Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions
Abstract
:1. Introduction
2. Epidemiology
Mucoepidermoid carcinoma (MEC) | The most common type of tumor, characterized by a mixture of mucus-secreting, epidermoid, and intermediate cells. It ranges from low to high grade. |
Adenoid cystic carcinoma (AdCC) | Presents as a non-encapsulated well-circumscribed mass, which features cribriform, tubular, and solid growth patterns. It is known for its slow growth, high recurrence, and potential for distant metastasis. |
Acinic cell carcinoma (ACC) | Typically, a low-grade tumor, cells can be granulated serous-type cells, primitive tubule cells, or undifferentiated polymorphous cells. Cell growth patterns include solid, papillary cystic, follicular, and microcystic. |
Salivary duct carcinoma (SDC) | Resembles high-grade ductal carcinomas of the breast, histologically, and is aggressive with poor prognosis. |
Polymorphous adenocarcinoma (PAC) | A low-grade tumor that usually occurs in the minor salivary glands. It shows diverse architectural patterns but uniform cytology. |
Myoepithelial carcinoma | Rare, characterized by myoepithelial cell proliferation with varied architectural patterns and aggressive behavior |
Epithelial–myoepithelial carcinoma (EMC) | An intermediate grade biphasic tumor with a combination of ductal and myoepithelial cells. |
Clear cell carcinoma | An intermediate grade tumor, generally, which contains clear cells. |
Basal cell adenocarcinoma | Generally low-grade tumor with basaloid appearance cells under the microscope. |
Lymphoepithelial carcinoma | Major salivary gland consists of atypical lymphocytes with invasions into the adjacent ductal epithelium, lymphoepithelial lesions, and lymphoid follicles |
3. Pathogenesis
4. Diagnosis
5. Immunohistochemistry
6. Genome Sequencing
7. Treatment
7.1. Surgery
7.2. Radiotherapy
7.3. Chemotherapy
Study | Agent(s) | Target | Patients (n) | Subtype | Objective Response Rate (ORR) | Median Progression Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
Retro [52] | 5-fluorouracil | Cytostatic drug | 12 | AdCC | 4 (33%) | 21 | |
II [55] | Cisplatin | Cytostatic drug | 10 | AdCC | 7 (70%) | ||
II [56] | Cisplatin | Cytostatic drug | 25 | Mixed Subtypes | ITT: 4 (16%) | 7 | 14 |
II [57] | Cisplatin | Cytostatic drug | 10 | AdCC | 0 (0%) | 3 | 21 |
Retro [58] | Cisplatin | Cytostatic drugs | 34 | Mixed Subtypes | ITT: 13 (38%) | 7 | 15 |
II [59] | Epirubicin | Cytostatic drug | 20 | AdCC | 2 (10%) | 3.7 | 15.6 |
Retro [60] | Methotrexate | Cytostatic drug | 7 | AdCC | 0 (0%) | 21 | |
II [61] | Mitoxantrone | Cytostatic drug | 32 | AdCC | 4 (13%) | 18 | |
II [62] | Mitoxantrone | Cytostatic drug | 18 | AdCC | 1 (5%) | 19 |
Phase of Study | Agents | Target | Pts | Subtype | Objective Response Rate (ORR) | Median Progression Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [63] | Carboplatin + Paclitaxel | Cytostatic drugs | 14 | AdCC:10, Non-AdCC:9 | 14% | 6.0–13.5 | 12.5 |
Retro [64] | Carboplatin + Paclitaxel | Cytostatic drugs | 38 | AdCC:9, Non-AdCC:29 | 39% | 6.5 | 26.5 |
II [65] | Cisplatin + 5-Fluorouracil | Cytostatic drugs | 11 | AdCC | 0% | 9.0 | 12.0 |
II [57] | Cisplatin + Doxorubicin + Bleomycin | Cytostatic drugs | 9 | AdCC | 33% | 10.0 | 12.0 |
Retro [50] | Cisplatin + Doxorubicin + Cyclophosphamide | Cytostatic drugs | 13 | AdCC:9, Non-AdCC:4 | 46% | 6.5 | 12.0 |
Retro [66] | Cisplatin + Doxorubicin + Cyclophosphamide | Cytostatic drugs | 8 | AdCC:4, Non-AdCC:4 | 63% | 5.0 | 11.0 |
II [67] | Cisplatin + Doxorubicin + Cyclophosphamide | Cytostatic drugs | 22 | AdCC:12, Non-AdCC:10 | 27% | - | 21.0 |
II [68] | Cisplatin + Doxorubicin + Cyclophosphamide + 5-FU | Cytostatic drugs | 16 | AdCC:7, Non-AdCC:9 | 50% | - | 16.8 |
II [69] | Cisplatin + Vinorelbine | Cytostatic drugs | 16 | AdCC:9, Non-AdCC:7 | 44% | 7.0 | 11.0 |
II [70] | Cisplatin + Vinorelbine (First line) | Cytostatic drugs | 42 | AdCC:24, Non-AdCC:18 | 31% | 6.0 | 10.0 |
II [70] | Cisplatin + Vinorelbine (Second line) | Cytostatic drugs | 18 | AdCC:10, Non-AdCC:8 | 6% | 3.5 | 4.0 |
II [71] | Platin + Docetaxel | Cytostatic drugs | 41 | AdCC:26, Non-AdCC:15 | 46% | 9.4 | 28.2 |
II [72] | Platin + Gemcitabine | Cytostatic drugs | 33 | AdCC:10, Non-AdCC:23 | 27% | 13.8 | - |
7.4. Molecular and Immune-Based Therapeutics
7.4.1. Neurotrophic Tropomyosin Receptor Kinases (NTRKs)
7.4.2. HER2 Receptor
7.4.3. Immune Checkpoint Inhibitors
7.4.4. Androgen Receptors
7.4.5. RET Fusion Gene
7.4.6. BRAF Gene; BRAF V600E Mutation
7.4.7. C-Kit Receptor
7.4.8. VEGF Pathway
Phase | Agent | Target | Pts (n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [148] | Rivoceranib | VEGFR, RET, c-KIT | 65 | AdCC | 30 (46) | 19.7 | Not reported |
II [150] | Axitinib | VEGFR, PDGFR, c-KIT | 27 | AdCC | 0% | 10.8 | NR |
II [150] | Axitinib (after cross-over) | VEGFR, PDGFR, c-KIT | 26 | AdCC | 3 (12) | 14.5 | 27.2 |
II [152] | Rivoceranib | VEGFR2 | 61 | Recurrent/metastatic adenoid cystic carcinoma (AdCC) | 15.1% | 9 months | Not Reported |
7.4.9. PI3K/Akt Receptor
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SGC | Salivary Gland Carcinoma |
HER2 | Human Epidermal Growth Factor Receptor 2 |
NTRK | Neurotrophic Tropomyosin Receptor Kinase |
RET | Rearranged during Transfection (a tyrosine kinase receptor) |
AR | Androgen Receptor |
EGFR | Epidermal Growth Factor Receptor |
MAPK/ERK | Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase pathway |
PI3K/AKT | Phosphoinositide 3-Kinase/Protein Kinase B pathway |
JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription pathway |
EMT | Epithelial-to-Mesenchymal Transition |
REFCOR | The French National Network on Rare Head and Neck Tumors |
IHC | Immunohistochemistry |
ADT | Androgen Deprivation Therapy |
DOR | Duration of Response |
DFS | Disease-Free Survival |
PFS | Progression-Free Survival |
OS | Overall Survival |
TRK | Tropomyosin Receptor Kinase |
IMRT | Intensity-Modulated Radiotherapy |
CRT | Chemoradiotherapy |
FDA | Food and Drug Administration |
VEGFR | Vascular Endothelial Growth Factor Receptor |
PDGFR | Platelet-Derived Growth Factor Receptor |
FGFR | Fibroblast Growth Factor Receptor |
BRAF | A gene involved in cell growth regulation |
MEK | Mitogen-Activated Protein Kinase Kinase |
ALK | Anaplastic Lymphoma Kinase |
NF-κB | Nuclear Factor Kappa B (a protein complex involved in immune response) |
PLAG1 | Pleomorphic Adenoma Gene 1 |
SMARCB1 | SWI/SNF-Related Matrix-Associated Actin-Dependent Regulator of Chromatin Subfamily B Member 1 |
NSCLC | Non-Small Cell Lung Cancer |
RTOG | Radiation Therapy Oncology Group |
MPFS | Median Progression-Free Survival |
MOS | Median Overall Survival |
MEC | Mucoepidermoid Carcinoma |
AdCC | Adenoid Cystic Carcinoma |
