, M.; Darwish, O.A.; Baldino, K.; Haug, V.; Agha, R.A.; Orgill, D.P.; Panayi, A.C. Impact of diabetes on outcomes in breast reconstruction: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 1793–1804. [Google Scholar] [CrossRef]
- Mortada, H.; Alwadai, A.; Bamakhrama, B.; Alsinan, T.; Hanawi, M.D.; Alfaryan, S.M.; Obeid, F.M.; Arab, K. The impact of diabetes mellitus on breast reconstruction outcomes and complications: A systematic literature review and meta-analysis. Aesthetic Plast. Surg. 2023, 23, 23. [Google Scholar] [CrossRef] [PubMed]
- Theocharidis, V.; Katsaros, I.; Sgouromallis, E.; Serifis, N.; Boikou, V.; Tasigiorgos, S.; Kokosis, G.; Economopoulos, K.P. Current evidence on the role of smoking in plastic surgery elective procedures: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 624–636. [Google Scholar] [CrossRef]
- Mrad, M.A.; Al Qurashi, A.A.; Shah Mardan, Q.N.M.; Alqarni, M.D.; Alhenaki, G.A.; Alghamdi, M.S.; Fathi, A.B.; Alobaidi, H.A.; Alnamlah, A.A.; Aljehani, S.K.; et al. Predictors of complications after breast reconstruction surgery: A systematic review and meta-analysis. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4693. [Google Scholar] [CrossRef]
- Chung, J.H.; Sohn, S.M.; Jung, S.P.; Park, S.H.; Yoon, E.S. Effects of pre-existing abdominal scar on postoperative complications after autologous breast reconstruction using abdominal flaps: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Bond, E.S.; Soteropulos, C.E.; Yang, Q.; Poore, S.O. The impact of prior abdominal surgery on complications of abdominally based autologous breast reconstruction: A systematic review and meta-analysis. J. Reconstr. Microsurg. 2021, 37, 566–579. [Google Scholar] [CrossRef]
- Chicco, M.; Ahmadi, A.R.; Cheng, H.T. Systematic review and meta-analysis of complications following mastectomy and prosthetic reconstruction in patients with and without prior breast augmentation. Aesthetic Surg. J. 2021, 41, NP763–NP770. [Google Scholar] [CrossRef]
- Varghese, J.; Gohari, S.S.; Rizki, H.; Faheem, M.; Langridge, B.; Kummel, S.; Johnson, L.; Schmid, P. A systematic review and meta-analysis on the effect of neoadjuvant chemotherapy on complications following immediate breast reconstruction. Breast 2021, 55, 55–62. [Google Scholar] [CrossRef]
- Spera, L.J.; Cook, J.A.; Dolejs, S.; Fisher, C.; Lester, M.E.; Hassanein, A.H. Perioperative use of antiestrogen therapies in breast reconstruction: A systematic review and treatment recommendations. Ann. Plast. Surg. 2020, 85, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.J.; Zhang, G.Y.; Chen, C.L.; Li, F.W.; Wang, H.B. The effect of previous irradiation for patients with prosthetic breast reconstruction: A meta-analysis. Aesthetic Surg. J. 2021, 41, NP748–NP757. [Google Scholar] [CrossRef]
- Zugasti, A.; Hontanilla, B. The impact of adjuvant radiotherapy on immediate implant-based breast reconstruction surgical and satisfaction outcomes: A systematic review and meta-analysis. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3910. [Google Scholar] [CrossRef]
- Magill, L.J.; Robertson, F.P.; Jell, G.; Mosahebi, A.; Keshtgar, M. Determining the outcomes of post-mastectomy radiation therapy delivered to the definitive implant in patients undergoing one- and two-stage implant-based breast reconstruction: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Ali, B.; Zhang, K.; Vingan, P.; Boe, L.; Ly, C.L.; Allen, R.J., Jr.; Stern, C.S.; Matros, E.; Cordeiro, P.G.; et al. Age impacts clinical and patient reported outcomes following post mastectomy breast reconstruction. Plast. Reconstr. Surg. 2024, 21, 21. [Google Scholar] [CrossRef]
- Honig, S.E.; Habarth-Morales, T.E.; Davis, H.D.; Niu, E.F.; Amro, C.; Broach, R.B.; Serletti, J.M.; Azoury, S.C. Increased patient age as a risk factor following free flap reconstruction after breast cancer: A single institutional review of 2,598 cases. J. Reconstr. Microsurg. 2024, 12, 12. [Google Scholar] [CrossRef]
- Santosa, K.B.; Qi, J.; Kim, H.M.; Hamill, J.B.; Pusic, A.L.; Wilkins, E.G. Effect of patient age on outcomes in breast reconstruction: Results from a multicenter prospective study. J. Am. Coll. Surg. 2016, 223, 745–754. [Google Scholar] [CrossRef]
- Chang, E.I.; Vaca, L.; DaLio, A.L.; Festekjian, J.H.; Crisera, C.A. Assessment of advanced age as a risk factor in microvascular breast reconstruction. Ann. Plast. Surg. 2011, 67, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Cuccolo, N.G.; Sparenberg, S.; Ibrahim, A.M.S.; Crystal, D.T.; Blankensteijn, L.L.; Lin, S.J. Does age or frailty have more predictive effect on outcomes following pedicled flap reconstruction? An analysis of 44,986 cases. J. Plast. Surg. Hand Surg. 2020, 54, 67–76. [Google Scholar] [CrossRef]
- Butz, D.R.; Lapin, B.; Yao, K.; Wang, E.; Song, D.H.; Johnson, D.; Sisco, M. Advanced age is a predictor of 30-day complications after autologous but not implant-based postmastectomy breast reconstruction. Plast. Reconstr. Surg. 2015, 135, 253e–261e. [Google Scholar] [CrossRef]
- Jeevan, R.; Cromwell, D.A.; Browne, J.P.; Caddy, C.M.; Pereira, J.; Sheppard, C.; Greenaway, K.; van der Meulen, J.H. Findings of a national comparative audit of mastectomy and breast reconstruction surgery in England. J. Plast. Reconstr. Aesthetic Surg. 2014, 67, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Jeevan, R.; Cromwell, D.; Browne, J.; van der Meulen, J.; Pereira, J.; Caddy, C.; Sheppard, C.; Greenaway, K.; Napper, R.; Dean, S. National Mastectomy and Breast Reconstruction Audit 2011. In A National Audit of Provision and Outcomes of Mastectomy and Breast Reconstruction Surgery for Women in England; Fourth Annual Report 2011; The NHS Information Centre: Leeds, UK, 2011; Available online: https://files.digital.nhs.uk/publicationimport/pub02xxx/pub02731/clin-audi-supp-prog-mast-brea-reco-2011-rep1.pdf (accessed on 4 July 2024).
- Knoedler, S.; Kauke-Navarro, M.; Knoedler, L.; Friedrich, S.; Ayyala, H.S.; Haug, V.; Didzun, O.; Hundeshagen, G.; Bigdeli, A.; Kneser, U.; et al. The significance of timing in breast reconstruction after mastectomy: An ACS-NSQIP analysis. J. Plast. Reconstr. Aesthetic Surg. 2024, 89, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Kroll, S.S.; Coffey, J.A., Jr.; Winn, R.J.; Schusterman, M.A. A comparison of factors affecting aesthetic outcomes of TRAM flap breast reconstructions. Plast. Reconstr. Surg. 1995, 96, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Fosnot, J.; Fischer, J.P.; Smartt, J.M., Jr.; Low, D.W.; Kovach, S.J., III; Wu, L.C.; Serletti, J.M. Does previous chest wall irradiation increase vascular complications in free autologous breast reconstruction? Plast. Reconstr. Surg. 2011, 127, 496–504. [Google Scholar] [CrossRef]
- Joosen, M.E.M.; Schop, S.J.; Reinhoudt, L.L.; van Kuijk, S.M.J.; Beugels, J.; de Bruine, A.P.; Goudkade, D.; Heuts, E.M.; van der Hulst, R.; de Grzymala, A.A.P. The difference in local, regional and distant breast cancer recurrence between the immediate and delayed DIEP flap procedure; a retrospective cohort study. Breast Cancer Res. Treat. 2021, 188, 389–398. [Google Scholar] [CrossRef]
- Shammas, R.L.; Gordee, A.; Lee, H.J.; Sergesketter, A.R.; Scales, C.D.; Hollenbeck, S.T.; Phillips, B.T. Complications, costs, and healthcare resource utilization after staged, delayed, and immediate free-flap breast reconstruction: A longitudinal, claims-based analysis. Ann. Surg. Oncol. 2023, 30, 2534–2549. [Google Scholar] [CrossRef]
- Huang, H.; Chadab, T.M.; Wang, M.L.; Norman, S.; Cohen, L.E.; Otterburn, D.M. A comparison between immediate and babysitter deep inferior epigastric perforator flap breast reconstruction in postoperative outcomes. Ann. Plast. Surg. 2022, 88, S179–S183. [Google Scholar] [CrossRef]
- Marquez, J.L.; Sudduth, J.D.; Kuo, K.; Patel, A.A.; Eddington, D.; Agarwal, J.P.; Kwok, A.C. A comparison of postoperative outcomes between immediate, delayed immediate, and delayed autologous free flap breast reconstruction: Analysis of 2010–2020 NSQIP Data. J. Reconstr. Microsurg. 2023, 39, 664–670. [Google Scholar] [CrossRef]
- Kalmar, C.L.; Montorfano, L.; Thayer, W.P.; Kassis, S.; Higdon, K.K.; Perdikis, G. Timing of autologous tissue breast reconstruction does not affect free flap failure. Ann. Plast. Surg. 2024, 92, 663–666. [Google Scholar] [CrossRef]
- Ulrikh, D.G.; Krivorotko, P.V.; Bryantseva, Z.V.; Pesotskiy, R.S.; Bondarchuk, Y.I.; Amirov, N.S.; Enaldieva, D.A.; Tabagua, T.T.; Akulova, I.A.; Levchenko, V.E.; et al. Reconstructive plastic surgery in combined treatment of breast cancer: Predictive risk factors of complications and reconstruction failure. P.A. Herzen J. Oncol. 2024, 13, 13–19. (In Russian) [Google Scholar] [CrossRef]
- Hassan, A.M.; Ray, N.; Govande, J.G.; Paidisetty, P.; Largo, R.D.; Chu, C.K.; Mericli, A.F.; Schaverien, M.V.; Clemens, M.W.; Hanasono, M.M.; et al. Long-term surgical and patient-reported outcomes comparing skin-preserving, staged versus delayed microvascular breast reconstruction. Ann. Surg. Oncol. 2023, 30, 5711–5722. [Google Scholar] [CrossRef]
- Gabriel, A.; Sigalove, S.; Storm-Dickerson, T.L.; Sigalove, N.M.; Pope, N.; Rice, J.; Maxwell, G.P. Dual-plane versus prepectoral breast reconstruction in high-body mass index patients. Plast. Reconstr. Surg. 2020, 145, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Warren Peled, A.; Foster, R.D.; Garwood, E.R.; Moore, D.H.; Ewing, C.A.; Alvarado, M.; Hwang, E.S.; Esserman, L.J. The effects of acellular dermal matrix in expander-implant breast reconstruction after total skin-sparing mastectomy: Results of a prospective practice improvement study. Plast. Reconstr. Surg. 2012, 129, 901e–908e. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Warren Peled, A.; Garwood, E.; Fiscalini, A.S.; Sbitany, H.; Foster, R.D.; Alvarado, M.; Ewing, C.; Hwang, E.S.; Esserman, L.J. Total skin-sparing mastectomy and immediate breast reconstruction: An evolution of technique and assessment of outcomes. Ann. Surg. Oncol. 2014, 21, 3223–3230. [Google Scholar] [CrossRef]
