Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Initial Stand Characteristics
2.2. Experimental Design and Data Collection
2.3. Data Analysis
3. Results
3.1. Regeneration Establishment
3.2. Seedling Height Growth
3.3. Influence of Soil Scarification, Soil Moisture, Vegetation Type and Gap Size
4. Discussion
4.1. Regeneration Establishment
4.2. Seedling Height Growth
4.3. Influence of Soil Scarification, Soil Moisture, Vegetation Type and Gap Size
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Axelsson, R. Forest Policy, Continuous Tree Cover Forest and Uneven-Aged Forest Management in Sweden’s Boreal Forest. Master’s Thesis, Department of Forest Products, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2008. [Google Scholar]
- Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: The complexity challenge. Ambio 2009, 38, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Puettmann, K.J.; Wilson, S.; Baker, S.; Donoso, P.; Drössler, L.; Amente, G.; Harvey, B.D.; Knoke, T.; Lu, Y.; Nocentini, S.; et al. Silvicultural alternatives to conventional even-aged forest management−What limits global adoption? For. Ecosyst. 2015, 2, 8. [Google Scholar] [CrossRef]
- Nilson, K.; Lundqvist, L. Effect of stand structure and density on development of natural regeneration in two Picea abies stands in Sweden. Scand. J. For. Res. 2001, 16, 253–259. [Google Scholar] [CrossRef]
- Chrimes, D.; Nilson, K. Overstorey density influence on the height of Picea abies regeneration in northern Sweden. Forestry 2005, 78, 433–442. [Google Scholar] [CrossRef]
- Hagner, M. Naturkultur. Ekonomiskt Skogsbruk kännetecknat av Befriande Gallring och Berikande Plantering (Naturkultur—Forest Management with Single Tree Release and Enrichment Planting). UBICON: Umeå, Sweden, 2004; ISBN 91-631-5010-7. (In Swedish) [Google Scholar]
- Wikberg, P.-E.; Lundmark, T. Naturkultur—Utvecklingen i Försöksserien de 10 Första åren (Naturkultur – the Development of the Study Trial after 10 Years); Rapport 23; Skogsstyrelsen: Jönköping, Sweden, 2008. (In Swedish) [Google Scholar]
- Nilsson, U.; Gemmel, P.; Johansson, U.; Karlsson, M.; Welander, T. Natural regeneration of Norway spruce‚ Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden. For. Ecol. Manag. 2002, 161, 133–145. [Google Scholar] [CrossRef]
- Nilsson, U.; Örlander, G.; Karlsson, M. Establishing mixed forests in Sweden by combining planting and natural regeneration—Effects of shelterwoods and scarification. For. Ecol. Manag. 2006, 237, 301–311. [Google Scholar] [CrossRef]
- Glöde, D. Survival and growth of Picea abies regeneration after shelterwood removal with single and double-grip harvester systems. Scand. J. For. Res. 2002, 17, 417–426. [Google Scholar] [CrossRef]
- Holgén, P.; Hånell, B. Performance of planted and naturally regenerated seedlings in Picea abies dominated shelterwood stands and clearcuts in Sweden. For. Ecol. Manag. 2000, 127, 129–138. [Google Scholar] [CrossRef]
- Granhus, A.; Brække, F.H. Nutrient status of Norway spruce stands subjected to different levels of overstorey removal. Trees 2001, 15, 393–402. [Google Scholar] [CrossRef]
- Eerikäinen, K.; Valkonen, S.; Saksa, T. Ingrowth, survival and height growth of small trees in uneven-aged Picea abies stands in southern Finland. For. Ecosyst. 2014, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.J.; Laiho, O.; Lähde, E. Norway spruce (Picea abies L.) regeneration and growth of understory trees under single-tree selection silviculture in Finland. Eur. J. For. Res. 2012, 131, 683–691. [Google Scholar] [CrossRef]
- Erefur, C. Regeneration in Continuous Cover Forestry Systems. Doctoral Thesis, Swedish University of Agricultural Sciences, Acta Universitatis Agriculturae Sueciae, Uppsala, Sweden, 2010; p. 42. [Google Scholar]