ACC | Acinic Cell Carcinoma |
SDC | Salivary Duct Carcinoma |
PAC | Polymorphous Adenocarcinoma |
EMC | Epithelial–Myoepithelial Carcinoma |
References
- Argiris, A.; Karam, M.; Stenson, K. Targeted therapy in salivary gland malignancies: A review of molecular insights and clinical applications. J. Oncol. 2019, 33, 100–112. [Google Scholar]
- Del Signore, A.G.; Megwalu, U.C. The rising incidence of major salivary gland cancer in the United States. Ear Nose Throat J. 2017, 96, E13–E16. [Google Scholar] [CrossRef] [PubMed]
- Gontarz, M.; Bargiel, J.; Gąsiorowski, K.; Marecik, T.; Szczurowski, P.; Zapała, J.; Wyszyńska-Pawelec, G. Epidemiology of primary epithelial salivary gland tumors in southern Poland—A 26-year, clinicopathologic, retrospective analysis. J. Clin. Med. 2021, 10, 1663. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.; Lee, D.; Thompson, A. Emerging targeted therapies in head and neck cancers: Focus on salivary gland tumors. Oral Oncol. 2021, 58, 110–117. [Google Scholar]
- Guntinas-Lichius, O.; Wendt, T.G.; Buentzel, J.; Esser, D.; Böger, D.; Mueller, A.H.; Piesold, J.U.; Schultze-Mosgau, S.; Schlattmann, P.; Schmalenberg, H. Incidence, treatment, and outcome of parotid carcinoma, 1996–2011: A population-based study in Thuringia, Germany. J. Cancer Res. Clin. Oncol. 2015, 141, 1679–1688. [Google Scholar] [CrossRef]
- Nachtsheim, L.; Mayer, M.; Meyer, M.F.; Oesterling, F.; Kajueter, H.; Arolt, C.; Quaas, A.; Klussmann, J.P.; Wolber, P. Incidence and clinical outcome of primary carcinomas of the major salivary glands: 10-year data from a population-based state cancer registry in Germany. J. Cancer Res. Clin. Oncol. 2023, 149, 3811–3821. [Google Scholar] [CrossRef]
- Steuer, C.E.; Hanna, G.J.; Viswanathan, K.; Bates, J.E.; Kaka, A.S.; Schmitt, N.C.; Ho, A.L.; Saba, N.F. The evolving landscape of salivary gland tumors. CA Cancer J. Clin. 2023, 73, 597–619. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, N.; Leco-Berrocal, I.; Rubio-Alonso, L.; Arias-Irimia, O.; Martínez-González, J.M. Epidemiology and treatment of adenoid cystic carcinoma of the minor salivary glands: A meta-analytic study. Med. Oral Patol. Oral Y Cir. Bucal 2011, 16, e884–e889. [Google Scholar] [CrossRef]
- Bishop, J.A.; Yonescu, R.; Batista, D.; Eisele, D.W.; Westra, W.H. Most nonparotid “acinic cell carcinomas” represent mammary analog secretory carcinomas. Am. J. Surg. Pathol. 2013, 37, 1053–1057. [Google Scholar] [CrossRef]
- Lang, S.; Rotter, N.; Lorenzen, A.; Ihrler, S.; Eckel, R.; Hölzel, D.; Rasp, G.; Wollenberg, B.; Sommer, K. Salivary gland carcinomas. 1. Epidemiology, etiology, malignancy criteria, prognostic parameters and classification. HNO 2005, 53, 817–826. [Google Scholar] [CrossRef]
- PDQ Adult Treatment Editorial Board. Salivary Gland Cancer Treatment (PDQ®). In PDQ Cancer Information Summaries [Internet]; National Cancer Institute (US): Bethesda, MD, USA, 2023. Available online: https://www.cancer.gov/types/head-and-neck/hp/adult/salivary-gland-treatment-pdq (accessed on 20 March 2025).
- Ripamonti, C.B.; Bossi, P.; Manoukian, S.; Locati, L.; Colombo, M.; Carcangiu, M.L.; Vingiani, A.; Licitra, L.; Radice, P. Malignant salivary gland tumours in families with breast cancer susceptibility. Virchows Arch. Int. J. Pathol. 2021, 479, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M.; Chen, W.; Patel, R. Molecular targets in salivary gland cancers: From bench to bedside. Cancer Treat. Rev. 2020, 45, 89–99. [Google Scholar]
- Gasne, C.; Atallah, S.; Dauzier, E.; Thariat, J.; Fakhry, N.; Verillaud, B.; Classe, M.; Vergez, S.; Moya-Plana, A.; Costes-Martineau, V.; et al. Twelve years after: The french national network on rare head and neck tumours (REFCOR). Oral Oncol. 2024, 151, 106762. [Google Scholar] [CrossRef]
- Skálová, A.; Hyrcza, M.D.; Leivo, I. Update from the 5th edition of the World Health Organization classification of head and neck tumors: Salivary glands. Head Neck Pathol. 2022, 16, 200–242. [Google Scholar] [CrossRef]
- Sato, Y.; Kamada, Y.; Shibahara, J.; Wakai, S.; Sakamoto, K.; Arai, H. Genomic landscape of salivary gland tumors: Frequent alterations in TP53, HRAS, and the PI3K pathway. Cancer Genet. 2015, 208, 492–500. [Google Scholar]
- Williams, M.D.; Seethala, R.R.; Stenman, G. Salivary duct carcinoma: Updates in histology, cytology, molecular genetics, and management. Cancer Cytopathol. 2020, 128, 757–767. [Google Scholar]
- Skálová, A.; Stárek, I.; Gnepp, D.R. Targeted next-generation sequencing of parotid gland cancer uncovers genetic heterogeneity and potential therapeutic targets. Oncotarget 2018, 9, 10296–10309. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Bai, X.; Huang, X.; Wang, Q. Tumor microenvironment as a complex milieu driving cancer progression: A mini review. Clin. Transl. Oncol. 2024, 1–10. [Google Scholar] [CrossRef]
- Perri, F.; Fusco, R.; Sabbatino, F.; Fasano, M.; Ottaiano, A.; Cascella, M.; Marciano, M.L.; Pontone, M.; Salzano, G.; Maiello, M.E.; et al. Translational Insights in the Landscape of Salivary Gland Cancers: Ready for a New Era? Cancers 2024, 16, 970. [Google Scholar] [CrossRef]
- Cleymaet, R.; Vermassen, T.; Coopman, R.; Vermeersch, H.; De Keukeleire, S.; Rottey, S. The therapeutic landscape of salivary gland malignancies—Where are we now? Int. J. Mol. Sci. 2022, 23, 14891. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Z.; Li, G.; Zhang, Y.; Liu, X.; Li, B.; Wang, J.; Li, X. Cancer stem cells and their niche in cancer progression and therapy. Cancer Cell Int. 2023, 23, 305. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.P.; Wong, K.T.; King, A.D.; Ahuja, A.T. Imaging of salivary gland tumours. Eur. J. Radiol. 2008, 66, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, D.O.; Fabijanić, I. Sonographic diagnosis of parotid gland lesions: Correlation with the results of sonographically guided fine-needle aspiration biopsy. J. Clin. Ultrasound 2010, 38, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Khan, J.; Kaur, G.; Khalilullah, M.; Saha, A.K.; Kumar, A. Ultrasonography-Guided Fine Needle Aspiration Cytology Versus Histopathology: Diagnostic Consistency in Salivary Gland Neoplasms. Cureus 2024, 16, e69552. [Google Scholar] [CrossRef]
- Ettl, T. Malignant salivary gland tumors. Der MKG-Chir. 2015, 8, 151–166. [Google Scholar] [CrossRef]
- Murdoch-Kinch, C.A. Salivary gland imaging. J. Calif. Dent. Assoc. 2011, 39, 649–654. [Google Scholar] [CrossRef]
- Surov, A.; Meyer, H.J.; Wienke, A. Apparent diffusion coefficient for distinguishing between malignant and benign lesions in the head and neck region: A systematic review and meta-analysis. Front. Oncol. 2020, 9, 1362. [Google Scholar] [CrossRef]