- Sbitany, H.; Piper, M.; Lentz, R. Prepectoral breast reconstruction: A safe alternative to submuscular prosthetic reconstruction following nipple-sparing mastectomy. Plast. Reconstr. Surg. 2017, 140, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, L.N.; Waters, L.M.; Reese, S.W.; Kutner, S.E.; Jacobs, D.I. Comparative study of prepectoral and subpectoral expander-based breast reconstruction and Clavien IIIb score outcomes. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1433. [Google Scholar] [CrossRef]
- Koesters, E.C.; Chang, D.W. Radiation and free flaps: What is the optimal timing? Gland Surg. 2023, 12, 1122–1130. [Google Scholar] [CrossRef]
- Gerber, B.; Krause, A.; Reimer, T.; Muller, H.; Kuchenmeister, I.; Makovitzky, J.; Kundt, G.; Friese, K. Skin-sparing mastectomy with conservation of the nipple-areola complex and autologous reconstruction is an oncologically safe procedure. Ann. Surg. 2003, 238, 120–127. [Google Scholar] [CrossRef]
- Gerber, B.; Krause, A.; Dieterich, M.; Kundt, G.; Reimer, T. The oncological safety of skin sparing mastectomy with conservation of the nipple-areola complex and autologous reconstruction: An extended follow-up study. Ann. Surg. 2009, 249, 461–468. [Google Scholar] [CrossRef]
- Jeon, Y.S.; Kang, S.H.; Bae, Y.K.; Lee, S.J. The oncologic safety of skin sparing mastectomy with or without conservation of the nipple-areolar complex: 5 years follow up results. J. Breast Cancer 2010, 13, 65–73. (In Korean) [Google Scholar] [CrossRef]
- Kim, H.J.; Park, E.H.; Lim, W.S.; Seo, J.Y.; Koh, B.S.; Lee, T.J.; Eom, J.S.; Lee, S.W.; Son, B.H.; Lee, J.W.; et al. Nipple areola skin-sparing mastectomy with immediate transverse rectus abdominis musculocutaneous flap reconstruction is an oncologically safe procedure: A single center study. Ann. Surg. 2010, 251, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, J.; Chagpar, A.B. Is nipple sparing mastectomy associated with increased complications, readmission and length of stay compared to skin sparing mastectomy? Am. J. Surg. 2020, 219, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.N.; Faulkner, H.R.; Smith, B.L.; Korotkin, J.E.; Lanahan, C.R.; Brown, C.; Gadd, M.A.; Specht, M.C.; Hughes, K.S.; Oseni, T.S.; et al. Nipple-sparing mastectomy versus skin-sparing mastectomy: Does saving the nipple impact short- and long-term patient satisfaction? Ann. Surg. Oncol. 2022, 29, 1033–1040. [Google Scholar] [CrossRef]
- Racz, J.M.; Harless, C.A.; Hoskin, T.L.; Day, C.N.; Nguyen, M.T.; Harris, A.M.; Boughey, J.C.; Hieken, T.J.; Degnim, A.C. Sexual well-being after nipple-sparing mastectomy: Does preservation of the nipple matter? Ann. Surg. Oncol. 2022, 6, 6. [Google Scholar] [CrossRef]
- Ogiya, A.; Nagura, N.; Shimo, A.; Nogi, H.; Narui, K.; Seki, H.; Mori, H.; Sasada, S.; Ishitobi, M.; Kondo, N.; et al. Long-term outcomes of breast cancer patients with local recurrence after mastectomy undergoing immediate breast reconstruction: A retrospective multi-institutional study of 4153 cases. Ann. Surg. Oncol. 2023, 30, 6532–6540. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, J.M.; Park, H.S.; Kim, H.J.; Shin, D.M.; Kim, J.Y.; Park, S.; Kim, S.I.; Park, B.W. Oncologic outcomes in nipple-sparing mastectomy with immediate reconstruction and total mastectomy with immediate reconstruction in women with breast cancer: A machine-learning analysis. Ann. Surg. Oncol. 2023, 30, 7281–7290. [Google Scholar] [CrossRef]
- Sasada, S.; Nagura, N.; Shimo, A.; Ogiya, A.; Saiga, M.; Seki, H.; Mori, H.; Kondo, N.; Ishitobi, M.; Narui, K.; et al. Impact of radiation therapy for breast cancer with involved surgical margin after immediate breast reconstruction: A multi-institutional observational study. Eur. J. Surg. Oncol. 2024, 50, 108360. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.M.; Nam, S.J.; Kim, S.W.; Lee, S.K.; Bae, S.Y.; Yi, H.W.; Park, S.; Paik, H.J.; Lee, J.E. Feasibility of nipple-sparing mastectomy with immediate breast reconstruction in breast cancer patients with tumor-nipple distance less than 2.0 cm. World J. Surg. 2016, 40, 2028–2035. [Google Scholar] [CrossRef]
- Alsharif, E.; Ryu, J.M.; Choi, H.J.; Nam, S.J.; Kim, S.W.; Yu, J.; Chae, B.J.; Lee, S.K.; Lee, J.E. Oncologic outcomes of nipple-sparing mastectomy with immediate breast reconstruction in patients with tumor-nipple distance less than 2.0 cm. J. Breast Cancer 2019, 22, 613–623. [Google Scholar] [CrossRef]
- Balci, F.L.; Kara, H.; Dulgeroglu, O.; Uras, C. Oncologic safety of nipple-sparing mastectomy in patients with short tumor-nipple distance. Breast J. 2019, 25, 612–618. [Google Scholar] [CrossRef]
- Fregatti, P.; Gipponi, M.; Zoppoli, G.; Lambertini, M.; Blondeaux, E.; Belgioia, L.; Derosa, R.; Murelli, F.; Depaoli, F.; Ceppi, M.; et al. Tumor-to-nipple distance should not preclude nipple-sparing mastectomy in breast cancer patients. Personal experience and literature review. Anticancer Res. 2020, 40, 3543–3550. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Bae, Y.; Lee, S. Nipple-sparing mastectomy for breast cancer close to the nipple: A single institution’s 11-year experience. Breast Cancer 2020, 27, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Beller, F.K.; Schnepper, E. [Conservative primary operation of carcinoma of the breast: Subcutaneous mastectomy, lymphadenectomy and radiotherapy (author’s transl)] Konservative primäroperation des mammakarzinoms: Subkutane mastektomie, lymphadenektomie und bestrahlung. Dtsch. Med. Wochenschr. 1981, 106, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Psaila, A.; Pozzi, M.; Barone Adesi, L.; Varanese, A.; Costantini, M.; Gullo, P.; Panimolle, M.; Pugliese, P.; Botti, C.; Di Filippo, F.; et al. Nipple sparing mastectomy with immediate breast reconstruction: A short term analysis of our experience. J. Exp. Clin. Cancer Res. 2006, 25, 309–312. [Google Scholar]
- Benediktsson, K.P.; Perbeck, L. Survival in breast cancer after nipple-sparing subcutaneous mastectomy and immediate reconstruction with implants: A prospective trial with 13 years median follow-up in 216 patients. Eur. J. Surg. Oncol. 2008, 34, 143–148. [Google Scholar] [CrossRef]
- Boneti, C.; Yuen, J.; Santiago, C.; Diaz, Z.; Robertson, Y.; Korourian, S.; Westbrook, K.C.; Henry-Tillman, R.S.; Klimberg, V.S. Oncologic safety of nipple skin-sparing or total skin-sparing mastectomies with immediate reconstruction. J. Am. Coll. Surg. 2011, 212, 686–693, discussion 693–695. [Google Scholar] [CrossRef]
- Fortunato, L.; Loreti, A.; Andrich, R.; Costarelli, L.; Amini, M.; Farina, M.; Santini, E.; Vitelli, C.E. When mastectomy is needed: Is the nipple-sparing procedure a new standard with very few contraindications? J. Surg. Oncol. 2013, 108, 207–212. [Google Scholar] [CrossRef]
- Sakurai, T.; Zhang, N.; Suzuma, T.; Umemura, T.; Yoshimura, G.; Sakurai, T.; Yang, Q. Long-term follow-up of nipple-sparing mastectomy without radiotherapy: A single center study at a Japanese institution. Med. Oncol. 2013, 30, 481. [Google Scholar] [CrossRef]
- Stanec, Z.; Zic, R.; Budi, S.; Stanec, S.; Milanovic, R.; Vlajcic, Z.; Roje, Z.; Rudman, F.; Martic, K.; Held, R.; et al. Skin and nipple-areola complex sparing mastectomy in breast cancer patients: 15-year experience. Ann. Plast. Surg. 2014, 73, 485–491. [Google Scholar] [CrossRef]
- Rossi, C.; Mingozzi, M.; Curcio, A.; Buggi, F.; Folli, S. Nipple areola complex sparing mastectomy. Gland Surg. 2015, 4, 528–540. [Google Scholar] [CrossRef]
- Santoro, S.; Loreti, A.; Cavaliere, F.; Costarelli, L.; La Pinta, M.; Manna, E.; Mauri, M.; Scavina, P.; Santini, E.; De Paula, U.; et al. Neoadjuvant chemotherapy is not a contraindication for nipple sparing mastectomy. Breast 2015, 24, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Seki, T.; Jinno, H.; Okabayashi, K.; Murata, T.; Matsumoto, A.; Takahashi, M.; Hayashida, T.; Kitagawa, Y. Comparison of oncological safety between nipple sparing mastectomy and total mastectomy using propensity score matching. Ann. R. Coll. Surg. Engl. 2015, 97, 291–297. [Google Scholar] [CrossRef]
- Fujimoto, H.; Ishikawa, T.; Satake, T.; Ko, S.; Shimizu, D.; Narui, K.; Yamada, A.; Sasaki, T.; Nagashima, T.; Endo, I.; et al. Donor site selection and clinical outcomes of nipple-areola skin-sparing mastectomy with immediate autologous free flap reconstruction: A single-institution experience. Eur. J. Surg. Oncol. 2016, 42, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Moo, T.A.; Pinchinat, T.; Mays, S.; Landers, A.; Christos, P.; Alabdulkareem, H.; Tousimis, E.; Swistel, A.; Simmons, R. Oncologic outcomes after nipple-sparing mastectomy. Ann. Surg. Oncol. 2016, 23, 3221–3225. [Google Scholar] [CrossRef] [PubMed]
- Shimo, A.; Tsugawa, K.; Tsuchiya, S.; Yoshie, R.; Tsuchiya, K.; Uejima, T.; Kojima, Y.; Shimo, A.; Hayami, R.; Nishikawa, T.; et al. Oncologic outcomes and technical considerations of nipple-sparing mastectomies in breast cancer: Experience of 425 cases from a single institution. Breast Cancer 2016, 23, 851–860. [Google Scholar] [CrossRef]
- Tang, R.; Coopey, S.B.; Merrill, A.L.; Rai, U.; Specht, M.C.; Gadd, M.A.; Colwell, A.S.; Austen, W.G., Jr.; Brachtel, E.F.; Smith, B.L. Positive nipple margins in nipple-sparing mastectomies: Rates, management, and oncologic safety. J. Am. Coll. Surg. 2016, 222, 1149–1155. [Google Scholar] [CrossRef]
- Smith, B.L.; Tang, R.; Rai, U.; Plichta, J.K.; Colwell, A.S.; Gadd, M.A.; Specht, M.C.; Austen, W.G., Jr.; Coopey, S.B. Oncologic safety of nipple-sparing mastectomy in women with breast cancer. J. Am. Coll. Surg. 2017, 225, 361–365. [Google Scholar] [CrossRef]