- Axelsson, E.P.; Lundmark, T.; Högberg, P.; Nordin, A. Belowground competition directs spatial patterns of seedling growth in boreal pine forests in Fennoscandia. Forests 2014, 5, 2106–2121. [Google Scholar] [CrossRef]
- Valkonen, S.; Siitonen, J. Tree regeneration in patch cutting in Norway spruce stands in northern Finland. Scand. J. For. Res. 2016, 31, 271–278. [Google Scholar] [CrossRef]
- Tremer, N. Untersuchungen zur Verjüngung von Waldbeständen in Nordwestdeutschland (Study on Regeneration of Forest Stands i Nortwestern Germany. Ph.D. Thesis, University of Göttingen, München, Germany, 2008. [Google Scholar]
- Drössler, L.; Ekö, P.M.; Balster, R. Short-Term development of a multi-layered forest stand after target diameter harvests in southern Sweden. Can. J. For. Res. 2015, 45, 1198–1205. [Google Scholar] [CrossRef]
- Duncker, P.S.; Barreiro, S.M.; Hengeveld, G.M.; Lind, T.; Mason, W.L.; Ambrozy, S.; Spiecker, H. Classification of forest management approaches: A new conceptual framework and its applicability to European forestry. Ecol. Soc. 2012, 17, 51. [Google Scholar] [CrossRef]
- Spellmann, H. Zielstärkennutzung: Waldbauliche und ertragskundliche Aspekte. (Target diameter cutting: Silvicultural and yield aspects.). Berichte zur Jahrestagung der Sektion Ertragskunde, Deutscher Verband Forstlicher Forschungsanstalten: Grünberg, Germany, 1997; pp. 186–198. (In German) [Google Scholar]
- Sterba, H.; Zingg, A. Target diameter harvesting—A strategy to convert even-aged forests. For. Ecol. Manag. 2001, 151, 95–105. [Google Scholar] [CrossRef]
- Schütz, J.-P. Opportunities and strategies of transforming regular forests to irregular forests. For. Ecol. Manag. 2001, 151, 87–94. [Google Scholar] [CrossRef]
- Larsen, J.B. Close-to-Nature Forest Management: The Danish Approach to Sustainable Forestry. In Sustainable Forest Management - Current Research; Garcia, J.M., Casero, J.J.D., Eds.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Lundqvist, L. Blädning i Granskog—Strukturförändringar, Volymtillväxt, Inväxning och Föryngring på Försöksytor Skötta med Stamvis blädning. Ph.D. Thesis, Department of Silviculture, Swedish University of Agricultural Sciences, Umeå, Sweden, 1989. [Google Scholar]
- Drössler, L.; Fahlvik, N.; Elfving, B. Application and limitations of growth models for silvicultural purposes in heterogeneously structured forest in Sweden. J. For. Sci. 2013, 59, 458–473. [Google Scholar]
- Drössler, L. Tree species mixtures—A common feature of southern Swedish forests. Forestry 2010, 83, 433–441. [Google Scholar] [CrossRef]
- Bauhus, J.; Puettmann, K.J.; Kühne, C. Close-to-Nature forest management in Europe. In Managing Forests as Complex Adaptive Systems; Messier, C., Puettmann, K.J., Coates, K.D., Eds.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Ingemarson, F.; Lindhagen, A.; Eriksson, L. A typology of small-scale private forest owners in Sweden. Scand. J. For. Res. 2006, 21, 249–259. [Google Scholar] [CrossRef]
- Nordström, E.-M.; Holmström, H.; Öhman, K. Evaluating continuous cover forestry based on the forest owner’s objectives by combining scenario analysis and multiple criteria decision analysis. Silva Fenn. 2013, 47. [Google Scholar] [CrossRef]
- Bohn, U.; Weber, H. Karte der Natürlichen Vegetation Europas (Map of Natural Vegetation in Europe); Bundesamt für Naturschutz: Bonn, Germany, 2000. (In German) [Google Scholar]
- Drössler, L.; Fahlvik, N.; Ekö, P.M. Stand Structure and Future Development of a Managed Multi-Layered Forest in Southern Sweden; Report 44; SLU, Southern Swedish Forest Research Centre: Alnarp, Sweden, 2012. [Google Scholar]
- Runkle, J.R. Guidelines and Sample Protocol for Sampling Forest Gaps; General Technical Report PNW-GTR-283; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1992.