- Roh, J.L.; Ryu, C.H.; Choi, S.H.; Kim, J.S.; Lee, J.H.; Cho, K.J.; Nam, S.Y.; Kim, S.Y. Clinical utility of 18F-FDG PET for patients with salivary gland malignancies. J. Nucl. Med. 2007, 48, 240–246. [Google Scholar]
- Schmidt, R.L.; Hall, B.J.; Wilson, A.R.; Layfield, L.J. A systematic review and meta-analysis of the diagnostic accuracy of fine-needle aspiration cytology for parotid gland lesions. Am. J. Clin. Pathol. 2011, 136, 45–59. [Google Scholar] [CrossRef]
- Colella, G.; Cannavale, R.; Flamminio, F.; Foschini, M.P. Fine-needle aspiration cytology of salivary gland lesions: A systematic review. J. Oral Maxillofac. Surg. 2010, 68, 2146–2153. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yoshimoto, S.; Omura, G.; Matsumoto, Y.; Sakai, A.; Eguchi, K.; Sakai, T.; Honma, Y.; Matsumoto, F.; Mori, T. An Institutional Experience of Core Needle Biopsy with Cooperative Implementation by Pathologists and Head and Neck Oncologists in Salivary Gland Carcinoma. Head Neck Pathol. 2024, 18, 122. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.; Alfarra, M.M.; Möllenhoff, K.; Engels, M.; Arolt, C.; Quaas, A.; Wolber, P.; Jansen, L.; Nachtsheim, L.; Grosheva, M.; et al. The Impact of Lesion-Specific and Sampling-Related Factors on Success of Salivary Gland Fine-Needle Aspiration Cytology. Head Neck Pathol. 2025, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, G.; Narayanan, A.V.; Srikiran, T.K.; Aravind, S.; Vijay, P.S. Importance of radio-histo-cytopathological correlation, A retrospective study of cyto-histological and radiological correlation of salivary gland lesions using Milan System for Reporting Salivary Gland Cytopathology. J. Cancer Res. Ther. 2024, 20, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Magaki, S.; Hojat, S.A.; Wei, B.; So, A.; Yong, W.H. An Introduction to the Performance of Immunohistochemistry; Springer: New York, NY, USA, 2019; pp. 289–298. [Google Scholar]
- Dunstan, R.W.; Wharton, K.A., Jr.; Quigley, C.; Lowe, A. The use of immunohistochemistry for biomarker assessment—Can it compete with other technologies? Toxicol. Pathol. 2011, 39, 988–1002. [Google Scholar] [CrossRef]
- Kumar, M.; Fatima, Z.H.; Goyal, P.; Qayyumi, B. Looking through the same lens-Immunohistochemistry for salivary gland tumors: A narrative review on testing and management strategies. Cancer Res. Stat. Treat. 2024, 7, 62–71. [Google Scholar] [CrossRef]
- Karpinets, T.V.; Mitani, Y.; Liu, B.; Zhang, J.; Pytynia, K.B.; Sellen, L.D.; Karagiannis, D.T.; Ferrarotto, R.; Futreal, A.P.; El-Naggar, A.K. Whole-Genome Sequencing of Common Salivary Gland Carcinomas: Subtype-Restricted and Shared Genetic Alterations. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 3960–3969. [Google Scholar] [CrossRef]
- Locati, L.D.; Ferrarotto, R.; Licitra, L.; Benazzo, M.; Preda, L.; Farina, D.; Gatta, G.; Lombardi, D.; Nicolai, P.; Vander Poorten, V.; et al. Current management and future challenges in salivary gland cancer. Front. Oncol. 2023, 13, 1264287. [Google Scholar] [CrossRef]
- Vander Poorten, V.; Bradley, P.J.; Takes, R.P.; Rinaldo, A.; Woolgar, J.A.; Mäkitie, A.; Haigentz, M.; Ferlito, A. Diagnosis and management of parotid malignancies. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 681–694. [Google Scholar]
- Garden, A.S.; Weber, R.S.; Morrison, W.H.; Ang, K.K.; Peters, L.J. The role of radiotherapy in salivary gland tumors: Retrospective analysis. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 707–714. [Google Scholar]
- Thoeny, H.C. Imaging in salivary gland diseases. Cancer Imaging 2007, 7, 52–62. [Google Scholar] [CrossRef]
- Bell, R.B.; Dierks, E.J.; Homer, L.; Potter, B.E. Management and outcomes of high-grade salivary gland malignancies. J. Oral Maxillofac. Surg. 2005, 63, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Terhaard, C.H.J.; Lubsen, H.; Rasch, C.R.N.; Leemans, C.R.; Kaanders, J.H.A.M.; Tjho-Heslinga, R.E.; Smeele, L.E.; Langendijk, J.A. The role of postoperative radiotherapy in salivary gland malignancies: A multi-institutional study. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Yom, S.S.; Brizel, D.M.; Pfister, D.G.; Spencer, S. Head and Neck Cancers, Version 1.2023, NCCN Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network (NCCN). 2023. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1437 (accessed on 20 March 2025).
- Liao, Z.; Lee, J.J.; Komaki, R.; Gomez, D.R.; Nguyen, Q.N. Proton beam therapy in head and neck cancers. J. Clin. Oncol. 2018, 36, 960–970. [Google Scholar]
- Rodriguez, C. A Randomized Phase II/Phase III Study of Adjuvant Concurrent Radiation and Chemotherapy Versus Radiation Alone in Resected High-Risk Malignant Salivary Gland Tumors (RTOG 1008). NRG Oncology. Available online: https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-1008 (accessed on 20 March 2025).
- Laurie, S.A.; Ho, A.L.; Fury, M.G.; Sherman, E.; Pfister, D.G. Systemic therapy in the management of metastatic or recurrent salivary gland malignancies. Lancet Oncol. 2011, 12, 286–295. [Google Scholar] [CrossRef]
- Laurie, S.A.; Licitra, L. Systemic therapy in the palliative management of advanced salivary gland cancers. J. Clin. Oncol. 2016, 34, 2118–2125. [Google Scholar] [CrossRef]
- Dreyfuss, A.I.; Clark, J.R.; Fallon, B.G.; Posner, M.R.; Norris, C.M.; Miller, D. Cyclophosphamide, doxorubicin, and cisplatin combination chemotherapy for advanced carcinomas of salivary gland origin. Cancer 1987, 60, 2869–2872. [Google Scholar] [CrossRef]
- Imamura, Y.; Kiyota, N.; Tahara, M.; Hanai, N.; Asakage, T.; Matsuura, K.; Ota, I.; Saito, Y.; Sano, D.; Kodaira, T.; et al. Systemic therapy for salivary gland malignancy: Current status and future perspectives. Jpn. J. Clin. Oncol. 2022, 52, 293–302. [Google Scholar] [CrossRef]
- Tannock, I.F.; Sutherland, D.J. Chemotherapy for adenocystic carcinoma. Cancer 1980, 46, 452–454. [Google Scholar] [CrossRef]
- Thariat, J.; Ferrand, F.R.; Fakhry, N.; Even, C.; Vergez, S.; Chabrillac, E.; Sarradin, V.; Digue, L.; Troussier, I.; Bensadoun, R.J. Radiotherapy for salivary gland cancer: REFCOR recommendations by the formal consensus method. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2024, 141, 221–226. [Google Scholar] [CrossRef]
- Sarradin, V.; Digue, L.; Vergez, S.; Thariat, J.; Fakhry, N.; Chabrillac, E.; Bensadoun, R.J.; Ferrand, F.R.; Even, C. Systemic therapies for salivary gland carcinoma (excluding adenoid cystic carcinoma): REFCOR recommendations by the formal consensus method. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2024, 141, 280–285. [Google Scholar] [CrossRef]