- Coopey, S.B.; Tang, R.; Lei, L.; Freer, P.E.; Kansal, K.; Colwell, A.S.; Gadd, M.A.; Specht, M.C.; Austen, W.G., Jr.; Smith, B.L. Increasing eligibility for nipple-sparing mastectomy. Ann. Surg. Oncol. 2013, 20, 3218–3222. [Google Scholar] [CrossRef]
- Agresti, R.; Sandri, M.; Gennaro, M.; Bianchi, G.; Maugeri, I.; Rampa, M.; Capri, G.; Carcangiu, M.L.; Trecate, G.; Riggio, E.; et al. Evaluation of local oncologic safety in nipple-areola complex-sparing mastectomy after primary chemotherapy: A propensity score-matched study. Clin. Breast Cancer 2017, 17, 219–231. [Google Scholar] [CrossRef]
- Cont, N.T.; Maggiorotto, F.; Martincich, L.; Rivolin, A.; Kubatzki, F.; Sgandurra, P.; Marocco, F.; Magistris, A.; Gatti, M.; Balmativola, D.; et al. Primary tumor location predicts the site of local relapse after nipple-areola complex (NAC) sparing mastectomy. Breast Cancer Res. Treat. 2017, 165, 85–95. [Google Scholar] [CrossRef]
- Huang, J.; Mo, Q.; Zhuang, Y.; Qin, Q.; Huang, Z.; Mo, J.; Tan, Q.; Lian, B.; Cao, Y.; Qin, S.; et al. Oncological safety of nipple-sparing mastectomy in young patients with breast cancer compared with conventional mastectomy. Oncol. Lett. 2018, 15, 4813–4820. [Google Scholar] [CrossRef] [PubMed]
- de Dornellas Barros, A.C.S.; Carvalho, H.A.; Andrade, F.E.M.; Nimir, C.; Sampaio, M.M.C.; Makdissi, F.B.; Mano, M.S. Mammary adenectomy followed by immediate reconstruction for treatment of patients with early-infiltrating breast carcinoma: A cohort study. Sao Paulo Med. J. 2019, 137, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.Y.; Tan, V.K.; Pek, W.S.; Chang, J.H.; Sim, Y.; Ong, K.W.; Yong, W.S.; Madhukumar, P.; Wong, C.Y.; Ong, Y.S.; et al. Surgical and oncological safety of nipple-sparing mastectomy in an Asian population. Breast Cancer 2019, 26, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.G.; Muhsen, S.; Moo, T.A.; Zabor, E.C.; Stempel, M.; Pusic, A.; Gemignani, M.L.; Morrow, M.; Sacchini, V.S. Increase in utilization of nipple-sparing mastectomy for breast cancer: Indications, complications, and oncologic outcomes. Ann. Surg. Oncol. 2020, 27, 344–351. [Google Scholar] [CrossRef]
- Vladimir, S.; Milan, R.; Zoran, R.; Ferenc, V.; Dejan, L.; Mladen, D. Early postoperative complications and local relapses after nipple sparing mastectomy and immediate breast reconstruction using silicone implants. Arch. Oncol. 2019, 25, 9–12. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y. Skin- and nipple-areola-sparing mastectomy with immediate breast reconstruction using transverse rectus abdominis myocutaneous flap and silicone implants in breast carcinoma patients. Oncol. Res. Treat. 2020, 43, 354–361. [Google Scholar] [CrossRef]
- Metere, A.; Fabiani, E.; Lonardo, M.T.; Giannotti, D.; Pace, D.; Giacomelli, L. Nipple-sparing mastectomy long-term outcomes: Early and late complications. Medicina 2020, 56, 166. [Google Scholar] [CrossRef]
- Scardina, L.; DI Leone, A.; Sanchez, A.M.; D’Archi, S.; Biondi, E.; Franco, A.; Mason, E.J.; Magno, S.; Terribile, D.; Barone-Adesi, L.; et al. Nipple sparing mastectomy with prepectoral immediate prosthetic reconstruction without acellular dermal matrices: A single center experience. Minerva Surg. 2021, 76, 498–505. [Google Scholar] [CrossRef]
- Webster, A.J.; Shanno, J.N.; Santa Cruz, H.S.; Kelly, B.N.; Garstka, M.; Henriquez, A.; Specht, M.C.; Gadd, M.A.; Verdial, F.C.; Nguyen, A.; et al. Oncologic safety of nipple-sparing mastectomy for breast cancer in BRCA gene mutation carriers: Outcomes at 70 months median follow-up. Ann. Surg. Oncol. 2023, 30, 3215–3222. [Google Scholar] [CrossRef]
- Colwell, A.S.; Gadd, M.; Smith, B.L.; Austen, W.G., Jr. An inferolateral approach to nipple-sparing mastectomy: Optimizing mastectomy and reconstruction. Ann. Plast. Surg. 2010, 65, 140–143. [Google Scholar] [CrossRef]
- Zarba Meli, E.; De Santis, A.; Cortese, G.; Manna, E.; Mastropietro, T.; La Pinta, M.; Loreti, A.; Arelli, F.; Scavina, P.; Minelli, M.; et al. Nipple-sparing mastectomy after neoadjuvant chemotherapy: Definitive results with a long-term follow-up evaluation. Ann. Surg. Oncol. 2023, 30, 2163–2172. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Kim, H.J.; Lee, J.W.; Chung, I.Y.; Kim, J.S.; Lee, S.B.; Son, B.H.; Eom, J.S.; Kim, S.B.; Gong, G.Y.; et al. Breast cancer recurrence in the nipple-areola complex after nipple-sparing mastectomy with immediate breast reconstruction for invasive breast cancer. JAMA Surg. 2019, 154, 1030–1037. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Han, H.H.; Kim, H.J.; Lee, J.; Chung, I.Y.; Kim, J.; Lee, S.; Han, J.; Eom, J.S.; Kim, S.B.; et al. Locoregional recurrence following nipple-sparing mastectomy with immediate breast reconstruction: Patterns and prognostic significance. Eur. J. Surg. Oncol. 2021, 47, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Han, H.H.; Kim, H.J.; Lee, J.; Chung, I.Y.; Kim, J.; Lee, S.; Eom, J.S.; Kim, S.B.; Gong, G.; et al. Data on distant metastasis and survival after locoregional recurrence following nipple-sparing mastectomy and immediate breast reconstruction. Data Brief 2021, 35, 106837. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Han, H.H.; Han, J.; Kim, H.J.; Lee, J.; Chung, I.Y.; Kim, J.; Lee, S.; Eom, J.S.; Kim, S.B.; et al. Impact of local breast cancer recurrence on reconstructed breast in nipple-sparing mastectomy with immediate reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2535–2541. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Kim, H.J.; Lee, J.W.; Chung, I.Y.; Kim, J.S.; Lee, S.B.; Son, B.H.; Eom, J.S.; Kim, S.B.; Gong, G.Y.; et al. Oncologic outcomes of nipple-sparing mastectomy and immediate reconstruction after neoadjuvant chemotherapy for breast cancer. Ann. Surg. 2021, 274, e1196–e1201. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Han, H.H.; Kim, H.J.; Chung, I.Y.; Kim, J.; Lee, S.B.; Son, B.H.; Eom, J.S.; Kim, S.B.; Ahn, J.H.; et al. A propensity score-matched analysis of long-term oncologic outcomes after nipple-sparing versus conventional mastectomy for locally advanced breast cancer. Ann. Surg. 2022, 276, 386–390. [Google Scholar] [CrossRef]
- Petit, J.Y.; Veronesi, U.; Orecchia, R.; Rey, P.; Martella, S.; Didier, F.; Viale, G.; Veronesi, P.; Luini, A.; Galimberti, V.; et al. Nipple sparing mastectomy with nipple areola intraoperative radiotherapy: One thousand and one cases of a five years experience at the European Institute of Oncology of Milan (EIO). Breast Cancer Res. Treat. 2009, 117, 333–338. [Google Scholar] [CrossRef]
- Lohsiriwat, V.; Martella, S.; Rietjens, M.; Botteri, E.; Rotmensz, N.; Mastropasqua, M.G.; Garusi, C.; De Lorenzi, F.; Manconi, A.; Sommario, M.; et al. Paget’s disease as a local recurrence after nipple-sparing mastectomy: Clinical presentation, treatment, outcome, and risk factor analysis. Ann. Surg. Oncol. 2012, 19, 1850–1855. [Google Scholar] [CrossRef]
- Lohsiriwat, V.; Rotmensz, N.; Botteri, E.; Intra, M.; Veronesi, P.; Martella, S.; Garusi, C.; De Lorenzi, F.; Manconi, A.; Lomeo, G.; et al. Do clinicopathological features of the cancer patient relate with nipple areolar complex necrosis in nipple-sparing mastectomy? Ann. Surg. Oncol. 2013, 20, 990–996. [Google Scholar] [CrossRef]
- Galimberti, V.; Morigi, C.; Bagnardi, V.; Corso, G.; Vicini, E.; Fontana, S.K.R.; Naninato, P.; Ratini, S.; Magnoni, F.; Toesca, A.; et al. Oncological outcomes of nipple-sparing mastectomy: A single-center experience of 1989 patients. Ann. Surg. Oncol. 2018, 25, 3849–3857. [Google Scholar] [CrossRef]
- Vicini, E.; De Lorenzi, F.; Invento, A.; Corso, G.; Radice, D.; Bozzo, S.; Kahler Ribeiro Fontana, S.; Caldarella, P.; Veronesi, P.; Galimberti, V. Is nipple-sparing mastectomy indicated after previous breast surgery? A series of 387 institutional cases. Plast. Reconstr. Surg. 2021, 148, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Chirappapha, P.; Petit, J.Y.; Rietjens, M.; De Lorenzi, F.; Garusi, C.; Martella, S.; Barbieri, B.; Gottardi, A.; Andrea, M.; Giuseppe, L.; et al. Nipple sparing mastectomy: Does breast morphological factor related to necrotic complications? Plast. Reconstr. Surg. Glob. Open 2014, 2, e99. [Google Scholar] [CrossRef] [PubMed]
- Warren Peled, A.; Foster, R.D.; Stover, A.C.; Itakura, K.; Ewing, C.A.; Alvarado, M.; Hwang, E.S.; Esserman, L.J. Outcomes after total skin-sparing mastectomy and immediate reconstruction in 657 breasts. Ann. Surg. Oncol. 2012, 19, 3402–3409. [Google Scholar] [CrossRef]
- Amara, D.; Warren Peled, A.; Wang, F.; Ewing, C.A.; Alvarado, M.; Esserman, L.J. Tumor involvement of the nipple in total skin-sparing mastectomy: Strategies for management. Ann. Surg. Oncol. 2015, 22, 3803–3808. [Google Scholar] [CrossRef]
- Warren Peled, A.; Wang, F.; Foster, R.D.; Alvarado, M.; Ewing, C.A.; Sbitany, H.; Esserman, L.J. Expanding the indications for total skin-sparing mastectomy: Is it safe for patients with locally advanced disease? Ann. Surg. Oncol. 2016, 23, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.; Wallace, A.; Viner, J.; Sbitany, H.; Piper, M. Safety of incision placement with nipple-sparing mastectomy and immediate prepectoral breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2023, 11, e4736. [Google Scholar] [CrossRef]
- Frey, J.D.; Salibian, A.A.; Lee, J.; Harris, K.; Axelrod, D.M.; Guth, A.A.; Shapiro, R.L.; Schnabel, F.R.; Karp, N.S.; Choi, M. Oncologic trends, outcomes, and risk factors for locoregional recurrence: An analysis of tumor-to-nipple distance and critical factors in therapeutic nipple-sparing mastectomy. Plast. Reconstr. Surg. 2019, 143, 1575–1585. [Google Scholar] [CrossRef]
- Salibian, A.A.; Bekisz, J.M.; Frey, J.D.; Thanik, V.D.; Levine, J.P.; Karp, N.S.; Choi, M. Comparing incision choices in immediate microvascular breast reconstruction after nipple-sparing mastectomy: Unique considerations to optimize outcomes. Plast. Reconstr. Surg. 2021, 148, 1173–1185. [Google Scholar] [CrossRef]
