BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis
Simple Summary
Abstract
1. Introduction
2. Historical Treatment of AL Amyloidosis
3. BCMA Targeted Therapy
3.1. Antibody Drug Conjugates
3.2. Bispecific and Trispecific Antibodies
3.3. NK Cell Engagers
4. BCMA CAR-T Therapy
5. BMCA CAR-T Efficacy
5.1. Idecabtagene Vicleucel (Ide-Cel)
5.2. Ciltacabtagene Autoleucel (Cilta-Cel)
5.3. Cesnicabtagene Autoleucel (ARI0002h)
5.4. NXC-201 (Formerly HBI0101)
6. Tolerability of BCMA CAR-T in AL Amyloidosis
6.1. Cytokine Release Syndrome (CRS)
6.2. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)
6.3. Cytopenias
6.4. Infections
7. Discussion
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, N.; Zhang, N.J.; Cherepanov, D.; Romanus, D.; Hughes, M.; Faller, D.V. Global epidemiology of amyloid light-chain amyloidosis. Orphanet J. Rare Dis. 2022, 17, 278. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Mohty, D.; Duhamel, S.; Magne, J.; Lavergne, D.; Bordessoule, D.; Aboyans, V.; Guthrie, S.; Jaccard, A. Incidence and prevalence of light chain amyloidosis: A population-based study. Eur. Heart J. 2018, 39 (Suppl. S1), ehy565.P1813. [Google Scholar] [CrossRef]
- Staron, A.; Zheng, L.; Doros, G.; Connors, L.H.; Mendelson, L.M.; Joshi, T.; Sanchorawala, V. Marked progress in AL amyloidosis survival: A 40-year longitudinal natural history study. Blood Cancer J. 2021, 11, 139. [Google Scholar] [CrossRef]
- Gertz, M.A.; Dispenzieri, A. Systemic amyloidosis recognition, prognosis, and therapy: A systematic review. JAMA 2020, 324, 79–89. [Google Scholar] [CrossRef]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.D., Jr.; Baljevic, M.; Campagnaro, E.; Castillo, J.J.; Costello, C.; D’Angelo, C.; Devarakonda, S.; et al. Systemic light chain amyloidosis, version 2.2023, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 67–81. [Google Scholar] [CrossRef]
- Palladini, G.; Merlini, G. How I treat AL amyloidosis. Blood 2022, 139, 2918–2930. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Foli, A.; Obici, L.; Lavatelli, F.; Nuvolone, M.; Caccialanza, R.; Perlini, S.; Merlini, G. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: Long-term results of a risk-adapted approach. Haematologica 2014, 99, 743–750. [Google Scholar] [CrossRef]
- Kastritis, E.; Leleu, X.; Arnulf, B.; Zamagni, E.; Cibeira, M.T.; Kwok, F.; Mollee, P.; Hajek, R.; Moreau, P.; Jaccard, A.; et al. A randomized phase III trial of melphalan and dexamethasone (MDex) versus bortezomib, melphalan and dexamethasone (BMDex) for untreated patients with AL amyloidosis. Blood 2016, 128, 646. [Google Scholar] [CrossRef]
- Kyle, R.A.; Bayrd, E.D. Amyloidosis: Review of 236 cases. Medicine 1975, 54, 271–299. [Google Scholar] [CrossRef]
- Comenzo, R.L.; Vosburgh, E.; Simms, R.W.; Bergethon, P.; Sarnacki, D.; Finn, K.; Dubrey, S.; Faller, D.V.; Wright, D.G.; Falk, R.H.; et al. Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: One-year follow-up in five patients. Blood 1996, 88, 2801–2806. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Merlini, G.; Comenzo, R.L. Amyloidosis 2008 BMT Tandem Meetings (February 13–17, San Diego). Biol. Blood Marrow Transplant. 2008, 14, 6–11. [Google Scholar] [CrossRef]
- Mhaskar, R.; Kumar, A.; Behera, M.; Kharfan-Dabaja, M.A.; Djulbegovic, B. Role of high-dose chemotherapy and autologous hematopoietic cell transplantation in primary systemic amyloidosis: A systematic review. Biol. Blood Marrow Transplant. 2009, 15, 893–902. [Google Scholar] [CrossRef]