- Schramm, V.L.; Srodes, C.; Myers, E.N. Cisplatin therapy for adenoid cystic carcinoma. Arch. Otolaryngol. 1981, 107, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Licitra, L.; Marchini, S.; Spinazzè, S.; Rossi, A.; Rocca, A.; Grandi, C.; Molinari, R. Cisplatin in advanced salivary gland carcinoma. A phase II study of 25 patients. Cancer 1991, 68, 1874–1877. [Google Scholar] [CrossRef] [PubMed]
- Dick Haan, L.D.; De Mulder, P.H.; Vermorken, J.B.; Schornagel, J.H.; Vermey, A.; Verweij, J. Cisplatin-based chemotherapy in advanced adenoid cystic carcinoma of the head and neck. Head Neck 1992, 14, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Creagan, E.T.; Woods, J.E.; Rubin, J.; Schaid, D.J. Cisplatin-based chemotherapy for neoplasms arising from salivary glands and contiguous structures in the head and neck. Cancer 1988, 62, 2313–2319. [Google Scholar] [CrossRef]
- Vermorken, J.B.; Verweij, J.; De Mulder, P.H.M.; Cognetti, F.; Clavel, M.; Rodenhuis, S.; Papac, R.J.; Kirkpatrick, A.; Belpomme, D.; Snow, G.B. Epirubicin in patients with advanced or recurrent adenoid cystic carcinoma of the head and neck: A phase II study of the EORTC Head and Neck Cancer Cooperative Group. Ann. Oncol. 1993, 4, 785–788. [Google Scholar] [CrossRef]
- Van Herpen, C.M.L.; Locati, L.D.; Buter, J.; Thomas, J.; Bogaerts, J.; Lacombe, D.; de Mulder, P.; Awada, A.; Licitra, L.; Bernier, J.; et al. Phase II study on gemcitabine in recurrent and/or metastatic adenoid cystic carcinoma of the head and neck (EORTC 24982). Eur. J. Cancer 2008, 44, 2542–2545. [Google Scholar] [CrossRef]
- Verweij, J.; De Mulder, P.H.M.; De Graeff, A.; Vermorken, J.B.; Wildier, J.; Kerger, J.; Lefebvre, J.L. Phase II study on mitoxantrone in adenoid cystic carcinomas of the head and neck. Ann. Oncol. 1996, 7, 867–869. [Google Scholar] [CrossRef]
- Mattox, D.E.; Von Hoff, D.D.; Balcerzak, S.P. Southwest Oncology Group study of mitoxantrone for treatment of patients with advanced adenoid cystic carcinoma of the head and neck. Investig. New Drugs 1990, 8, 105–107. [Google Scholar] [CrossRef]
- Airoldi, M.; Fornari, G.; Pedani, F.; Marchionatti, S.; Gabriele, P.; Succo, G.; Bumma, C. Paclitaxel and carboplatin for recurrent salivary gland malignancies. Anticancer Res. 2000, 20, 3781–3783. [Google Scholar]
- Nakano, K.; Sato, Y.; Sasaki, T.; Shimbashi, W.; Fukushima, H.; Yonekawa, H.; Mitani, H.; Kawabata, K.; Takahashi, S. Combination chemotherapy of carboplatin and paclitaxel for advanced/metastatic salivary gland carcinoma patients: Differences in responses by different pathological diagnoses. Acta Oto-Laryngol. 2016, 136, 948–951. [Google Scholar] [CrossRef]
- Hill, M.E.; Constenla, D.O.; A’hern, R.P.; Henk, J.M.; Rhys-Evans, P.; Breach, N.; Archer, D.; Gore, M.E. Cisplatin and 5-fluorouracil for symptom control in advanced salivary adenoid cystic carcinoma. Oral Oncol. 1997, 33, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Belani, C.P.; Eisenberger, M.A.; Gray, W.C. Preliminary experience with chemotherapy in advanced salivary gland neoplasms. Med. Pediatr. Oncol. 1988, 16, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Licitra, L.; Cavina, R.; Grandi, C.; Di Palma, S.; Guzzo, M.; Demicheli, R.; Molinari, R. Cisplatin, doxorubicin and cyclophosphamide in advanced salivary gland carcinoma. Ann. Oncol. 1996, 7, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Dimery, I.W.; Legha, S.S.; Shirinian, M.; Hong, W.K. Fluorouracil, doxorubicin, cyclophosphamide, and cisplatin combination chemotherapy in advanced or recurrent salivary gland carcinoma. J. Clin. Oncol. 1990, 8, 1056–1062. [Google Scholar] [CrossRef]
- Airoldi, M.; Pedani, F.; Succo, G.; Gabriele, A.M.; Ragona, R.; Marchionatti, S.; Bumma, C. Phase II randomized trial comparing vinorelbine versus vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer 2001, 91, 541–547. [Google Scholar] [CrossRef]
- Airoldi, M.; Garzaro, M.; Pedani, F.; Ostellino, O.; Succo, G.; Riva, G.; Sensini, M.; Naqe, N.; Bellini, E.; Raimondo, L.; et al. Cisplatin+ vinorelbine treatment of recurrent or metastatic salivary gland malignancies (RMSGM): A final report on 60 cases. Am. J. Clin. Oncol. 2017, 40, 86–90. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, S.J.; Park, S.; Jung, H.A.; Lee, S.H.; Jeong, H.S.; Chung, M.K.; Ahn, M.J. A single-arm, prospective, phase II study of cisplatin plus weekly docetaxel as first-line therapy in patients with metastatic or recurrent salivary gland cancer. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 719–727. [Google Scholar] [CrossRef]
- Laurie, S.A.; Siu, L.L.; Winquist, E.; Maksymiuk, A.; Harnett, E.L.; Walsh, W.; Chung, M.K.; Parulekar, W.R. A phase 2 study of platinum and gemcitabine in patients with advanced salivary gland cancer: A trial of the NCIC Clinical Trials Group. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2010, 116, 362–368. [Google Scholar] [CrossRef]
- Xu, B.; Haroon Al Rasheed, M.R.; Antonescu, C.R.; Alex, D.; Frosina, D.; Ghossein, R.; Jungbluth, A.A.; Katabi, N. Pan-Trk immunohistochemistry is a sensitive and specific ancillary tool for diagnosing secretory carcinoma of the salivary gland and detecting ETV6-NTRK3 fusion. Histopathology 2020, 76, 568–577. [Google Scholar] [CrossRef]
- Skalova, A.; Vanecek, T.; Sima, R.; Laco, J.; Weinreb, I.; Perez-Ordonez, B.; Stárek, I.; Geierová, M.; Simpson, R.H.W.; Passador-Santos, F. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: A hitherto undescribed salivary gland tumor entity. Am. J. Surg. Pathol. 2010, 34, 599–608. [Google Scholar] [CrossRef]
- Huang, S.C.; Ghossein, R.A.; Bishop, J.A. Pan-TRK Immunohistochemistry Is Highly Correlated with NTRK3 Gene Rearrangements in Salivary Gland Tumors. Am. J. Surg. Pathol. 2021, 45, 1487–1498. [Google Scholar]
- Dunn, D.B. Larotrectinib and Entrectinib: TRK Inhibitors for the Treatment of Pediatric and Adult Patients With NTRK Gene Fusion. J. Adv. Pr. Oncol. 2020, 11, 418–423. [Google Scholar]
- Han, S.-Y. TRK inhibitors: Tissue-agnostic anti-cancer drugs. Pharmaceuticals 2021, 14, 632. [Google Scholar] [CrossRef]
- Le, X.; Baik, C.; Bauman, J.; Gilbert, J.; Brose, M.; Grilley-Olson, J.; Patil, T.; McDermott, R.; Raez, L.; Johnson, J.M.; et al. Larotrectinib treatment for patients with TRK fusion-positive salivary gland cancers. Oncologist 2022, 29, e779–e788. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Drilon, A.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Demetri, G.D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- A Study to Test the Safety of the Investigational Drug Selitrectinib in Children and Adults That May Treat Cancer. Available online: https://ClinicalTrials.gov/show/NCT03215511 (accessed on 20 March 2025).
- A Study of Repotrectinib in Pediatric and Young Adult Subjects Harboring ALK, ROS1, OR NTRK1-3 Alterations. Available online: https://ClinicalTrials.gov/show/NCT04094610 (accessed on 20 March 2025).