- Boyd, C.J.; Salibian, A.A.; Bekisz, J.M.; Axelrod, D.M.; Guth, A.A.; Shapiro, R.L.; Schnabel, F.R.; Karp, N.S.; Choi, M. Long-term cancer recurrence rates following nipple-sparing mastectomy: A 10-year follow-up study. Plast. Reconstr. Surg. 2022, 150, 13S–19S. [Google Scholar] [CrossRef]
- Radovanovic, Z.; Radovanovic, D.; Golubovic, A.; Ivkovic-Kapicl, T.; Bokorov, B.; Mandic, A. Early complications after nipple-sparing mastectomy and immediate breast reconstruction with silicone prosthesis: Results of 214 procedures. Scand. J. Surg. 2010, 99, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Folli, S.; Curcio, A.; Buggi, F.; Mingozzi, M.; Lelli, D.; Barbieri, C.; Asioli, S.; Nava, M.B.; Falcini, F. Improved sub-areolar breast tissue removal in nipple-sparing mastectomy using hydrodissection. Breast 2012, 21, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Pyon, J.K.; Bang, S.I.; Lee, J.E.; Nam, S.J.; Mun, G.H. Does the reconstruction method influence development of mastectomy flap complications in nipple-sparing mastectomy? J. Plast. Reconstr. Aesthetic Surg. 2013, 66, 1543–1550. [Google Scholar] [CrossRef]
- Huston, T.L.; Small, K.; Swistel, A.J.; Dent, B.L.; Talmor, M. Nipple-sparing mastectomy via an inframammary fold incision for patients with scarring from prior lumpectomy. Ann. Plast. Surg. 2015, 74, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Woo, T.Y.; Lee, D.W.; Lew, D.H.; Song, S.Y. Nipple-areolar complex ischemia and necrosis in nipple-sparing mastectomy. Eur. J. Surg. Oncol. 2018, 44, 1170–1176. [Google Scholar] [CrossRef]
- Pek, W.S.; Tan, B.K.; Ru Ng, Y.Y.; Kiak Mien Tan, V.; Rasheed, M.Z.; Kiat Tee Tan, B.; Ong, K.W.; Ong, Y.S. Immediate breast reconstruction following nipple-sparing mastectomy in an Asian population: Aesthetic outcomes and mitigating nipple-areolar complex necrosis. Arch. Plast. Surg. 2018, 45, 229–238. [Google Scholar] [CrossRef]
- Radovanovic, Z.; Ranisavljevic, M.; Radovanovic, D.; Vicko, F.; Ivkovic-Kapicl, T.; Solajic, N. Nipple-sparing mastectomy with primary implant reconstruction: Surgical and oncological outcome of 435 breast cancer patients. Breast Care 2018, 13, 373–378. [Google Scholar] [CrossRef]
- Pallara, T.; Cagli, B.; Fortunato, L.; Altomare, V.; Loreti, A.; Grasso, A.; Manna, E.; Persichetti, P. Direct-to-implant and 2-stage breast reconstruction after nipple sparing mastectomy: Results of a retrospective comparison. Ann. Plast. Surg. 2019, 83, 392–395. [Google Scholar] [CrossRef]
- Park, S.; Yoon, C.; Bae, S.J.; Cha, C.; Kim, D.; Lee, J.; Ahn, S.G.; Roh, T.S.; Kim, Y.S.; Jeong, J. Comparison of complications according to incision types in nipple-sparing mastectomy and immediate reconstruction. Breast 2020, 53, 85–91. [Google Scholar] [CrossRef]
- Seki, H.; Sakurai, T.; Maeda, Y.; Oki, N.; Aoyama, M.; Yamaguchi, R.; Shimizu, K. Utility of the periareolar incision technique for breast reconstructive surgery in patients with breast cancer. Surg. Today 2020, 50, 1008–1015. [Google Scholar] [CrossRef]
- Najmiddinov, B.; Park, J.K.; Yoon, K.H.; Myung, Y.; Koh, H.W.; Lee, O.H.; Hoon, J.J.; Shin, H.C.; Kim, E.K.; Heo, C.Y. Conventional versus modified nipple sparing mastectomy in immediate breast reconstruction: Complications, aesthetic, and patient-reported outcomes. Front. Surg. 2022, 9, 1001019. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.W.; Lee, Y.Y.; Chen, S.T.; Liao, C.Y.; Tsai, T.L.; Chen, D.R.; Lai, Y.C.; Kao, W.P.; Wu, W.P. Nipple-areolar complex (NAC) or skin flap ischemia necrosis post nipple-sparing mastectomy (NSM)-analysis of clinicopathologic factors and breast magnetic resonance imaging (MRI) features. World J. Surg. Oncol. 2023, 21, 23. [Google Scholar] [CrossRef]
- Cadili, L.; Pao, J.S.; McKevitt, E.; Dingee, C.; Bazzarelli, A.; Warburton, R. Nipple margin assessment at the time of nipple-sparing mastectomy. Can. J. Surg. 2023, 66, E298–E303. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, F.P.; Lima, T.O.; Alcantara, R.; Cardoso, A.; Ulisses, F.; Novita, G.; Zerwes, F.; Millen, E. Inframammary versus periareolar incision: A comparison of early complications in nipple-sparing mastectomy. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5367. [Google Scholar] [CrossRef] [PubMed]
- Moo, T.A.; Nelson, J.A.; Sevilimedu, V.; Charyn, J.; Le, T.V.; Allen, R.J.; Mehrara, B.J.; Barrio, A.V.; Capko, D.M.; Pilewskie, M.; et al. Strategies to avoid mastectomy skin-flap necrosis during nipple-sparing mastectomy. Br. J. Surg. 2023, 110, 831–838. [Google Scholar] [CrossRef]
- Serio, F.; Manna, E.; La Pinta, M.; Arienzo, F.; Costarelli, L.; Zarba Meli, E.; Loreti, A.; Mastropietro, T.; Broglia, L.; Ascarelli, A.; et al. Intraoperative examination of retro-areolar margin is not routinely necessary during nipple-sparing mastectomy for cancer. Ann. Surg. Oncol. 2023, 30, 6488–6496. [Google Scholar] [CrossRef]
- Black, G.G.; Chen, Y.; Qin, N.; Wang, M.L.; Huang, H.; Otterburn, D.M. An evolving landscape: Return of breast sensation after mastectomy varies by anatomic region and reconstructive method. Ann. Plast. Surg. 2024, 92, S91–S95. [Google Scholar] [CrossRef]
- Golijanin, D.; Radovanovic, Z.; Radovanovic, D.; Dermanovic, A.; Starcevic, S.; Dermanovic, M. Molecular subtype and risk of local recurrence after nipple-sparing mastectomy for breast cancer. Oncol. Lett. 2024, 28, 389. [Google Scholar] [CrossRef]
- Lin, A.M.; Lorenzi, R.; Van Der Hulst, J.E.; Liao, E.C.; Austen, W.G., Jr.; Webster, A.; Smith, B.L.; Colwell, A.S. A decade of nipple-sparing mastectomy: Lessons learned in 3035 immediate implant-based breast reconstructions. Plast. Reconstr. Surg. 2024, 153, 277–287. [Google Scholar] [CrossRef]
- Liston, J.M.; Hollenbeck, S.T. Discussion: A decade of nipple-sparing mastectomy: Lessons learned in 3035 immediate implant-based breast reconstructions. Plast. Reconstr. Surg. 2024, 153, 288–289. [Google Scholar] [CrossRef]
- Shanno, J.N.; Daly, A.E.; Anderman, K.J.; Santa Cruz, H.S.; Webster, A.J.; Pride, R.M.; Specht, M.C.; Gadd, M.A.; Oseni, T.O.; Verdial, F.C.; et al. Positive nipple margins in nipple-sparing mastectomy: Management of nipples containing cancer or atypia. Ann. Surg. Oncol. 2024, 31, 5148–5156. [Google Scholar] [CrossRef] [PubMed]
- Nashimoto, M.; Asano, Y.; Matsui, H.; Machida, Y.; Hoshi, K.; Kurosumi, M.; Fukuma, E. Comparison of locoregional recurrence risk among nipple-sparing mastectomy, skin-sparing mastectomy, and simple mastectomy in patients with ductal carcinoma in situ: A single-center study. Breast Cancer 2024, 17, 17. [Google Scholar] [CrossRef]
- Sagir, M.; Guven, E.; Saylik, O.; Dulgeroglu, O.; Uras, C. A new convenient incision model of the nipple-sparing mastectomy: Lateralized parabolic multiplanar incision. Aesthetic Plast. Surg. 2024, 20, 20. [Google Scholar] [CrossRef]
- Spoor, J.; Heeling, E.; Collewijn, R.C.; van der Ploeg, I.M.C.; Hoornweg, M.J.; Russell, N.; van den Berg, J.G.; Vrancken Peeters, M.; van Duijnhoven, F.H. Intraoperative frozen section of subareolar tissue in nipple-sparing mastectomy: Towards a less is more approach. Eur. J. Surg. Oncol. 2024, 50, 108320. [Google Scholar] [CrossRef]
- Braun, S.E.; Sinik, L.M.; Meyer, A.M.; Larson, K.E.; Butterworth, J.A. Predicting complications in breast reconstruction: Development and prospective validation of a machine learning model. Ann. Plast. Surg. 2023, 91, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Ponzone, R.; Maggiorotto, F.; Carabalona, S.; Rivolin, A.; Pisacane, A.; Kubatzki, F.; Renditore, S.; Carlucci, S.; Sgandurra, P.; Marocco, F.; et al. MRI and intraoperative pathology to predict nipple-areola complex (NAC) involvement in patients undergoing NAC-sparing mastectomy. Eur. J. Cancer 2015, 51, 1882–1889. [Google Scholar] [CrossRef]
- Sbitany, H.; Wang, F.; Peled, A.W.; Alvarado, M.; Ewing, C.A.; Esserman, L.J.; Foster, R.D. Tissue expander reconstruction after total skin-sparing mastectomy: Defining the effects of coverage technique on nipple/areola preservation. Ann. Plast. Surg. 2016, 77, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A.; Jeevaratnam, J.A.; Agrawal, A.; Cutress, R.I. Mastectomy skin flap necrosis: Challenges and solutions. Breast Cancer 2017, 9, 141–152. [Google Scholar] [CrossRef]
- Huang, H.; Wang, M.L.; Ellison, A.; Otterburn, D.M. Comparing autologous to device-based breast reconstruction: A pilot study of return in breast sensation. Ann. Plast. Surg. 2022, 88, S184–S189. [Google Scholar] [CrossRef]
- Rusby, J.E.; Kirstein, L.J.; Brachtel, E.F.; Michaelson, J.S.; Koerner, F.C.; Smith, B.L. Nipple-sparing mastectomy: Lessons from ex vivo procedures. Breast J. 2008, 14, 464–470. [Google Scholar] [CrossRef]
- Suarez-Zamora, D.A.; Mustafa, R.A.; Estrada-Orozco, K.; Rodriguez-Urrego, P.A.; Torres-Franco, F.; Barreto-Hauzeur, L.; Mora-Ochoa, H.; Di Tanna, G.L.; Yepes-Nunez, J.J. Intraoperative sub-areolar frozen section analysis for detecting nipple involvement in candidates for nipple-sparing mastectomy. Cochrane Database Syst. Rev. 2021, 2021, CD014702. [Google Scholar] [CrossRef]
- Hogan, K.O.; Lai, S.M.; Wagner, J.L.; Fan, F. The utility of intraoperative retroareolar margin frozen section assessment and the management of atypical epithelial proliferative lesions at the retroareolar margin in nipple-sparing mastectomies. Ann. Diagn. Pathol. 2021, 51, 151697. [Google Scholar] [CrossRef] [PubMed]