- Sanchorawala, V.; Boccadoro, M.; Gertz, M.; Hegenbart, U.; Kastritis, E.; Landau, H.; EHA-ISA Working Group. Guidelines for high-dose chemotherapy and stem cell transplantation for systemic AL amyloidosis. Amyloid 2022, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V.; Seldin, D.C. An overview of high-dose melphalan and stem cell transplantation in the treatment of AL amyloidosis. Amyloid 2007, 14, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.R.; Schuster, S.R.; Jimenez-Zepeda, V.H.; Bello, N.; Spong, J.; Reeder, C.B.; Stewart, A.K.; Bergsagel, P.L.; Fonseca, R. Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. Blood 2012, 119, 4391–4394. [Google Scholar] [CrossRef]
- Venner, C.P.; Lane, T.; Foard, D.; Rannigan, L.; Gibbs, S.D.; Pinney, J.H.; Whelan, C.J.; Lachmann, H.J.; Gillmore, J.D.; Hawkins, P.N.; et al. Cyclophosphamide, bortezomib, and dexamethasone therapy in AL amyloidosis is associated with high clonal response rates and prolonged progression-free survival. Blood 2012, 119, 4387–4390. [Google Scholar] [CrossRef]
- Jimenez-Zepeda, V.H.; Duggan, P.; Neri, P.; Bahlis, N.J. Bortezomib-containing regimens for the treatment of newly diagnosed and relapsed amyloid light chain amyloidosis: A single-center experience. Clin. Lymphoma Myeloma Leuk. 2016, 16, e79–e84. [Google Scholar] [CrossRef]
- Palladini, G.; Sachchithanantham, S.; Milani, P.; Gillmore, J.; Foli, A.; Lachman, H.; Basset, M.; Hawkins, P.; Merlini, G.; Wechalekar, A.D. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood 2015, 126, 612–615. [Google Scholar] [CrossRef]
- Lewis, E.; McCulloch, S.; Mahe, E.; Bahlis, N.; Neri, P.; Tay, J.; Duggan, P.; Jimenez-Zepeda, V.H. Effect of the presence of t(11;14) for patients with AL amyloidosis treated with bortezomib-containing regimens: Experience from the Amyloidosis Program of Calgary. Clin. Lymphoma Myeloma Leuk. 2023, 23, e331–e334. [Google Scholar] [CrossRef]
- Palladini, G.; Kastritis, E.; Maurer, M.S.; Zonder, J.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Bumma, N.; Kaufman, J.L.; et al. Daratumumab plus CyBorD for patients with newly diagnosed AL amyloidosis: Safety run-in results of ANDROMEDA. Blood 2020, 136, 71–80. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef]
- Locke, M.; Nieto, M. AL amyloidosis: Current treatment and outcomes. Adv. Hematol. 2025, 2025, 7280805. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, S.; Hall, A.; Jenner, M.; Garg, M.; Kishore, B.; Lachmann, H.; Gillmore, J.; Pitchford, A.; Oughton, J.B.; Mahmood, S.; et al. A phase 1b dose-escalation study of carfilzomib in combination with thalidomide and dexamethasone in patients with relapsed/refractory systemic immunoglobulin light chain amyloidosis. Amyloid 2023, 30, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Kastritis, E.; Wechalekar, A.D.; Schönland, S.O.; Kim, K.; Sanchorawala, V.; Landau, H.J.; Kwok, F.; Suzuki, K.; Comenzo, R.L.; et al. A randomized phase 3 study of ixazomib-dexamethasone versus physician’s choice in relapsed or refractory AL amyloidosis. Leukemia 2022, 36, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V.; Wright, D.G.; Rosenzweig, M.; Finn, K.T.; Fennessey, S.; Zeldis, J.B.; Skinner, M.; Seldin, D.C. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: Results of a phase 2 trial. Blood 2007, 109, 492–496. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Buadi, F.; Laumann, K.; LaPlant, B.; Hayman, S.R.; Kuman, S.K.; Dingli, D.; Zeldenrust, S.R.; Mikhael, J.R.; hall, R.; et al. Activity of pomalidomide in patients with immunoglobulin light-chain amyloidosis. Blood 2012, 119, 5397–5404. [Google Scholar] [CrossRef]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A.; Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021, 11, 10. [Google Scholar] [CrossRef]
- Lebel, E.; Kastritis, E.; Palladini, G.; Milani, P.; Theodorakakou, F.; Aumann, S.; Lavi, N.; Shargian, L.; Magen, H.; Cohen, Y.; et al. Venetoclax in relapse/refractory AL amyloidosis—A multicenter international retrospective real-world study. Cancers 2023, 15, 1710. [Google Scholar] [CrossRef]
- Novak, A.J.; Darce, J.R.; Arendt, B.K.; Harder, B.; Henderson, K.; Kindsvogel, W.; Gross, J.A.; Greipp, P.R.; Jelinek, D.F. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A mechanism for growth and survival. Blood 2004, 103, 689–694. [Google Scholar] [CrossRef]
- Hatzoglou, A.; Roussel, J.; Bourgeade, M.F.; Rogier, E.; Madry, C.; Inoue, J.; Devergne, O.; Tsapis, A. TNF receptor family member BCMA associates with TRAF1, TRAF2, and TRAF3 and activates NF-κB, Elk-1, JNK, and p38 MAPK. J. Immunol. 2000, 165, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Madry, C.; Laabi, Y.; Callebaut, I.; Roussel, J.; Hatzoglou, A.; Le Coniat, M.; Mornon, J.P.; Berger, R.; Tsapis, A. The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int. Immunol. 1998, 10, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.K.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; Hoang, B. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomized, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
- Nooka, A.K.; Cohen, A.D.; Lee, H.C.; Badros, A.; Suvannasankha, A.; Callander, N.; Abdallah, A.O.; Trudel, S.; Chari, A.; Libby, E.N.; et al. Single-agent belantamab mafodotin in patients with relapsed/refractory multiple myeloma: Final analysis of the DREAMM-2 trial. Cancer 2023, 129, 3746–3760. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Dimopoulos, M.A.; Jaccard, A.; Merlini, G.; Theodorakakou, F.; Fotiou, D.; Minnema, M.C.; Wechalekar, A.; Gkolfinopoulos, S.; et al. P914: Efficacy and safety of belantamab mafodotin monotherapy in patients with relapsed or refractory light chain amyloidosis: A phase 2 study by the european myeloma network. Hemasphere 2022, 6, 804–805. [Google Scholar] [CrossRef] [PubMed Central]
- Kastritis, E.; Palladini, G.; Dimopoulos, M.A.; Jaccard, A.; Merlini, G.; Theodorakakou, F.; Fotiou, D.; Minnema, M.C.M.; Wechalekar, A.; Papachristou, E.; et al. Efficacy and safety of belantamab mafodotin monotherapy in patients with relapsed or refractory light chain amyloidosis: A phase 2 study by the European Myeloma Network. Blood 2023, 142 (Suppl. S1), 4779. [Google Scholar] [CrossRef]
- Khwaja, J.; Bomsztyk, J.; Mahmood, S.; Wisniowski, B.; Shah, R.; Tailor, A.; Yong, K.; Popat, R.; Rabin, N.; Kyriakou, C.; et al. High response rates with single-agent belantamab mafodotin in relapsed systemic AL amyloidosis. Blood Cancer J. 2022, 12, 128. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Mooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Pillarisetti, K.; Powers, G.; Luistro, L.; Babich, A.; Baldwin, E.; Li, Y.; Zhang, X.; Mendonça, M.; Majewski, N.; Nanjunda, R.; et al. Teclistamab is an active T-cell-redirecting bispecific antibody against BCMA for multiple myeloma. Blood Adv. 2020, 4, 4538–4549. [Google Scholar] [CrossRef]