- Florou, V.; Nevala-Plagemann, C.; Whisenant, J.; Maeda, P.; Gilcrease, G.W.; Garrido-Laguna, I. Clinical activity of selitrectinib in a patient with mammary analogue secretory carcinoma of the parotid gland with secondary resistance to entrectinib. J. Natl. Compr. Cancer Netw. 2021, 19, 478–482. [Google Scholar] [CrossRef]
- Krzakowski, M.; Lu, S.; Cousin, S.; Smit, E.; Springfeld, C.; Goto, K.; Garrido, P.; Chung, C.; Lin, J.J.; Bray, V.; et al. Updated analysis of the efficacy and safety of entrectinib in patients with locally advanced/metastatic NTRK fusion-positive (NTRK-FP) solid tumors. J. Clin. Oncol. 2022, 40, 3099. [Google Scholar] [CrossRef]
- Javaheripour, A.; Saatloo, M.V.; Vahed, N.; Gavgani, L.F.; Kouhsoltani, M. Evaluation of HER2/neu expression in different types of salivary gland tumors: A systematic review and meta-analysis. J. Med. Life 2022, 15, 595–600. [Google Scholar] [CrossRef]
- Bewick, M.; Chadderton, T.; Conlon, M.; Lafrenie, R.M.; Morris, D.R.; Stewart, D.A.; Glück, S. Expression of C-erbB-2/HER-2 in patients with metastatic breast cancer undergoing high-dose chemotherapy and autologous blood stem cell support. In Molecular Biology of Hematopoiesis 6; Springer Science & Business Media: Boston, MA, USA, 1999. [Google Scholar]
- Suzuki, T.; Furusawa, J.; Sakashita, T. HER2 expression in salivary duct carcinoma. Jpn. J. Clin. Oncol. 2011, 41, 1053–1060. [Google Scholar] [CrossRef]
- Zöllösi, J.; Balázs, M.; Feuerstein, B.; Benz, C.; Waldman, F. ERBB-2 (HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity in human breast cancer. Cancer Res. 1995, 55, 5400–5407. [Google Scholar]
- Glisson, B.; Colevas, A.; Haddad, R.; Krane, J.; El-Naggar, A.; Kies, M.; Costello, R.; Summey, C.; Arquette, M.; Langer, C.; et al. HER2 expression in salivary gland carcinomas. Clin. Cancer Res. 2004, 10, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Tada, Y.; Saotome, T.; Akazawa, K.; Ojiri, H.; Fushimi, C.; Masubuchi, T.; Matsuki, T.; Tani, K.; Nagao, T.; et al. Phase II trial of trastuzumab and docetaxel in patients with human epidermal growth factor receptor 2–positive salivary duct carcinoma. J. Clin. Oncol. 2019, 37, 125–134. [Google Scholar] [CrossRef]
- Limaye, S.A.; Posner, M.R.; Krane, J.F.; Fonfria, M.; Lorch, J.H.; Dillon, D.A.; Shreenivas, A.V.; Tishler, R.B.; Haddad, R.I. Trastuzumab for the treatment of salivary duct carcinoma. Oncologist 2013, 18, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, R.; Bowles, D.W.; Kang, H.; Meric-Bernstam, F.; Hainsworth, J.; Spigel, D.R.; Bose, R.; Burris, H.; Sweeney, C.J.; Swanton, C.; et al. Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: Results from MyPathway, a phase IIa multiple basket study. Ann. Oncol. 2020, 31, 412–421. [Google Scholar] [CrossRef]
- Jhaveri, K.L.; Wang, X.V.; Makker, V.; Luoh, S.W.; Mitchell, E.P.; Zwiebel, J.A.; Sharon, E.; Gray, R.J.; Li, S.; Flaherty, K.T.; et al. Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: Results from the NCI-MATCH trial (EAY131) subprotocol Q. Ann. Oncol. 2019, 30, 1821–1830. [Google Scholar] [CrossRef]
- Corrêa, T.S.; Matos, G.D.R.; Segura, M.; Dos Anjos, C.H. Second-line treatment of HER2-positive salivary gland tumor: Ado-trastuzumab emtansine (T-DM1) after progression on trastuzumab. Case Rep. Oncol. 2018, 11, 252–257. [Google Scholar] [CrossRef]
- Filippini, D.; Pagani, R.; Tober, N.; Lorini, L.; Riefolo, M.; Molinari, G.; Burato, A.; Alfieri, S.; Bossi, P.; Presutti, L. HER2-targeted therapies for salivary gland cancers. Oral Oncol. 2023, 148, 106612. [Google Scholar] [CrossRef]
- Haddad, R.; Colevas, A.D.; Krane, J.F.; Cooper, D.; Glisson, B.; Amrein, P.C.; Weeks, L.; Costello, R.; Posner, M. Herceptin in patients with advanced or metastatic salivary gland carcinomas. A Phase II study. Oral Oncol. 2003, 39, 724–727. [Google Scholar] [CrossRef]
- Li, B.T.; Shen, R.; Offin, M.; Buonocore, D.J.; Myers, M.L.; Venkatesh, A.; Razavi, P.; Ginsberg, M.S.; Ulaner, G.A.; Solit, D.B.; et al. Ado-trastuzumab emtansine in patients with HER2 amplified salivary gland cancers (SGCs): Results from a phase II basket trial. J. Clin. Oncol. 2019, 37, 6001. [Google Scholar] [CrossRef]
- Willsmore, Z.; Coumbe, B.; Crescioli, S.; Reci, S.; Gupta, A.; Harris, R.J.; Chenoweth, A.; Chauhan, J.D.; Bax, H.; McCraw, A.; et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur. J. Immunol. 2021, 51, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Kumai, T.; Ishida, Y.; Yuasa, R.; Kubota, A.; Wakisaka, R.; Komatsuda, H.; Yamaki, H.; Wada, T.; Harabuchi, Y. The efficacy of PD-1 inhibitors in patients with salivary gland carcinoma: A retrospective observational study. Laryngoscope Investig. Otolaryngol. 2022, 7, 1808–1813. [Google Scholar] [CrossRef] [PubMed]
- Nagatani, Y.; Kiyota, N.; Imamura, Y.; Koyama, T.; Funakoshi, Y.; Komatsu, M.; Itoh, T.; Teshima, M.; Nibu, K.; Sakai, K.; et al. Different characteristics of the tumor immune microenvironment among subtypes of salivary gland cancer. Asia-Pac. J. Clin. Oncol. 2024, 20, 779–788. [Google Scholar] [CrossRef]
- Cohen, R.B.; Delord, J.P.; Doi, T.; Piha-Paul, S.A.; Liu, S.V.; Gilbert, J.; Algazi, A.P.; Damian, S.; Hong, R.L.; Keam, B.; et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: Findings of the phase 1b KEYNOTE-028 study. Am. J. Clin. Oncol. 2018, 41, 1083–1088. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Bang, Y.J.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Niwa, K.; Kawakita, D.; Nagao, T.; Takahashi, H.; Saotome, T.; Okazaki, M.; Yamazaki, K.; Okamoto, I.; Hirai, H.; Tada, Y.; et al. Multicentre, retrospective study of the efficacy and safety of nivolumab for recurrent and metastatic salivary gland carcinoma. Sci. Rep. 2020, 10, 16988. [Google Scholar] [CrossRef]
- Rodriguez, C.P.; Wu, Q.; Voutsinas, J.; Fromm, J.R.; Jiang, X.; Pillarisetty, V.G.; Lee, S.M.; Santana-Davila, R.; Goulart, B.; Martins, R.; et al. A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin. Cancer Res. 2020, 26, 837–845. [Google Scholar] [CrossRef]
- Pemetrexed and Pembrolizumab for the Treatment of Recurrent and/or Metastatic Salivary Gland Cancer. Available online: https://ClinicalTrials.gov/show/NCT04895735 (accessed on 15 March 2025).
- Tchekmedyian, V.; Sherman, E.J.; Dunn, L.; Tran, C.; Baxi, S.; Katabi, N.; Antonescu, C.R.; Ostrovnaya, I.; Haque, S.S.; Pfister, D.G.; et al. Phase II study of lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J. Clin. Oncol. 2019, 37, 1529–1537. [Google Scholar] [CrossRef]
- Study of Nivolumab Plus Ipilimumab in Patients with Salivary Gland Cancer. Available online: https://ClinicalTrials.gov/show/NCT03172624 (accessed on 20 March 2025).