- Heinzen, R.N.; de Barros, A.; Carvalho, F.M.; Aguiar, F.N.; Nimir, C.; Jacomo, A.L. Nipple-sparing mastectomy for early breast cancer: The importance of intraoperative evaluation of retroareolar margins and intra-nipple duct removal. Gland Surg. 2020, 9, 637–646. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, M.; Pecchio, S.; Campisi, P.; De Rosa, G.; Bounous, V.E.; Villasco, A.; Balocco, P.; Biglia, N. Nipple-sparing mastectomy: Reliability of sub-areolar sampling and frozen section in predicting occult nipple involvement in breast cancer patients. Eur. J. Surg. Oncol. 2018, 44, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Zamora, D.A.; Barrera-Herrera, L.E.; Palau-Lazaro, M.A.; Torres-Franco, F.; Orozco-Plazas, A.; Barreto-Hauzeur, L.; Rodriguez-Urrego, P.A. Accuracy and interobserver agreement of retroareolar frozen sections in nipple-sparing mastectomies. Ann. Diagn. Pathol. 2017, 29, 46–51. [Google Scholar] [CrossRef]
- Dent, B.L.; Chao, J.W.; Eden, D.J.; Stone, B.V.; Swistel, A.; Talmor, M. Nipple resection and reconstruction after attempted nipple-sparing mastectomy. Ann. Plast. Surg. 2017, 78, 28–34. [Google Scholar] [CrossRef]
- Alperovich, M.; Choi, M.; Karp, N.S.; Singh, B.; Ayo, D.; Frey, J.D.; Roses, D.F.; Schnabel, F.R.; Axelrod, D.M.; Shapiro, R.L.; et al. Nipple-sparing mastectomy and sub-areolar biopsy: To freeze or not to freeze? Evaluating the role of sub-areolar intraoperative frozen section. Breast J. 2016, 22, 18–23. [Google Scholar] [CrossRef]
- Duarte, G.M.; Tomazini, M.V.; Oliveira, A.; Moreira, L.; Tocchet, F.; Worschech, A.; Torresan, R.Z. Accuracy of frozen section, imprint cytology, and permanent histology of sub-nipple tissue for predicting occult nipple involvement in patients with breast carcinoma. Breast Cancer Res. Treat. 2015, 153, 557–563. [Google Scholar] [CrossRef]
- Kneubil, M.C.; Lohsiriwat, V.; Curigliano, G.; Brollo, J.; Botteri, E.; Rotmensz, N.; Martella, S.; Mastropasqua, M.G.; Iera, M.; Coelho, M.B.; et al. Risk of locoregional recurrence in patients with false-negative frozen section or close margins of retroareolar specimen in nipple-sparing mastectomy. Ann. Surg. Oncol. 2012, 19, 4117–4123. [Google Scholar] [CrossRef]
- Luo, D.; Ha, J.; Latham, B.; Ingram, D.; Connell, T.; Hastrich, D.; Yeow, W.C.; Willsher, P.; Luo, J. The accuracy of intraoperative subareolar frozen section in nipple-sparing mastectomies. Ochsner J. 2010, 10, 188–192. [Google Scholar]
- Chan, S.E.; Liao, C.Y.; Wang, T.Y.; Chen, S.T.; Chen, D.R.; Lin, Y.J.; Chen, C.J.; Wu, H.K.; Chen, S.L.; Kuo, S.J.; et al. The diagnostic utility of preoperative breast magnetic resonance imaging (MRI) and/or intraoperative sub-nipple biopsy in nipple-sparing mastectomy. Eur. J. Surg. Oncol. 2017, 43, 76–84. [Google Scholar] [CrossRef]
- Coopey, S.; Keleher, A.; Daniele, K.; Peled, A.W.; Gomez, J.; Julian, T.; Moreira, A.A. Careful where you cut: Strategies for successful nerve-preserving mastectomy. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5817. [Google Scholar] [CrossRef]
- Franceschini, G.; Scardina, L.; Di Leone, A.; Terribile, D.A.; Sanchez, A.M.; Magno, S.; D’Archi, S.; Franco, A.; Mason, E.J.; Carnassale, B.; et al. Immediate prosthetic breast reconstruction after nipple-sparing mastectomy: Traditional subpectoral technique versus direct-to-implant prepectoral reconstruction without acellular dermal matrix. J. Pers. Med. 2021, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Scardina, L.; Di Leone, A.; Biondi, E.; Carnassale, B.; Sanchez, A.M.; D’Archi, S.; Franco, A.; Moschella, F.; Magno, S.; Terribile, D.; et al. Prepectoral vs. submuscular immediate breast reconstruction in patients undergoing mastectomy after neoadjuvant chemotherapy: Our early experience. J. Pers. Med. 2022, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Darrach, H.; Kraenzlin, F.S.; Khavanin, N.; He, W.; Lee, E.; Sacks, J.M. Pectoral placement of tissue expanders affects inpatient opioid use. Breast J. 2021, 27, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Kraenzlin, F.; Darrach, H.; Khavanin, N.; Kokosis, G.; Aliu, O.; Broderick, K.; Rosson, G.D.; Manahan, M.A.; Sacks, J.M. Tissue expander-based breast reconstruction in the prepectoral versus subpectoral plane: An analysis of short-term outcomes. Ann. Plast. Surg. 2021, 86, 19–23. [Google Scholar] [CrossRef]
- Sinnott, C.J.; Persing, S.M.; Pronovost, M.; Hodyl, C.; McConnell, D.; Ott Young, A. Impact of postmastectomy radiation therapy in prepectoral versus subpectoral implant-based breast reconstruction. Ann. Surg. Oncol. 2018, 25, 2899–2908. [Google Scholar] [CrossRef]
- Copeland-Halperin, L.R.; Yemc, L.; Emery, E.; Collins, D.; Liu, C.; Mesbahi, A.N.; Venturi, M.L. Evaluating postoperative narcotic use in prepectoral versus dual-plane breast reconstruction following mastectomy. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2082. [Google Scholar] [CrossRef]
- Avila, A.; Bartholomew, A.J.; Sosin, M.; Deldar, R.; Griffith, K.F.; Willey, S.C.; Song, D.H.; Fan, K.L.; Tousimis, E.A. Acute postoperative complications in prepectoral versus subpectoral reconstruction following nipple-sparing mastectomy. Plast. Reconstr. Surg. 2020, 146, 715e–720e. [Google Scholar] [CrossRef]
- Banuelos, J.; Abu-Ghname, A.; Vyas, K.; Sharaf, B.; Nguyen, M.T.; Harless, C.; Manrique, O.J.; Martinez-Jorge, J.; Tran, N.V. Should obesity be considered a contraindication for prepectoral breast reconstruction? Plast. Reconstr. Surg. 2020, 145, 619–627. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.E. A comparative analysis between subpectoral versus prepectoral single stage direct-to-implant breast reconstruction. Medicina 2020, 56, 537. [Google Scholar] [CrossRef] [PubMed]
- Nealon, K.P.; Weitzman, R.E.; Sobti, N.; Gadd, M.; Specht, M.; Jimenez, R.B.; Ehrlichman, R.; Faulkner, H.R.; Austen, W.G., Jr.; Liao, E.C. Prepectoral direct-to-implant breast reconstruction: Safety outcome endpoints and delineation of risk factors. Plast. Reconstr. Surg. 2020, 145, 898e–908e. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, B.M.; Campbell, C.A. Safety profile and predictors of aesthetic outcomes after prepectoral breast reconstruction with meshed acellular dermal matrix. Ann. Plast. Surg. 2021, 86, S585–S592. [Google Scholar] [CrossRef]
- Bozzuto, L.M.; Bartholomew, A.J.; Tung, S.; Sosin, M.; Tambar, S.; Cox, S.; Perez-Alvarez, I.M.; King, C.A.; Chan, M.C.; Pittman, T.A.; et al. Decreased postoperative pain and opioid use following prepectoral versus subpectoral breast reconstruction after mastectomy: A retrospective cohort study: Pain after pre- versus subpectoral reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1763–1769. [Google Scholar] [CrossRef]
- Haddock, N.T.; Kadakia, Y.; Liu, Y.; Teotia, S.S. Prepectoral versus subpectoral tissue expander breast reconstruction: A historically controlled, propensity score-matched comparison of perioperative outcomes. Plast. Reconstr. Surg. 2021, 148, 1–9. [Google Scholar] [CrossRef]
- Plachinski, S.J.; Boehm, L.M.; Adamson, K.A.; LoGiudice, J.A.; Doren, E.L. Comparative analysis of prepectoral versus subpectoral implant-based breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3709. [Google Scholar] [CrossRef]
- Ribuffo, D.; Berna, G.; De Vita, R.; Di Benedetto, G.; Cigna, E.; Greco, M.; Valdatta, L.; Onesti, M.G.; Lo Torto, F.; Marcasciano, M.; et al. Dual-plane retro-pectoral versus pre-pectoral DTI breast reconstruction: An Italian multicenter experience. Aesthetic Plast. Surg. 2021, 45, 51–60. [Google Scholar] [CrossRef]
- Walker, N.J.; Park, J.G.; Maus, J.C.; Motamedi, V.; Rebowe, R.E.; Runyan, C.M.; Tucker, S.L. Prepectoral versus subpectoral breast reconstruction in high-body mass index patients. Ann. Plast. Surg. 2021, 87, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.; Su, P.; Piper, M.; Withers, J.; Harbell, M.W.; Bokoch, M.P.; Sbitany, H. Prepectoral breast reconstruction reduces opioid consumption and pain after mastectomy: A head-to-head comparison with submuscular reconstruction. Ann. Plast. Surg. 2022, 89, 492–499. [Google Scholar] [CrossRef]
- Houvenaeghel, G.; Bannier, M.; Bouteille, C.; Tallet, C.; Sabiani, L.; Charavil, A.; Bertrand, A.; Van Troy, A.; Buttarelli, M.; Teyssandier, C.; et al. Postoperative outcomes of pre-pectoral versus sub-pectoral implant immediate breast reconstruction. Cancers 2024, 16, 1129. [Google Scholar] [CrossRef]
- Asaad, M.; Hassan, A.M.; Morris, N.; Kumar, S.; Liu, J.; Butler, C.E.; Selber, J.C. Impact of obesity on outcomes of prepectoral vs. subpectoral implant-based breast reconstruction. Aesthetic Surg. J. 2023, 43, NP774–NP786. [Google Scholar] [CrossRef]
- Asaad, M.; Yu, J.Z.; Tran, J.P.; Liu, J.; O’Grady, B.; Clemens, M.W.; Largo, R.D.; Mericli, A.F.; Schaverien, M.; Shuck, J.; et al. Surgical and patient-reported outcomes of 694 two-stage prepectoral versus subpectoral breast reconstructions. Plast. Reconstr. Surg. 2023, 152, 43S–54S. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.M.; Asaad, M.; Morris, N.; Kumar, S.; Liu, J.; Mitchell, M.P.; Shuck, J.W.; Clemens, M.W.; Butler, C.E.; Selber, J.C. Subpectoral implant placement is not protective against postmastectomy radiotherapy-related complications compared to prepectoral placement. Plast. Reconstr. Surg. 2024, 153, 24–33. [Google Scholar] [CrossRef] [PubMed]
- ElSherif, A.; Bernard, S.; Djohan, R.; Atallah, A.; Tu, C.; Valente, S.A. Nipple necrosis rate with submuscular versus prepectoral implant-based reconstruction in nipple sparing mastectomy: Does it differ? Am. J. Surg. 2024, 230, 57–62. [Google Scholar] [CrossRef]
- Min, K.; Min, J.C.; Han, H.H.; Kim, E.K.; Eom, J.S. Comparing outcomes of prepectoral, partial muscle-splitting subpectoral, and dual-plane subpectoral direct-to-implant reconstruction: Implant upward migration and the pectoralis muscle. Gland Surg. 2024, 13, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.; Sigalove, S.; Sigalove, N.M.; Storm-Dickerson, T.L.; Rice, J.; Pope, N.; Maxwell, G.P. Prepectoral revision breast reconstruction for treatment of implant-associated animation deformity: A review of 102 reconstructions. Aesthetic Surg. J. 2018, 38, 519–526. [Google Scholar] [CrossRef]