- Stalker, M.; Garfall, A.; Cohen, A.; Vogl, D.T.; Djulbegovic, M.; Susanibar-Adaniya, S.; Stadtmauer, E.; Megherea, O.; Waxman, A.J. Safety and efficacy of teclistamab in patients with relapsed or refractory AL amyloidosis. Eur. J. Haematol. 2025, 114, 443–447. [Google Scholar] [CrossRef]
- Forgeard, N.; Elessa, D.; Carpinteiro, A.; Belhadj, K.; Minnema, M.; Roussel, M.; Huart, A.; Javaugue, V.; Pascal, L.; Royer, B.; et al. Teclistamab in relapsed or refractory AL amyloidosis: A multinational retrospective case series. Blood 2024, 143, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bhalis, N.J.; Prince, M.; Niesvizky, R.; Rodriguez- Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- 44. Vianna, P.G.; Hossain, S.; Miller, S.; Rossi, A.; Cuddy, S.A.; Falk, R.H.; Laubach, J.P.; Bianchi, G. Elranatamab in patients with daratumumab relapsed and/or refractory light chain amyloidosis. Blood 2024, 144 (Suppl. S1), 3304. [Google Scholar] [CrossRef]
- European Myeloma Network. An Open-Label Phase 1b Study Evaluating the Safety and Efficacy of ABBV-383 in AL Amyloidosis; Columbia University Irving Cancer Center: New York, NY, USA, 2025; Identifier: NCT06158854. Available online: https://clinicaltrials.gov/study/NCT05259839 (accessed on 21 July 2025).
- A phase 1/2 Study of Linvoseltamab in Patients with Relapsed or Refractory Systemic Light Chain Amyloidosis. Identifier: NCT06292780. Available online: https://www.clinicaltrials.gov/study/NCT06292780?cond=AL%20amyloidosis%20OR%20%22Light-chain%20amyloidosis%22%20OR%20%22%20primary%20amyloidosis%22&aggFilters=status:not%20rec&viewType=Table&rank=9 (accessed on 21 July 2025).
- First in Human, Dose Escalation Study of JNJ 79635322, a Trispecific Antibody, in Participants with RRMM or Previously Treated AL Amyloidosis. Identifier: NCT05652335. Available online: https://clinicaltrials.gov/study/NCT05652335 (accessed on 21 July 2025).
- First in Human Open Label Phase 1/2 Study to Investigate Safety and Efficacy of SAR445514, an NK Cell Engager Targeting BCMA in RRMM and RRL CA. Identifier: NCT05839626. Available online: https://clinicaltrials.gov/study/NCT05839626 (accessed on 21 July 2025).
- CADTH reimbursement review: Idecabtagene vicleucel (Abecma) for multiple myeloma. Can. J. Health Technol. 2022. Available online: https://canjhealthtechnol.ca/index.php/cjht/article/view/pg0240/386 (accessed on 21 July 2025).
- Tai, Y.T.; Acharya, C.; An, G.; Moschetta, M.; Zhong, M.Y.; Feng, X.; Cea, M.; Cagnetta, A.; Wen, K.; van Eenennaam, H.; et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016, 127, 3225–3236. [Google Scholar] [CrossRef]
- Rosenzweig, M.; Urak, R.; Walter, M.; Lim, L.; Sanchez, J.F.; Krishnan, A.; Forman, S.; Wang, X. Preclinical data support leveraging CS1 chimeric antigen receptor T-cell therapy for systemic light chain amyloidosis. Cytotherapy 2017, 19, 861–866. [Google Scholar] [CrossRef]
- Kfir-Erenfeld, S.; Asherie, N.; Grisariu, S.; Avni, B.; Zimran, E.; Assayag, M.; Sharon, T.D.; Pick, M.; Lebel, E.; Shaulov, A.; et al. Feasibility of a novel academic BCMA-CART (HBI0101) for the treatment of relapsed and refractory AL amyloidosis. Clin. Cancer Res. 2022, 28, 5156–5166. [Google Scholar] [CrossRef]