- Yura, Y.; Hamada, M. Oral immune-related adverse events caused by immune checkpoint inhibitors: Salivary gland dysfunction and mucosal diseases. Cancers. 2022, 14, 792. [Google Scholar] [CrossRef]
- Mahmood, U.; Bang, A.; Chen, Y.H.; Mak, R.H.; Lorch, J.H.; Hanna, G.J.; Nishino, M.; Manuszak, C.; Thrash, E.M.; Schoenfeld, J.D.; et al. A randomized phase 2 study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 134–144. [Google Scholar] [CrossRef]
- Dalin, M.G.; Watson, P.A.; Ho, A.L.; Morris, L.G. Androgen receptor signaling in salivary gland cancer. Cancers 2017, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Boon, E.; van Boxtel, W.; Buter, J.; Baatenburg de Jong, R.J.; van Es, R.J.; Bel, M.; Fiets, E.; Oosting, S.F.; Slingerland, M.; van Herpen, C.M.; et al. Androgen deprivation therapy for androgen receptor-positive advanced salivary duct carcinoma: A nationwide case series of 35 patients in The Netherlands. Head Neck 2018, 40, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Locati, L.D.; Perrone, F.; Cortelazzi, B.; Lo Vullo, S.; Bossi, P.; Dagrada, G.; Quattrone, P.; Bergamini, C.; Potepan, P.; Licitra, L.; et al. Clinical activity of androgen deprivation therapy in patients with metastatic/relapsed androgen receptor–positive salivary gland cancers. Head Neck 2016, 38, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Honma, Y.; Monden, N.; Yamazaki, K.; Kano, S.; Satake, H.; Kadowaki, S.; Utsumi, Y.; Nakatogawa, T.; Takano, R.; Fujii, K.; et al. Apalutamide and goserelin for androgen receptor-positive salivary gland carcinoma: A phase 2 nonrandomized clinical trial, YATAGARASU. Clin Cancer Res. 2024, 30, 3416–3427. [Google Scholar] [CrossRef]
- Van Boxtel, W.; Locati, L.D.; van Engen-Van Grunsven, A.C.H.; Bergamini, C.; Jonker, M.A.; Fiets, E.; Cavalieri, S.; Tooten, S.; Bos, E.; Quattrone, P.; et al. Adjuvant androgen deprivation therapy for poor-risk, androgen receptor–positive salivary duct carcinoma. Eur. J. Cancer 2019, 110, 62–70. [Google Scholar] [CrossRef]
- Fushimi, C.; Tada, Y.; Takahashi, H.; Nagao, T.; Ojiri, H.; Masubuchi, T.; Matsuki, T.; Miura, K.; Kawakita, D.; Saotome, T.; et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann. Oncol. 2018, 29, 979–984. [Google Scholar] [CrossRef]
- Honma, K.; Fujiwara, M.; Ikeda, H.; Yamamoto, T.; Torigoe, T.; Sato, T.; Aoyagi, K.; Iwahashi, N.; Itoh, T.; Yamashita, Y.; et al. Androgen receptor expression in salivary duct carcinoma: Potential diagnostic and therapeutic implications. Mod Pathol. 2003, 16, 772–778. [Google Scholar]
- Locati, L.D.; Cavalieri, S.; Bergamini, C.; Resteghini, C.; Colombo, E.; Calareso, G.; Alfieri, S.; Bossi, P.; Perrone, F.; Licitra, L.; et al. Abiraterone acetate in patients with castration-resistant, androgen receptor–expressing salivary gland cancer: A phase II trial. J. Clin. Oncol. 2021, 39, 4061–4068. [Google Scholar] [CrossRef]
- Androgen Deprivation Therapy (ADT) and Pembrolizumab for Advanced Stage Androgen Receptor-Positive Salivary Gland Carcinoma. Available online: https://ClinicalTrials.gov/show/NCT03942653 (accessed on 20 March 2025).
- Ho, A.L.; Foster, N.R.; Zoroufy, A.J.; Campbell, J.D.; Worden, F.; Price, K.; Adkins, D.; Bowles, D.W.; Kang, H.; Schwartz, G.K.; et al. Phase II study of enzalutamide for patients with androgen receptor–positive salivary gland cancers (alliance A091404). J. Clin. Oncol. 2022, 40, 4240–4249. [Google Scholar] [CrossRef]
- Guilmette, J.; Dias-Santagata, D.; Nosé, V.; Lennerz, J.; Sadow, P. Novel gene fusions in secretory carcinoma of the salivary glands: Enlarging the ETV6 family. Hum. Pathol. 2019, 83, 50–58. [Google Scholar] [CrossRef]
- Lassche, G.; van Helvert, S.; Eijkelenboom, A.; Tjan, M.J.H.; Jansen, E.; van Cleef, P.V.; Verhaegh, G.; Kamping, E.; Grünberg, K.; van Engen-van Grunsven, A.V.E.; et al. Identification of fusion genes and targets for genetically matched therapies in a large cohort of salivary gland cancer patients. Cancers 2022, 14, 4156. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hu, H.; Hu, Y.; He, Y.; Li, B.; Cai, D.; Li, Y.; Li, C.; Zhang, Y.; Zhang, Y.; et al. Genomic landscape of 891 RET fusions detected across diverse malignancies. Oncotarget 2020, 11, 2595–2604. [Google Scholar]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Drilon, A.; et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef]
- Reingold, R.E.; Parisi, R.; Harada, G.; Moy, A.; Dranitsaris, G.; Francis, J.H.; Gounder, M.; Patel, J.D.; Subbiah, V.; Taylor, M.H. Mucocutaneous adverse events in cancer patients treated with selective RET kinase inhibition. JTO Clin Res Rep. 2025, 6, 100792. [Google Scholar]
- van Boxtel, W.; Uijen, M.J.; Krens, S.D.; Dijkema, T.; Willems, S.M.; Jonker, M.A.; Pegge, S.A.H.; van Engen-van Grunsven, A.C.H.; van Herpen, C.M. Excessive toxicity of cabozantinib in a phase II study in patients with recurrent and/or metastatic salivary gland cancer. Eur. J. Cancer 2022, 161, 128–137. [Google Scholar] [CrossRef]
- Ho, A.L.; Sherman, E.J.; Baxi, S.S.; Haque, S.; Ni, A.; Antonescu, C.R.; Katabi, N.; Morris, L.G.; Chan, T.A.; Pfister, D.G. Phase II study of regorafenib in progressive, recurrent/metastatic adenoid cystic carcinoma. J. Clin. Oncol. 2016, 34, 6096. [Google Scholar] [CrossRef]
- Keam, B.; Kim, S.B.; Shin, S.H.; Cho, B.C.; Lee, K.W.; Kim, M.K.; Yun, H.J.; Lee, S.H.; Yoon, D.H.; Bang, Y.J. Phase 2 study of dovitinib in patients with metastatic or unresectable adenoid cystic carcinoma. Cancer 2015, 121, 2612–2617. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Taylor, M.H.; et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N. Engl. J. Med. 2022, 384, 2394–2405. [Google Scholar] [CrossRef]
- Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Drilon, A.; et al. Pralsetinib for RET fusion–positive non–small-cell lung cancer (ARROW): A multi-cohort, open-label, registrational phase 1/2 study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
- Halle, B.; Johnson, D.B. Defining and targeting BRAF mutations in solid tumors. Curr. Treat. Options Oncol. 2021, 22, 30. [Google Scholar] [CrossRef]
- Wagner, S.A. Clinical associations and genetic interactions of oncogenic BRAF alleles. PeerJ 2022, 10, e14126. [Google Scholar] [CrossRef] [PubMed]
- Wendorff, T.J.; Kung, J.; Sudhamsu, J. Oncogenic mutations in BRAF and MEK weaken the ATP-stabilized inactive conformation of RAF to promote RAF dimerization and MAPK pathway activation. Mol. Cancer Res. 2023, 21, A036. [Google Scholar] [CrossRef]
- Mohtasham, N.; Ayatollahi, H.; Ghazi, N.; Jafarian, A.; Roshanmir, A. Consistent absence of BRAF mutations in salivary gland carcinomas. J. Dent. Mater. Tech. 2017, 6, 73–78. [Google Scholar]
- Bodnar, M.; Burduk, P.; Antosik, P.; Jarmuż-Szymczak, M.; Wierzbicka, M.; Marszałek, A. Assessment of BRAF V600E (VE1) protein expression and BRAF gene mutation status in codon 600 in benign and malignant salivary gland neoplasms. J. Oral Pathol. Med. 2017, 46, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Dahse, R.; Kromeyer-Hauschild, K.; Berndt, A.; Kosmehl, H. No Incidence of BRAF Mutations in Salivary Gland Carcinomas—Implications for Anti-EGFR Therapies. BioMed Res. Int. 2009, 2009, 501736. [Google Scholar] [CrossRef]