- Sigalove, S.; Maxwell, G.P.; Gabriel, A. Outcomes utilizing Inspira implants in revisionary reconstructive surgery. Plast. Reconstr. Surg. 2019, 144, 66S–72S. [Google Scholar] [CrossRef]
- Jones, G.E.; King, V.A.; Yoo, A. Prepectoral site conversion for animation deformity. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2301. [Google Scholar] [CrossRef]
- Holland, M.C.; Lentz, R.; Sbitany, H. Surgical correction of breast animation deformity with implant pocket conversion to a prepectoral plane. Plast. Reconstr. Surg. 2020, 145, 632–642. [Google Scholar] [CrossRef]
- Salgarello, M.; Barone Adesi, L.; Macri, G.; Visconti, G. When to consider prepectoral implant conversion after subpectoral implant breast reconstruction and how to plan it. Aesthetic Surg. J. 2023, 43, NP1071–NP1077. [Google Scholar] [CrossRef]
- Talwar, A.A.; Lanni, M.A.; Ryan, I.A.; Kodali, P.; Bernstein, E.; McAuliffe, P.B.; Broach, R.B.; Serletti, J.M.; Butler, P.D.; Fosnot, J. Prepectoral versus submuscular implant-based breast reconstruction: A matched-pair comparison of outcomes. Plast. Reconstr. Surg. 2024, 153, 281e–290e. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.L.; Black, G.G.; Bernstein, J.L.; Chinta, M.; Otterburn, D.M. Timeline and incidence of postoperative complications in prepectoral, dual-plane, and total submuscular alloplastic reconstruction with and without biosynthetic scaffold usage. Ann. Plast. Surg. 2023, 90, S466–S471. [Google Scholar] [CrossRef]
- Houvenaeghel, G.; Cohen, M.; Sabiani, L.; Van Troy, A.; Quilichini, O.; Charavil, A.; Buttarelli, M.; Rua, S.; Tallet, A.; de Nonneville, A.; et al. Mastectomy and immediate breast reconstruction with pre-pectoral or sub-pectoral implant: Assessing clinical practice, post-surgical outcomes, patient’s satisfaction and cost. J. Surg. Res. 2022, 5, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.P.; Brown, G.M.; Sharma, K.; Yan, Y.; Myckatyn, T.M. Immediate implant-based breast reconstruction with acellular dermal matrix: A comparison of sterile and aseptic alloderm in 2039 consecutive cases. Plast. Reconstr. Surg. 2018, 142, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, M.; Faridi, A. Biological matrices and synthetic meshes used in implant-based breast reconstruction—A review of products available in Germany. Geburtshilfe Frauenheilkd. 2013, 73, 1100–1106. [Google Scholar] [CrossRef]
- Zenn, M.; Venturi, M.; Pittman, T.; Spear, S.; Gurtner, G.; Robb, G.; Mesbahi, A.; Dayan, J. Optimizing outcomes of postmastectomy breast reconstruction with acellular dermal matrix: A review of recent clinical data. Eplasty 2017, 17, e18. [Google Scholar] [PubMed]
- Allergan Aesthetics: An AbbVie Company. AlloDermTM regenerative tissue matrix. In Product Portfolio Brochure; Allergan Aesthetics: Branchburg, NJ, USA, 2022; Available online: https://hcp.alloderm.com/-/media/project/alloderm2022/downloadpdf/AlloDermPortfolioBrochure.pdf (accessed on 10 June 2024).
- Allergan Aesthetics: An AbbVie Company. AlloDerm SelectTM. AlloDerm Select RestoreTM regenerative tissue matrix. In Instructions for Use; Allergan Aesthetics: Markham, ON, Canada, 2024; Available online: https://www.allerganaesthetics.ca/en/our-products/medical-devices (accessed on 10 June 2024).
- Powers, J.M.; Reuter Munoz, K.D.; Parkerson, J.; Nigro, L.C.; Blanchet, N.P. From salvage to prevention: A single-surgeon experience with acellular dermal matrix and infection in prepectoral breast reconstruction. Plast. Reconstr. Surg. 2021, 148, 1201–1208. [Google Scholar] [CrossRef]
- Wood, K.L.; Margulies, I.G.; Shay, P.L.; Ashikari, A.Y.; Salzberg, C.A. Complications after perforated versus nonperforated acellular dermal matrix use in direct-to-implant breast reconstruction: A propensity score analysis. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2690. [Google Scholar] [CrossRef]
- Luo, J.; Willis, R.N., Jr.; Ohlsen, S.M.; Piccinin, M.; Moores, N.; Kwok, A.C.; Agarwal, J.P. Meshed acellular dermal matrix for two-staged prepectoral breast reconstruction: An institutional experience. Arch. Plast. Surg. 2022, 49, 166–173. [Google Scholar] [CrossRef]
- Zammit, D.; Kanevsky, J.; Meng, F.-Y.; Dionisopoulos, T. Meshed acellular dermal matrix: Technique and application in implant based breast reconstruction. Plast. Aesthetic Res. 2016, 3, 254–256. [Google Scholar] [CrossRef]
- Sweitzer, K.; Carruthers, K.H.; Blume, L.; Tiwari, P.; Kocak, E. The biomechanical properties of meshed versus perforated acellular dermal matrices (ADMs). Plast. Reconstr. Surg. Glob. Open 2021, 9, e3454. [Google Scholar] [CrossRef] [PubMed]
- Scheflan, M.; Allweis, T.M.; Ben Yehuda, D.; Maisel Lotan, A. Meshed acellular dermal matrix in immediate prepectoral implant-based breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3265. [Google Scholar] [CrossRef]
- Gui, G.; Gui, M.; Gui, A.; Tasoulis, M.K. Physical characteristics of surgimend meshed biological adm in immediate prepectoral implant breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4369. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.J.R.; Buck, D.W., II. The “butterfly” wrap: A simplified technique for consistent prosthesis coverage in prepectoral breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2018, 6, e2007. [Google Scholar] [CrossRef] [PubMed]
- Liliav, B.; Patel, P.; Jacobson, A.K. Prepectoral breast reconstruction: A technical algorithm. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2107. [Google Scholar] [CrossRef]
- Sigalove, S. Options in acellular dermal matrix-device assembly. Plast. Reconstr. Surg. 2017, 140, 39S–42S. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kanchwala, S.K.; Cho, H.; Jolly, J.C.; Jablonka, E.; Tanis, M.; Kamien, R.D.; Yang, S. Natural shaping of acellular dermal matrices for implant-based breast reconstruction via expansile kirigami. Adv. Mater. 2023, 35, e2208088. [Google Scholar] [CrossRef]
- Jordan, S.W.; Khavanin, N.; Fine, N.A.; Kim, J.Y.S. An algorithmic approach for selective acellular dermal matrix use in immediate two-stage breast reconstruction: Indications and outcomes. Plast. Reconstr. Surg. 2014, 134, 178–188. [Google Scholar] [CrossRef]
- Lee, K.T.; Lee, H.; Jeon, B.J.; Mun, G.H.; Bang, S.I.; Pyon, J.K. Impact of overweight/obesity on the development of hematoma following tissue expander-based breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2020, 19, 19. [Google Scholar] [CrossRef]
- Lee, K.T.; Eom, Y.; Mun, G.H.; Bang, S.I.; Jeon, B.J.; Pyon, J.K. Efficacy of partial- versus full-sling acellular dermal matrix use in implant-based breast reconstruction: A head-to-head comparison. Aesthetic Plast. Surg. 2018, 42, 422–433. [Google Scholar] [CrossRef]
- Lee, K.T.; Hong, S.H.; Jeon, B.J.; Pyon, J.K.; Mun, G.H.; Bang, S.I. Predictors for prolonged drainage following tissue expander-based breast reconstruction. Plast. Reconstr. Surg. 2019, 144, 9e–17e. [Google Scholar] [CrossRef]
- Pires, G.; Marquez, J.L.; Memmott, S.; Sudduth, J.D.; Moss, W.; Eddington, D.; Hobson, G.; Tuncer, F.; Agarwal, J.P.; Kwok, A.C. Early complications after prepectoral tissue expander placement in breast reconstruction with and without acellular dermal matrix. Plast. Reconstr. Surg. 2024, 153, 1221–1229. [Google Scholar] [CrossRef]
- Pannucci, C.J.; Antony, A.K.; Wilkins, E.G. The impact of acellular dermal matrix on tissue expander/implant loss in breast reconstruction: An analysis of the tracking outcomes and operations in plastic surgery database. Plast. Reconstr. Surg. 2013, 132, 1–10. [Google Scholar] [CrossRef]
- Kilmer, L.H.; Challa, S.; Stranix, J.T.; Campbell, C.A. Case-matched comparison of implant-based breast reconstruction with and without acellular dermal matrix. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5660. [Google Scholar] [CrossRef] [PubMed]
- Plotsker, E.L.; Graziano, F.D.; Rubenstein, R.N.; Haglich, K.; Allen, R.J., Jr.; Coriddi, M.R.; Dayan, J.H.; Poulton, R.; McKernan, C.; Mehrara, B.J.; et al. Early complications in prepectoral breast reconstructions with and without acellular dermal matrix: A preliminary analysis of outcomes. Plast. Reconstr. Surg. 2024, 153, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.A.; Seth, A.K.; Wang, E.; Hanwright, P.; Bilimoria, K.; Fine, N.; Kim, J.Y. Human acellular dermis versus submuscular tissue expander breast reconstruction: A multivariate analysis of short-term complications. Arch. Plast. Surg. 2013, 40, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Winocour, S.; Martinez-Jorge, J.; Habermann, E.; Thomsen, K.; Lemaine, V. Early surgical site infection following tissue expander breast reconstruction with or without acellular dermal matrix: National benchmarking using National Surgical Quality Improvement Program. Arch. Plast. Surg. 2015, 42, 194–200. [Google Scholar] [CrossRef]
- Luo, J.; Moss, W.D.; Pires, G.R.; Rhemtulla, I.A.; Rosales, M.; Stoddard, G.J.; Agarwal, J.P.; Kwok, A.C. A nationwide analysis evaluating the safety of using acellular dermal matrix with tissue expander-based breast reconstruction. Arch. Plast. Surg. 2022, 49, 716–723. [Google Scholar] [CrossRef]
- Graziano, F.D.; Plotsker, E.L.; Rubenstein, R.N.; Haglich, K.; Stern, C.S.; Matros, E.; Nelson, J.A. National trends in acellular dermal matrix utilization in immediate breast reconstruction. Plast. Reconstr. Surg. 2024, 153, 25e–36e. [Google Scholar] [CrossRef]
- Nahabedian, M.Y. AlloDerm performance in the setting of prosthetic breast surgery, infection, and irradiation. Plast. Reconstr. Surg. 2009, 124, 1743–1753. [Google Scholar] [CrossRef]