- Oliver-Caldes, A.; Jiménez, R.; Español-Rego, M.; Cibeira, M.T.; Ortiz-Maldonado, V.; Quintana, L.F.; Castillo, P.; Guijarro, F.; Tovar, N.; Montoro, M.; et al. First report of CAR-T therapy in AL amyloidosis and relapsed/refractory multiple myeloma. J. Immunother. Cancer 2021, 9, e003783. [Google Scholar] [CrossRef]
- Goel, U.; Dima, D.; Davis, J.; Ahmed, N.; Shaikh, H.; Lochner, J.; Abdallah, A.O.; Khouri, J.; Hashmi, H.; Anwer, F. Safety and efficacy of BCMA-directed CAR T-cell therapy in patients with relapsed/refractory multiple myeloma and concurrent light chain amyloidosis. Eur. J. Haematol. 2024, 113, 817–823. [Google Scholar] [CrossRef]
- Lebel, E.; Asherie, N.; Kfir-Erenfeld, S.; Grisariu, S.; Avni, B.; Elias, S.; Assayag, M.; Dubnikov-Sharon, T.; Pick, M.; Alexander-Shani, R.; et al. Efficacy and safety of anti-BCMA CAR T-cell therapy for the treatment of relapsed and refractory AL amyloidosis. J. Clin. Oncol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Das, S.; Ailawadhi, S.; Sher, T.; Roy, V.; Fernandez, A.; Parrondo, R.D. Anti-B Cell Maturation Antigen Chimeric Antigen Receptor T Cell Therapy for the Treatment of AL Amyloidosis and Concurrent Relapsed/Refractory Multiple Myeloma: Preliminary Efficacy and Safety. Curr. Oncol. 2023, 30, 9627–9633. [Google Scholar] [CrossRef]
- Landau, H.J.; Hughes, C.; Rosenberg, A.S.; Abedi, M.; Raza, S.; Zonder, J.A.; Brailovski, E.; Liu, J. Safety and efficacy data from Nexicart-2, the first US trial of CAR-T in R/R light chain (AL) amyloidosis, NXC-201. J. Clin. Oncol. 2025, 43, 7508. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Janssen Inc. Product Monograph Including Patient Medication Information: Carvykti (Ciltacabtagene Autoleucel); Janssen Inc.: Toronto, ON, Canada, 2023. [Google Scholar]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, an anti-BCMA CAR-T therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a BCMA-directed CAR-T therapy in relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Oliver-Caldés, A.; González-Calle, V.; Cabañas, V.; Español-Rego, M.; Rodríguez-Otero, P.; Reguera, J.L.; López-Corral, L.; Martin-Antonio, B.; Zabaleta, A.; Inogés, S.; et al. Fractionated initial infusion and booster dose of ARI0002h, a humanized BCMA-directed CAR-T therapy, for relapsed or refractory multiple myeloma (CARTBCMA-HCB-01). Lancet Oncol. 2023, 24, 913–924. [Google Scholar] [CrossRef]
- Khanam, R.; Faiman, B.; Batool, S.; Najmuddin, M.M.; Usman, R.; Kuriakose, K.; Ahmed, A.; Rehman, M.E.U.; Roksana, Z.; Syed, Z.; et al. Management of adverse reactions for BCMA-directed therapy in relapsed multiple myeloma: A focused review. J. Clin. Med. 2023, 12, 5539. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, S.; Chen, S.; Wang, Y.; Sun, Q.; Xu, X.; Li, Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J. Exp. Clin. Cancer Res. 2021, 40, 367. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Yang, C.; Nguyen, J.; Yen, Y. Complete spectrum of adverse events associated with CAR-T cell therapies. J. Biomed. Sci. 2023, 30, 89. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.; Avigdor, A.; Bielorai, B.; Meir, A.; Besser, M.J.; Schachter, J.; Shimoni, A.; Nagler, A.; Toren, A.; Jocoby, E. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019, 54, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Nahas, G.R.; Komanduri, K.V.; Pereira, D.; Goodman, M.; Jimenez, A.M.; Beitinjaneh, A.; Wang, T.P.; Lekakis, L.J. Incidence and risk factors associated with a syndrome of persistent cytopenias after CAR-T cell therapy (PCTT). Leuk. Lymphoma 2020, 61, 940–943. [Google Scholar] [CrossRef]