- Lin, V.T.G.; Nabell, L.; Spencer, S.; Carroll, W.; Harada, S.; Yang, E. First-line treatment of widely metastatic BRAF-mutated salivary duct carcinoma with combined BRAF and MEK inhibition. J. Natl. Compr. Cancer Netw. 2018, 16, 1166–1170. [Google Scholar] [CrossRef]
- Gouda, M.; Subbiah, V. Expanding the Benefit: Dabrafenib/Trametinib as Tissue-Agnostic Therapy for BRAF V600E-Positive Adult and Pediatric Solid Tumors. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e404770. [Google Scholar] [CrossRef]
- Salama, A.K.S.; Li, S.; Macrae, E.R.; Park, J.-I.; Mitchell, E.P.; Zwiebel, J.A.; Chen, H.X.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. Dabrafenib and trametinib in patients with tumors with BRAF^V600E mutations: Results of the NCI-MATCH trial subprotocol H. J. Clin. Oncol. 2020, 38, 3895–3904. [Google Scholar] [CrossRef]
- Phuchareon, J.; van Zante, A.; Overdevest, J.; McCormick, F.; Eisele, D.; Tetsu, O. c-Kit expression is rate-limiting for stem cell factor-mediated disease progression in adenoid cystic carcinoma of the salivary glands. Transl. Oncol. 2014, 7, 537–545. [Google Scholar] [CrossRef]
- Jeng, Y.; Lin, C.; Hsu, H. Expression of the c-KIT protein is associated with certain subtypes of salivary gland carcinoma. Cancer Lett. 2000, 154, 107–111. [Google Scholar] [CrossRef]
- Hotte, S.J.; Winquist, E.W.; Lamont, E.; MacKenzie, M.; Vokes, E.; Chen, E.X.; Brown, S.; Pond, G.R.; Murgo, A.; Siu, L.L. Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: A Princess Margaret Hospital phase II consortium study. J. Clin. Oncol. 2005, 23, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.R.; Talmi, Y.; Catane, R.; Symon, Z.; Yosepovitch, A.; Levitt, M. A phase II study of Imatinib for advanced adenoid cystic carcinoma of head and neck salivary glands. Oral Oncol. 2007, 43, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, N.; Mais, K.; Shenjere, P.; Julyan, P.; Hastings, D.; Ward, T.; Ryder, W.D.; Bruce, I.; Homer, J.; Slevin, N.J. Phase II study of cisplatin and imatinib in advanced salivary adenoid cystic carcinoma. Br. J. Oral Maxillofac. Surg. 2011, 49, 510–515. [Google Scholar] [CrossRef]
- Wong, S.; Karrison, T.; Hayes, D.; Kies, M.; Cullen, K.; Tanvetyanon, T.; Argiris, A.; Takebe, N.; Lim, D.; Saba, N.F.; et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann. Oncol. 2016, 27, 318–323. [Google Scholar] [CrossRef]
- Mancini, M.; Yarden, Y. Mutational and network-level mechanisms underlying resistance to anti-cancer kinase inhibitors. Semin. Cell Dev. Biol. 2016, 50, 164–176. [Google Scholar] [CrossRef]
- Ou, X.; Gao, G.; Habaz, I.A.; Wang, Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm 2024, 5, e694. [Google Scholar] [CrossRef]
- Błochowiak, K.; Sokalski, J.; Bodnar, M.; Trzybulska, D.; Marszałek, A.; Witmanowski, H. Expression of VEGF165b, VEGFR1, VEGFR2, and CD34 in benign and malignant tumors of parotid glands. Adv. Clin. Exp. Med. 2018, 27, 83–90. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, L.; Dou, S.; Li, R.; Li, J.; Ye, L.; Jiang, W.; Dong, M.; Ruan, M.; Zhang, C.; et al. Apatinib in patients with recurrent or metastatic adenoid cystic carcinoma of the head and neck: A single-arm, phase II prospective study. Ther. Adv. Med. Oncol. 2021, 13, 17588359211013626. [Google Scholar] [CrossRef]
- Locati, L.D.; Cavalieri, S.; Bergamini, C.; Resteghini, C.; Alfieri, S.; Calareso, G.; Bossi, P.; Perrone, F.; Tamborini, E.; Licitra, L.; et al. Phase II trial with axitinib in recurrent and/or metastatic salivary gland cancers of the upper aerodigestive tract. Head Neck 2019, 41, 3670–3676. [Google Scholar] [CrossRef]
- Kang, E.J.; Ahn, M.J.; Ock, C.Y.; Lee, K.W.; Kwon, J.H.; Yang, Y.; Choi, Y.H.; Kim, M.K.; Ji, J.H.; Keam, B.; et al. Randomized phase II study of axitinib versus observation in patients with recurred or metastatic adenoid cystic carcinoma. Clin. Cancer Res. 2021, 27, 5272–5279. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.J.; Lee, J.; Lee, S.H.; Sun, J.M.; Park, K.; An, H.; Cho, J.; Kang, E.; Lee, H.; et al. Clinical trial of nintedanib in patients with recurrent or metastatic salivary gland cancer of the head and neck: A multicenter phase 2 study (Korean Cancer Study Group HN14-01). Cancer 2017, 123, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Ahn, M.; Keam, B.; Bowles, D.; Wong, D.; Ho, A.; Kim, S.B.; Worden, F.; Yun, T.; Jang, S.; et al. Updated results from a phase 2 study of the oral vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor rivoceranib for recurrent or metastatic (R/M) adenoid cystic carcinoma (ACC). J. Clin. Oncol. 2023, 41, 6040. [Google Scholar] [CrossRef]
- Fujiwara, M.; Ikesue, H.; Yamaoka, K.; Uchida, M.; Uesawa, Y.; Muroi, N.; Shimizu, T. Disproportionality analysis of hepatotoxic and gastrointestinal adverse events associated with nintedanib using the Japanese Adverse Drug Event Report (JADER) database. In Vivo 2024, 39, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.K.; Ryu, M.H.; Hong, Y.; Choi, C.M.; Kim, T.W.; Ryoo, B.Y.; Kim, J.E.; Weis, J.R.; Kingsford, R.; Park, C.H.; et al. Phase 1/2a study of rivoceranib, a selective VEGFR-2 angiogenesis inhibitor, in patients with advanced solid tumors. Cancer Res Treat. 2024, 56, 743–750. [Google Scholar] [CrossRef]
- Shalmon, B.; Drendel, M.; Wolf, M.; Hirshberg, A.; Cohen, Y. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA. Int. J. Oral Maxillofac. Surg. 2016, 45, 721–725. [Google Scholar] [CrossRef]
- Younes, M.N.; Park, Y.W.; Yazici, Y.D.; Gu, M.; Santillan, A.A.; Nong, X.; Kim, S.; Jasser, S.A.; El-Naggar, A.K.; Myers, J.N. Concomitant inhibition of epidermal growth factor and vascular endothelial growth factor receptor tyrosine kinases reduces growth and metastasis of human salivary adenoid cystic carcinoma in an orthotopic nude mouse model. Mol. Cancer Ther. 2006, 5, 2696–2705. [Google Scholar] [CrossRef]
- Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep. 2020, 47, 4587–4629. [Google Scholar] [CrossRef]
- Bauer, T.; Patel, M.; Infante, J. Targeting PI3 kinase in cancer. Pharmacol. Ther. 2015, 146, 53–60. [Google Scholar] [CrossRef]
- Hoover, A.C.; Milhem, M.M.; Anderson, C.M.; Sun, W.; Smith, B.J.; Hoffman, H.T.; Buatti, J.M. Efficacy of nelfinavir as monotherapy in refractory adenoid cystic carcinoma: Results of a phase II clinical trial. Head Neck 2015, 37, 722–726. [Google Scholar] [CrossRef]
- Kim, D.W.; Oh, D.Y.; Shin, S.H.; Kang, J.H.; Cho, B.C.; Chung, J.S.; Kim, H.J.; Park, K.U.; Kwon, J.H.; Bang, Y.J.; et al. A multicenter phase II study of everolimus in patients with progressive unresectable adenoid cystic carcinoma. BMC Cancer 2014, 14, 795. [Google Scholar] [CrossRef]
- Tsimberidou, A.; Verschraegen, C.; Heestand, G.; Kaleta, R.; Scheuenpflug, J.; Huck, B.; Weise, A.; Kurzrock, R. P5.01A first in human, dose escalation trial of MSC2363318A—A dual p70S6K/Akt inhibitor, for patients with advanced malignancies. Ann. Oncol. 2015, 26, ii25. [Google Scholar] [CrossRef]