- Sbitany, H.; Sandeen, S.N.; Amalfi, A.N.; Davenport, M.S.; Langstein, H.N. Acellular dermis-assisted prosthetic breast reconstruction versus complete submuscular coverage: A head-to-head comparison of outcomes. Plast. Reconstr. Surg. 2009, 124, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Verma, K.; Rosen, H.; Lipsitz, S.; Morris, D.; Kenney, P.; Eriksson, E. Implant-based breast reconstruction using acellular dermal matrix and the risk of postoperative complications. Plast. Reconstr. Surg. 2010, 125, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ganske, I.; Verma, K.; Rosen, H.; Eriksson, E.; Chun, Y.S. Minimizing complications with the use of acellular dermal matrix for immediate implant-based breast reconstruction. Ann. Plast. Surg. 2013, 71, 464–470. [Google Scholar] [CrossRef]
- Liu, A.S.; Kao, H.K.; Reish, R.G.; Hergrueter, C.A.; May, J.W., Jr.; Guo, L. Postoperative complications in prosthesis-based breast reconstruction using acellular dermal matrix. Plast. Reconstr. Surg. 2011, 127, 1755–1762. [Google Scholar] [CrossRef]
- Vardanian, A.J.; Clayton, J.L.; Roostaeian, J.; Shirvanian, V.; Da Lio, A.; Lipa, J.E.; Crisera, C.; Festekjian, J.H. Comparison of implant-based immediate breast reconstruction with and without acellular dermal matrix. Plast. Reconstr. Surg. 2011, 128, 403e–410e. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.M.; Lee, C.N.; Halvorson, E.G.; Riedel, E.; Pusic, A.L.; Mehrara, B.J.; Disa, J.J. The use of acellular dermal matrices in two-stage expander/implant reconstruction: A multicenter, blinded, randomized controlled trial. Plast. Reconstr. Surg. 2012, 130, 57S–66S. [Google Scholar] [CrossRef]
- Parks, J.W.; Hammond, S.E.; Walsh, W.A.; Adams, R.L.; Chandler, R.G.; Luce, E.A. Human acellular dermis versus no acellular dermis in tissue expansion breast reconstruction. Plast. Reconstr. Surg. 2012, 130, 739–746. [Google Scholar] [CrossRef]
- Weichman, K.E.; Wilson, S.C.; Weinstein, A.L.; Hazen, A.; Levine, J.P.; Choi, M.; Karp, N.S. The use of acellular dermal matrix in immediate two-stage tissue expander breast reconstruction. Plast. Reconstr. Surg. 2012, 129, 1049–1058. [Google Scholar] [CrossRef]
- Weichman, K.E.; Wilson, S.C.; Saadeh, P.B.; Hazen, A.; Levine, J.P.; Choi, M.; Karp, N.S. Sterile “ready-to-use” AlloDerm decreases postoperative infectious complications in patients undergoing immediate implant-based breast reconstruction with acellular dermal matrix. Plast. Reconstr. Surg. 2013, 132, 725–736. [Google Scholar] [CrossRef]
- Arnaout, A.; Zhang, J.; Frank, S.; Momtazi, M.; Cordeiro, E.; Roberts, A.; Ghumman, A.; Fergusson, D.; Stober, C.; Pond, G.; et al. A randomized controlled trial comparing Alloderm-RTU with DermACELL in immediate subpectoral implant-based breast reconstruction. Curr. Oncol. 2021, 28, 184–195. [Google Scholar] [CrossRef]
- Stein, M.J.; Arnaout, A.; Lichtenstein, J.B.; Frank, S.G.; Cordeiro, E.; Roberts, A.; Ghaedi, B.; Zhang, J. A comparison of patient-reported outcomes between Alloderm and Dermacell in immediate alloplastic breast reconstruction: A randomized control trial. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.J.; Nelson, J.A.; Kokosis, G.; Haglich, K.; McKernan, C.D.; Rubenstein, R.; Vingan, P.S.; Allen, R.J., Jr.; Coriddi, M.R.; Dayan, J.H.; et al. A cohort analysis of early outcomes after Alloderm, FlexHD, and Surgimend use in two-stage prepectoral breast reconstruction. Aesthetic Surg. J. 2023, 43, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.E.; Spoer, D.L.; Huffman, S.S.; Haffner, Z.K.; Tom, L.K.; Parkih, R.P.; Song, D.H.; Fan, K.L. Acellular dermal matrix-assisted, prosthesis-based breast reconstruction: A comparison of SurgiMend PRS, AlloDerm, and DermACELL. Ann. Plast. Surg. 2024, 93, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C.; Colakoglu, S.; Siddikoglu, D.; Li, A.; Kaoutzanis, C.; Cohen, J.B.; Chong, T.W.; Mathes, D.W. Impact of dermal matrix brand in implant-based breast reconstruction outcomes. Plast. Reconstr. Surg. 2022, 150, 17–25. [Google Scholar] [CrossRef]
- Zenn, M.R.; Salzberg, C.A. A direct comparison of Alloderm-Ready to Use (RTU) and DermACELL in immediate breast implant reconstruction. Eplasty 2016, 16, e23. [Google Scholar]
- Mendenhall, S.D.; Anderson, L.A.; Ying, J.; Boucher, K.M.; Liu, T.; Neumayer, L.A.; Agarwal, J.P. The BREASTrial: Stage I. Outcomes from the time of tissue expander and acellular dermal matrix placement to definitive reconstruction. Plast. Reconstr. Surg. 2015, 135, 29e–42e. [Google Scholar] [CrossRef]
- Mendenhall, S.D.; Anderson, L.A.; Ying, J.; Boucher, K.M.; Neumayer, L.A.; Agarwal, J.P. The BREASTrial Stage II: ADM breast reconstruction outcomes from definitive reconstruction to 3 months postoperative. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1209. [Google Scholar] [CrossRef]
- Mendenhall, S.D.; Moss, W.D.; Graham, E.M.; Carter, G.; Agarwal, J.P. The BREASTrial Stage III: Acellular dermal matrix breast reconstruction outcomes from 3 months to 2 years postoperatively. Plast. Reconstr. Surg. 2023, 151, 17–24. [Google Scholar] [CrossRef]
- Palaia, D.A.; Arthur, K.S.; Cahan, A.C.; Rosenberg, M.H. Incidence of seromas and infections using fenestrated versus nonfenestrated acellular dermal matrix in breast reconstructions. Plast. Reconstr. Surg. Glob. Open 2015, 3, e569. [Google Scholar] [CrossRef]
- Seth, A.K.; Persing, S.; Connor, C.M.; Davila, A.; Hirsch, E.; Fine, N.A.; Kim, J.Y. A comparative analysis of cryopreserved versus prehydrated human acellular dermal matrices in tissue expander breast reconstruction. Ann. Plast. Surg. 2013, 70, 632–635. [Google Scholar] [CrossRef]
- Liu, D.Z.; Mathes, D.W.; Neligan, P.C.; Said, H.K.; Louie, O. Comparison of outcomes using AlloDerm versus FlexHD for implant-based breast reconstruction. Ann. Plast. Surg. 2014, 72, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, K.; Santosa, K.B.; Lyons, D.A.; Mand, S.; Xin, M.; Kidwell, K.; Brown, D.L.; Wilkins, E.G.; Momoh, A.O. Use of acellular dermal matrix in postmastectomy breast reconstruction: Are all acellular dermal matrices created equal? Plast. Reconstr. Surg. 2015, 136, 647–653. [Google Scholar] [CrossRef]
- Sobti, N.; Liao, E.C. Surgeon-controlled study and meta-analysis comparing FlexHD and AlloDerm in immediate breast reconstruction outcomes. Plast. Reconstr. Surg. 2016, 138, 959–967. [Google Scholar] [CrossRef]
- Broyles, J.M.; Liao, E.C.; Kim, J.; Heistein, J.; Sisco, M.; Karp, N.; Lau, F.H.; Chun, Y.S. Acellular dermal matrix-associated complications in implant-based breast reconstruction: A multicenter, prospective, randomized controlled clinical trial comparing two human tissues. Plast. Reconstr. Surg. 2021, 148, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Keifer, O.P., Jr.; Page, E.K.; Hart, A.; Rudderman, R.; Carlson, G.W.; Losken, A. A complication analysis of 2 acellular dermal matrices in prosthetic-based breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2016, 4, e800. [Google Scholar] [CrossRef] [PubMed]
- Hadad, I.; Liu, A.S.; Guo, L. A new approach to minimize acellular dermal matrix use in prosthesis-based breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2015, 3, e472. [Google Scholar] [CrossRef]
- Frey, J.D.; Alperovich, M.; Weichman, K.E.; Wilson, S.C.; Hazen, A.; Saadeh, P.B.; Levine, J.P.; Choi, M.; Karp, N.S. Breast reconstruction using contour fenestrated Alloderm: Does improvement in design translate to improved outcomes? Plast. Reconstr. Surg. Glob. Open 2015, 3, e505. [Google Scholar] [CrossRef]
- Yuen, J.C.; Yue, C.J.; Erickson, S.W.; Cooper, S.; Boneti, C.; Henry-Tillman, R.; Klimberg, S. Comparison between freeze-dried and ready-to-use Alloderm in alloplastic breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2014, 2, e119. [Google Scholar] [CrossRef]
- Widmyer, A.S.; Mirhaidari, S.J.; Wagner, D.S. Implant-based breast reconstruction outcomes comparing freeze-dried aseptic Alloderm and sterile ready-to-use Alloderm. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2530. [Google Scholar] [CrossRef]
- Hanson, S.E.; Meaike, J.D.; Selber, J.C.; Liu, J.; Li, L.; Hassid, V.J.; Baumann, D.P.; Butler, C.E.; Garvey, P.B. Aseptic freeze-dried versus sterile wet-packaged human cadaveric acellular dermal matrix in immediate tissue expander breast reconstruction: A propensity score analysis. Plast. Reconstr. Surg. 2018, 141, 624e–632e. [Google Scholar] [CrossRef]
- Han, W.Y.; Han, S.J.; Eom, J.S.; Kim, E.K.; Han, H.H. A comparative study of wraparound versus anterior coverage placement of acellular dermal matrix in prepectoral breast reconstruction. Plast. Reconstr. Surg. 2023, 152, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Han, W.Y.; Han, S.J.; Kim, E.K.; Han, H.H.; Eom, J.S. A comparison of clinical outcomes of acellular dermal matrix with and without radiation sterilization process in immediate prepectoral direct-to-implant breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2023, 87, 461–466. [Google Scholar] [CrossRef]
- Sigalove, S.; O’Rorke, E.; Maxwell, G.P.; Gabriel, A. Evaluation of the safety of a GalaFLEX-AlloDerm construct in prepectoral breast reconstruction. Plast. Reconstr. Surg. 2022, 150, 75S–81S. [Google Scholar] [CrossRef]
- Levy, A.S.; Bernstein, J.L.; Xia, J.J.; Otterburn, D.M. Poly-4-hydroxybutyric acid mesh compares favorably with acellular dermal matrix in tissue expander-based breast reconstruction. Ann. Plast. Surg. 2020, 85, S2–S7. [Google Scholar] [CrossRef]
- Wederfoort, J.L.M.; van Santbrink, E.; Hommes, J.E.; Heuts, E.M.; van Kuijk, S.M.J.; van der Hulst, R.; Piatkowski, A. Donor site satisfaction following autologous fat transfer for total breast reconstruction. Aesthetic Surg. J. 2023, 43, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.Y.; Botteri, E.; Lohsiriwat, V.; Rietjens, M.; De Lorenzi, F.; Garusi, C.; Rossetto, F.; Martella, S.; Manconi, A.; Bertolini, F.; et al. Locoregional recurrence risk after lipofilling in breast cancer patients. Ann. Oncol. 2012, 23, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Gale, K.L.; Rakha, E.A.; Ball, G.; Tan, V.K.; McCulley, S.J.; Macmillan, R.D. A case-controlled study of the oncologic safety of fat grafting. Plast. Reconstr. Surg. 2015, 135, 1263–1275. [Google Scholar] [CrossRef]