- Puckrin, R.; Jamani, K.; Jimenez-Zepeda, V.H. Long-term survivorship care after CAR-T cell therapy. Eur. J. Haematol. 2024, 112, 41–50. [Google Scholar] [CrossRef]
Data Source | Oliver-Caldes et al., 2021 [53] | Das et al., 2023 [56] | Goel et al., 2024 [54] | Lebel et al., 2024 [55] NexiCART-1 | Landau et al., 2025 [57] ** NexiCART-2 Trial Ongoing ** |
---|---|---|---|---|---|
BCMA CAR-T Product | ARI0002h | Ide-cel (1) and Cilta-cel (1) | Ide-cel (6) and Cilta-cel (2) | NCX-201 (Formerly HBI010) | NCX-201 |
Number of Patient(s) | n = 1 | n = 2 | n = 8 | n = 16 | n = 7 |
Patient(s) Age Mean (range) | Early 60s | Patient 1 (Ide-cel)—62 Patient 2 (Cilta-cel)—33 | 70.5 (range 56–75) | 64 (range 55–82) | 66 (range 56–82) |
Diagnosis and Stage | Mayo stage II AL amyloidosis with concurrent R-ISS stage II IgA-lambda MM | Patient 1—Mayo stage II Kappa AL amyloid with concurrent R-ISS stage II MM Patient 2—Mayo stage IV Lambda AL amyloidosis with concurrent MM | AL amyloidosis with concurrent MM Mayo AL amyloidosis stage I (n = 1) II (n = 3) n/a (n = 4) R-ISS stage I (n = 2) II (n = 5) III (n = 0) n/a (n = 1) | AL amyloidosis (n = 14). AL amyloidosis with concurrent MM (n = 2) Mayo staging I-II (n = 11) IIIa (n = 4) IIIb (n = 1) | AL amyloidosis Mayo staging I (n = 2) II (n = 4) IIIa (n = 1) |
Organ Involvement | Renal and Bladder | Patient 1—Gastric and Cardiac Patient 2—Cardiac, soft tissue, | Cardiac (n = 2) Renal (n = 1) GI (n = 1) Soft tissue (n = 4) | Heart (n = 13) Renal (n = 11) Soft tissue (n = 6) PNS (n = 6) Liver (n = 6) GI (n = 5) Lung (n = 1) | Heart (n = 4) Renal (n = 2) |
Prior Therapy | 3 | 4 | 8 (range 6–11) | 4 (range 3–10) | 4 (range 2–9) |
Best Hematologic Response | ORR = 100% sCR. MRD negative | ORR= 100% Patient 1—VGPR. MRD negative Patient 2—sCR. MRD negative | ORR= 100% in 5 evaluable CR (n = 3) VGPR (n = 2) Not-evaluable (n = 3) | ORR = 94% CR (n = 12) VGPR (n = 2) PR (n = 1) No response (n = 1) | ORR = 100% VGPR/CR (n = 7). MRD negative (n = 5) |
Organ Response | 55% decrease in proteinuria | Patient 1—>30% reduction NT-ProBNP Patient 2—>30% reduction in NT-ProBNP | n/a | Any organ response 62% (8/13) Cardiac 78% (7/9) Renal 33% (2/6) Hepatic 20% (1/5) | Renal response obtained (n = 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, E.; Jimenez-Zepeda, V.H. BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis. Curr. Oncol. 2025, 32, 418. https://doi.org/10.3390/curroncol32080418
Lewis E, Jimenez-Zepeda VH. BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis. Current Oncology. 2025; 32(8):418. https://doi.org/10.3390/curroncol32080418
Chicago/Turabian StyleLewis, Ellen, and Victor Hugo Jimenez-Zepeda. 2025. "BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis" Current Oncology 32, no. 8: 418. https://doi.org/10.3390/curroncol32080418
APA StyleLewis, E., & Jimenez-Zepeda, V. H. (2025). BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis. Current Oncology, 32(8), 418. https://doi.org/10.3390/curroncol32080418