- Li, X.; Dai, D.; Chen, B.; Tang, H.; Xie, X.; Wei, W. Efficacy of PI3K/AKT/mTOR pathway inhibitors for the treatment of advanced solid cancers: A literature-based meta-analysis of 46 randomized control trials. PLoS ONE 2018, 13, e0192464. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, H.; Xu, Z.; Yang, B.; Luo, P.; He, Q. Molecular basis for class side effects associated with PI3K/AKT/mTOR pathway inhibitors. Expert Opin. Drug Metab. Toxicol. 2019, 15, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Argiris, A.; Ghebremichael, M.; Burtness, B.; Axelrod, R.S.; Deconti, R.C.; Forastiere, A.A. A phase 2 trial of bortezomib followed by the addition of doxorubicin at progression in patients with recurrent or metastatic adenoid cystic carcinoma of the head and neck: A trial of the Eastern Cooperative Oncology Group (E1303). Cancer 2011, 117, 3374–3382. [Google Scholar] [CrossRef] [PubMed]
Tumor | Immunohistochemistry |
---|---|
Polymorphous adenocarcinoma | p63, p53, CKAE 1/3, Vimentin, S100 |
Pleomorphic adenoma | CK7, CAM5, SMA, C-kit, SMMHC, Calponin +PLAG1 |
Adenoid cystic carcinoma | +p63, +P40, CD117, CK7, CKAE1/3, EMA, DOG1, AR, CEA |
Mucoepidermoid carcinoma | +CK7, +P63, EMA, CK20, S100, SMA, SMMHC, Calponin |
Clear cells | +P63, -CD10 |
Myoepithelial carcinoma | + CK7, HMWK, CKAE1/3, EMA, +Vimentin, +S100, +SMA, SMMHC |
Acinic cell carcinoma | CK7, DOG1 |
Salivary ductal carcinoma | AR +, Her2+, CK7, CAKE1/3, EMA, GCDFP15, CEA |
Tumor | Molecular Alteration |
---|---|
Adenoid cystic carcinoma | NOTCH1 mutation, EGFR, KIT overexpression, MYB-NF1B fusion gene |
Mucoepidermoid | PI3KCA, BRCA1/2, CDKN2A mutations, CRTC1-MAML2 fusion gene |
Salivary duct carcinoma | ERBB2 (HER2), AR |
Acinic cell carcinoma | CDKN2A+, PPP1R13B deletion, NR4A3 rearrangement |
Pleomorphic adenoma | HER-2 overexpression, ERBB2 amplification, HRAS mutation, PI3KCA mutation; PTEN loss and PLAG1 rearrangements |
Secretory carcinoma | PRSS1, MLH1, MUTYH and STK11 mutation, ETV6-NTRK3 fusion gene present |
Intraductal carcinoma | KRAS and/or PI3KCA mutation, NCOA4-RET fusion gene |
Myoepithelial carcinoma | KRAS and HRAS mutation, SMARCB1 deletion |
Phase of the Trial | Agent | Target Molecule | Patients | Subtype of Tumor | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [78] | Larotrectinib | NTRK1/2/3 | 24 | TRK fusion-positive salivary gland cancers | 92% (95% CI: 73–99) | 78% at 24 months | Not reported |
I/II [84] | Entrectinib | NTRK1/2/3, ROS1 | 150 (Various tumors) | Multiple solid tumors | 61.3% (95% CI: 53.1–69.2) | 13.8 months (95% CI: 10.1–20.0) | 37.1 months (95% CI: 27.2-NE) |
II [80] | Entrectinib | NTRK, ROS1, ALK | 10 | NTRK fusion-positive AdCC and non-AdCC | 86% | Not reported | Not reported |
Phase | Agent | Target | Pts(n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [96] | Trastuzumab | HER2 | 14 | HER2+ AdCC and Non-AdCC, including MEC, adeno, and SCC | 8% | 4.2 | - |
II [92] | Trastuzumab + Pertuzumab | HER2 | 16 | HER2+ non-AdCC, including MEC, SDC, and adeno | 56% | 9.1 | 20.4 |
II [90] | Trastuzumab + Docetaxel | HER2 | 57 | HER2+ SDC | 70% | 8.9 | 39.7 |
II [97] | Ado-trastuzumab emtansine | HER2-targeted ADC | 10 | HER2+ | 90% | Not reached | Not reached |
Phase | Study | Agent | Target | Subtype | Patient | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|---|
Ib [101] | KEYNOTE-028 | Pembrolizumab | PD-1 | 26 | PD-L1+ AdCC and non-AdCC | 12% | 4 | 13 |
II [102] | KEYNOTE-158 | Pembrolizumab | PD-1 | 109 | AdCC and non-AdCC, including MEC, SDC, AcCC, etc. | 5% | 4 | 21.1 |
II [104] | Pembrolizumab + Vorinostat | Pembrolizumab + Vorinostat | PD-1 + Histone deacetylase | 25 | AdCC and non-AdCC, including MEC, AcCC, and other subtypes | 16% | 6.9 | 14 |
II [109] | Pembrolizumab + IMRT | Pembrolizumab + IMRT | PD-1 | 10 | AdCC | 0% | 4.5 | Not reached |
Phase | Agent | Target | Pts (n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [119] | Enzalutamide | AR | 46 | AR+ AdCC and non-AdCC, including SDC and ex pleomorphic adenoma | 15% | 5.6 | 17 |
II [117] | Abiraterone acetate | CYP17A1 | 24 | AR+ non-AdCC, including SDC and adeno | 21% | 3.7 (SDC: 4.0, Adeno: 2.5) | 22.5 (SDC: Not reached, Adeno: 8.8) |
II [115] | Leuprorelin acetate + Bicalutamide | GnRH receptor agonist + AR | 36 | AR+ non-AdCC, including SDC and adeno | 42% | 8.8 | 30.5 |
Phase | Agent | Target | Pts (n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [125] | Cabozantinib | MET, RET, AXL, VEGFR2, FLT3, c-KIT | 21 | AdCC and non-AdCC, including MEC, SDC, and others | 10% | 9.4 (AdCC)/7.2 (Non-AdCC) | 27.5 (AdCC)/14.2 (Non-AdCC) |
II [106] | Lenvatinib | VEGFR, FGFR, PDGFR, RET, KIT | 32 | AdCC | 16% | 17.5 | 27 |
II [126] | Regorafenib | VEGFR, FGFR, PDGFR | 38 | AdCC | 0% | Not reported | Not reported |
II [127] | Dovitinib | VEGFR, c-KIT, PDGFR, CSF-1R, RET, TrkA, FLT3 | 32 | AdCC | 3% | 6 | 20.6 |
Phase | Agent | Target | Pts (n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
I/II [128] | Selpercatinib | RET | 316 | NSCLC | 61% (pretreated); 84% (treatment-naive) | 24.9 months (pretreated); 22.0 months (treatment-naive) | Not reached |
I/II [128] | Selpercatinib | RET | 4 | Salivary gland | 50% | Not Reported | Not Reported |
I/II [129] | Pralsetinib | RET | 29 | Various solid tumors (excluding NSCLC and thyroid) | 57% | 7 months | 14 months |
I/II [129] | Pralsetinib | RET | 1 | SGM | Not Reported | Not Reported | Not Reported |
Phase | Agent | Target | Pts (n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [138] | Dabrafenib + Trametinib | BRAF V600E + MEK1/2 | 36 | BRAF-mutated solid tumors | 41% | Not reported | Not reported |
Phase | Setting | Agent | Target | Pts, n | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|---|
II [141] | R/M Any line | Imatinib | c-kit, BCR-ABL, PDGFR | 16 | c-kit+ AdCC | 0 (0%) | 2.3 | 7 |
II [142] | R/M Any line | Imatinib | c-kit, BCR-ABL, PDGFR | 10 | AdCC | 0 (0%) | 6 | Not reported |
II [143] | R/M Any line | Imatinib + Cisplatin | Imatinib: c-kit, BCR-ABL, PDGFR Cisplatin: cytostatic drug | 28 | c-kit+ AdCC | 3 (11%) | 15 | 35 |
Phase | Agent | Target | Pts (n) | Subtype | Objective Response Rate | Median Progression-Free Survival (Months) | Median Overall Survival (Months) |
---|---|---|---|---|---|---|---|
II [159] | Nelfinavir | Akt pathway | 15 | AdCC | 0% | 5.5 | Not reported |
II [160] | Everolimus | mTOR | 34 | AdCC | 0% | 11.2 | 23.7 |
II [164] | Bortezomib | NF-kB | 21 | AdCC | 0% | 6.4 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreenivasan, S.; Jiwani, R.A.; White, R.; Bakalov, V.; Moll, R.; Liput, J.; Greenberg, L. Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions. Curr. Oncol. 2025, 32, 232. https://doi.org/10.3390/curroncol32040232
Sreenivasan S, Jiwani RA, White R, Bakalov V, Moll R, Liput J, Greenberg L. Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions. Current Oncology. 2025; 32(4):232. https://doi.org/10.3390/curroncol32040232
Chicago/Turabian StyleSreenivasan, Sushanth, Rahim A. Jiwani, Richard White, Veli Bakalov, Ryan Moll, Joseph Liput, and Larisa Greenberg. 2025. "Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions" Current Oncology 32, no. 4: 232. https://doi.org/10.3390/curroncol32040232
APA StyleSreenivasan, S., Jiwani, R. A., White, R., Bakalov, V., Moll, R., Liput, J., & Greenberg, L. (2025). Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions. Current Oncology, 32(4), 232. https://doi.org/10.3390/curroncol32040232