- Seth, A.K.; Hirsch, E.M.; Kim, J.Y.S.; Fine, N.A. Long-term outcomes following fat grafting in prosthetic breast reconstruction: A comparative analysis. Plast. Reconstr. Surg. 2012, 130, 984–990. [Google Scholar] [CrossRef]
- Kim, H.Y.; Jung, B.K.; Lew, D.H.; Lee, D.W. Autologous fat graft in the reconstructed breast: Fat absorption rate and safety based on sonographic identification. Arch. Plast. Surg. 2014, 41, 740–747. [Google Scholar] [CrossRef]
- Masia, J.; Bordoni, D.; Pons, G.; Liuzza, C.; Castagnetti, F.; Falco, G. Oncological safety of breast cancer patients undergoing free-flap reconstruction and lipofilling. Eur. J. Surg. Oncol. 2015, 41, 612–616. [Google Scholar] [CrossRef]
- Fertsch, S.; Hagouan, M.; Munder, B.; Schulz, T.; Abu-Ghazaleh, A.; Schaberick, J.; Stambera, P.; Aldeeri, M.; Andree, C.; Thamm, O.C. Increased risk of recurrence associated with certain risk factors in breast cancer patients after DIEP-flap reconstruction and lipofilling-a matched cohort study with 200 patients. Gland Surg. 2017, 6, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Myckatyn, T.M.; Wagner, I.J.; Mehrara, B.J.; Crosby, M.A.; Park, J.E.; Qaqish, B.F.; Moore, D.T.; Busch, E.L.; Silva, A.K.; Kaur, S.; et al. Cancer risk after fat transfer: A multicenter case-cohort study. Plast. Reconstr. Surg. 2017, 139, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Silva-Vergara, C.; Fontdevila, J.; Weshahy, O.; Yuste, M.; Descarrega, J.; Grande, L. Breast cancer recurrence is not increased with lipofilling reconstruction: A case-controlled study. Ann. Plast. Surg. 2017, 79, 243–248. [Google Scholar] [CrossRef]
- Silva-Vergara, C.; Fontdevila, J.; Descarrega, J.; Burdio, F.; Yoon, T.S.; Grande, L. Oncological outcomes of lipofilling breast reconstruction: 195 consecutive cases and literature review. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 475–481. [Google Scholar] [CrossRef]
- Calabrese, C.; Kothari, A.; Badylak, S.; Di Taranto, G.; Marcasciano, M.; Sordi, S.; Barellini, L.; Lo Torto, F.; Tarallo, M.; Gaggelli, I.; et al. Oncological safety of stromal vascular fraction enriched fat grafting in two-stage breast reconstruction after nipple sparing mastectomy: Long-term results of a prospective study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4768–4777. [Google Scholar] [CrossRef]
- Perez-Cano, R.; Vranckx, J.J.; Lasso, J.M.; Calabrese, C.; Merck, B.; Milstein, A.M.; Sassoon, E.; Delay, E.; Weiler-Mithoff, E.M. Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: The RESTORE-2 trial. Eur. J. Surg. Oncol. 2012, 38, 382–389. [Google Scholar] [CrossRef]
- Calabrese, S.; Zingaretti, N.; De Francesco, F.; Riccio, M.; De Biasio, F.; Massarut, S.; Almesberger, D.; Parodi, P.C. Long-term impact of lipofilling in hybrid breast reconstruction: Retrospective analysis of two cohorts. Eur. J. Plast. Surg. 2020, 43, 257–268. [Google Scholar] [CrossRef]
- Krastev, T.; van Turnhout, A.; Vriens, E.; Smits, L.; van der Hulst, R. Long-term follow-up of autologous fat transfer vs. conventional breast reconstruction and association with cancer relapse in patients with breast cancer. JAMA Surg. 2019, 154, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Cason, R.W.; Shammas, R.L.; Broadwater, G.; Glener, A.D.; Sergesketter, A.R.; Vernon, R.; Le, E.; Wickenheisser, V.A.; Marks, C.E.; Orr, J.; et al. The influence of fat grafting on breast imaging after postmastectomy reconstruction: A matched cohort analysis. Plast. Reconstr. Surg. 2020, 146, 1227–1236. [Google Scholar] [CrossRef]
- Vyas, K.S.; DeCoster, R.C.; Burns, J.C.; Rodgers, L.T.; Shrout, M.A.; Mercer, J.P.; Coquillard, C.; Dugan, A.J.; Baratta, M.D.; Rinker, B.D.; et al. Autologous fat grafting does not increase risk of oncologic recurrence in the reconstructed breast. Ann. Plast. Surg. 2020, 84, S405–S410. [Google Scholar] [CrossRef]
- Casarrubios, J.M.; Frances, M.; Fuertes, V.; Singer, M.; Navarro, C.; Garcia-Duque, O.; Fernandez-Palacios, J. Oncological outcomes of lipofilling in breast reconstruction: A matched cohort study with 250 patients. Gland Surg. 2021, 10, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Klinger, M.; Losurdo, A.; Lisa, A.V.E.; Morenghi, E.; Vinci, V.; Corsi, F.; Albasini, S.; Leonardi, M.C.; Jereczek-Fossa, B.A.; Veronesi, P.; et al. Safety of autologous fat grafting in breast cancer: A multicenter Italian study among 17 senonetwork breast units autologous fat grafting safety: A multicenter Italian retrospective study. Breast Cancer Res. Treat. 2022, 191, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Palve, J.; Luukkaala, T.; Kaariainen, M. Comparison of different techniques in latissimus dorsi breast reconstruction: Plain, immediately lipofilled, and implant enhanced. Ann. Plast. Surg. 2022, 88, 20–24. [Google Scholar] [CrossRef]
- Sorotos, M.; Paolini, G.; D’Orsi, G.; Firmani, G.; Timmermans, F.W.; di Santanelli Pompeo, F. Oncologic outcome of 1000 postmastectomy breast reconstructions with fat transfer: A single-center, matched case-control study. Plast. Reconstr. Surg. 2022, 150, 4S–12S. [Google Scholar] [CrossRef]
- Lee, K.T.; Kim, J.H.; Jeon, B.J.; Pyon, J.K.; Mun, G.H.; Lee, S.K.; Yu, J.; Kim, S.W.; Lee, J.E.; Ryu, J.M.; et al. Association of fat graft with breast cancer recurrence in implant-based reconstruction: Does the timing matter? Ann. Surg. Oncol. 2023, 30, 1087–1097. [Google Scholar] [CrossRef]
- Strong, A.L.; Syrjamaki, J.D.; Kamdar, N.; Wilkins, E.G.; Sears, E.D. Oncological safety of autologous fat grafting for breast reconstruction. Ann. Plast. Surg. 2024, 92, 21–27. [Google Scholar] [CrossRef]
- Escandon, J.M.; Langstein, H.N.; Christiano, J.G.; Aristizabal, A.; Gooch, J.C.; Weiss, A.; Manrique, O.J. Latissimus dorsi flap with immediate fat transfer (LIFT) for autologous breast reconstruction: Single institution experience. Am. J. Surg. 2024, 228, 185–191. [Google Scholar] [CrossRef]
- Navarro, A.S.; Omalek, D.; Chaltiel, L.; Vaysse, C.; Meresse, T.; Gangloff, D.; Jouve, E.; Selmes, G. Oncologic safety of autologous fat grafting in primary breast reconstruction after mastectomy for cancer. Eur. J. Surg. Oncol. 2024, 50, 107998. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Early and Locally Advanced Breast Cancer: Diagnosis and Management. NICE Guideline [NG101] Published: 18 July 2018. NICE: Manchester, UK, Last Updated: 16 January 2024. Available online: https://www.nice.org.uk/guidance/ng101 (accessed on 2 October 2024).
- Berrino, P.; Berrino, V. Postmastectomy total breast reconstruction by serial lipografting. In Fat Transfer in Plastic Surgery: Techniques, Technology and Safety, Chapter 25; Di Giuseppe, A., Bassetto, F., Nahia, F., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 355–363. [Google Scholar] [CrossRef]
- Homsy, P.; Hockerstedt, A.; Hukkinen, K.; Kauhanen, S. Total breast reconstruction with lipofilling after traditional mastectomy without the use of tissue expanders. Plast. Reconstr. Surg. 2023, 152, 483–491. [Google Scholar] [CrossRef]
- Piffer, A.; Aubry, G.; Cannistra, C.; Popescu, N.; Nikpayam, M.; Koskas, M.; Uzan, C.; Bichet, J.C.; Canlorbe, G. Breast reconstruction by exclusive lipofilling after total mastectomy for breast cancer: Description of the technique and evaluation of quality of life. J. Pers. Med. 2022, 12, 153. [Google Scholar] [CrossRef]
- Di Giuseppe, A.; Bassetto, F.; Nahia, F. (Eds.) Fat Transfer in Plastic Surgery: Techniques, Technology and Safety; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Skillman, J.; McManus, P.; Bhaskar, P.; Hamilton, S.; Roy, P.G.; O’Donoghue, J.M. UK guidelines for lipomodelling of the breast on behalf of Plastic, Reconstructive and Aesthetic Surgery and Association of Breast Surgery Expert Advisory Group. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 511–518. [Google Scholar] [CrossRef] [PubMed]
Measure | LR | LR in NAC | RR | LRR | CBC | DM | Death | 5-y OS | 5-y DFS | Total Nipple Necrosis | Partial NAC Necrosis | Flap Necrosis |
---|---|---|---|---|---|---|---|---|---|---|---|---|
# Studies | 45 | 42 | 13 | 24 | 7 | 39 | 14 | 14 | 12 | 45 | 36 | 27 |
Min (%) | 0.0 | 0.0 | 0.7 | 0.9 | 0.9 | 0.0 | 0.4 | 83.5 | 68.0 | 0.0 | 0.9 | 0.4 |
Max (%) | 10.9 | 6.0 | 9.6 | 16.2 | 3.9 | 20.4 | 12.2 | 99.1 | 98.3 | 19.5 | 23.7 | 23.3 |
Avg (%) | 4.0 | 1.2 | 2.9 | 5.1 | 2.0 | 5.6 | 3.6 | 94.6 | 87.4 | 2.8 | 7.9 | 7.4 |
Median (%) | 3.7 | 0.5 | 1.8 | 3.9 | 2.0 | 4.0 | 2.6 | 95.8 | 90.5 | 1.7 | 6.9 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, T.; Fletcher, G.G.; Brackstone, M.; Frank, S.G.; Hanrahan, R.; Miragias, V.; Stevens, C.; Vesprini, D.; Vito, A.; Wright, F.C. Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer: A Systematic Review. Curr. Oncol. 2025, 32, 231. https://doi.org/10.3390/curroncol32040231
Zhong T, Fletcher GG, Brackstone M, Frank SG, Hanrahan R, Miragias V, Stevens C, Vesprini D, Vito A, Wright FC. Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer: A Systematic Review. Current Oncology. 2025; 32(4):231. https://doi.org/10.3390/curroncol32040231
Chicago/Turabian StyleZhong, Toni, Glenn G. Fletcher, Muriel Brackstone, Simon G. Frank, Renee Hanrahan, Vivian Miragias, Christiaan Stevens, Danny Vesprini, Alyssa Vito, and Frances C. Wright. 2025. "Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer: A Systematic Review" Current Oncology 32, no. 4: 231. https://doi.org/10.3390/curroncol32040231
APA StyleZhong, T., Fletcher, G. G., Brackstone, M., Frank, S. G., Hanrahan, R., Miragias, V., Stevens, C., Vesprini, D., Vito, A., & Wright, F. C. (2025). Postmastectomy Breast Reconstruction in Patients with Non-Metastatic Breast Cancer: A Systematic Review. Current Oncology, 32(4), 231. https://doi.org/10.3390/curroncol32040231