- Hägglund, B.; Lundmark, J.-E. Handledning i Bonitering Med Skogshögskolans Boniteringssystem - Del 3 Markvegetationstyper – Skogsmarksflora (Manual of the Swedish Site Quality Assessment – Part 3 Floor Vegetation Sites). Skogsstyrelsen: Jönköping, Sweden, 1994. [Google Scholar]
- Riksinventering av skog (RIS). Manual of the National Forest Inventory in Sweden. Institutionen för skoglig resurshushållning, SLU: Umeå, Sweden, 2012. (In Swedish) [Google Scholar]
- Lemon, P.E. A spherical densiometer for estimating forest overstorey density. For. Sci. 1956, 2, 313–320. [Google Scholar]
- Bolker, B.; Skaug, H.; Magnusson, A.; Nielsen, A. Getting started with the glmmADMB package. R Foundation for Statistical Computing: Vienna, Austria. Available online: http://glmmadmb.r-forge.r-project.org/glmmADMB.pdf (accessed on June 2016).
- Moreno-Fernández, D.; Cañellas, I.; Barbeito, I.; Sánchez-González, M.; Ledo, A. Alternative approaches to assessing the natural regeneration of Scots pine in a Mediterranean forest. Ann. For. Sci. 2015, 72, 569–583. [Google Scholar] [CrossRef]
- Fortin, M.; DeBlois, J. Modeling tree recruitment with zero-inflated models: The example of hardwood stands in southern Québec, Canada. For. Sci. 2007, 53, 529–539. [Google Scholar]
- Schweiger, J.; Sterba, H. A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria. For. Ecol. Manag. 1997, 97, 107–118. [Google Scholar] [CrossRef]
- Li, R.; Weiskittel, A.R.; Kershaw, J.A., Jr. Modeling annualized occurrence, frequency, and composition of ingrowth using mixed-effects zero-inflated models and permanent plots in the Acadian Forest Region of North America. Can. J. For. Res. 2011, 41, 2077–2089. [Google Scholar] [CrossRef]
- Zuur, A.F.; Leno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- Leemans, R. Canopy gaps and establishment patterns of spruce (Picea abies (L.) Karst.) in two old-growth coniferous forests in central Sweden. Vegetatio 1991, 93, 157–165. [Google Scholar] [CrossRef]
- Liu, Q.; Hytteborn, H. Gap structure, disturbance and regeneration in a primeval Picea abies forest. J. Veg. Sci. 1991, 2, 391–402. [Google Scholar] [CrossRef]
- Kathke, S. The Role of Gap Dynamics for the Regeneration of the Natural Spruce Forests in the Harz Mountains. Doctoral Thesis, Faculty of Biosciences, Martin-Luther-Universität Halle-Wittenberg, Stuttgart, Germany, 2010. [Google Scholar]
- Kuuluvainen, T.; Aakala, T. Natural forest dynamics in boreal Fennoscandia: A review and classification. Silva Fenn. 2011, 45, 823–841. [Google Scholar] [CrossRef]
- Garbarino, M.; Mondino, E.B.; Lingua, E.; Nagel, T.A.; Dukić, V.; Govedar, Z.; Motta, R. Gap disturbances and regeneration patterns in a Bosnian old-growth forest: A multispectral remote sensing and ground-based approach. Ann. For. Sci. 2012, 69, 617–625. [Google Scholar] [CrossRef]
- Strand, M.; Ottoson-Löfvenius, M.; Bergsten, U.; Lundmark, T.; Rosvall, O. Height growth of planted conifer seedlings in relation to solar radiation and position in Scots pine shelterwood. For. Ecol. Manag. 2006, 224, 258–265. [Google Scholar] [CrossRef]
- Rumpf, H.; Ditges, J. Jugendwachstum von Fichtennaturverjüngung in Abhängigkeit von Überschirmungsdichte und Pflegestrategie (Early growth of spruce regeneration in relation to canopy density and tending strategy. Forst. Holz. 2008, 63, 20–25, (In German with English Summary). [Google Scholar]
- Lundqvist, L. Simulation of sapling population dynamics in uneven-aged Picea abies forests. Ann. Bot. 1995, 76, 371–380. [Google Scholar] [CrossRef]
- Örlander, G.; Karlsson, C. Influence of shelterwood density on survival and height increment of Picea abies. Scand. J. For. Res. 2000, 15, 20–29. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kerhsaw, J.A., Jr.; Vanclay, J.K. Forest Growth and Yield Modeling; Wiley: Chichester, UK, 2011. [Google Scholar]
- Lundqvist, L. Some notes on the regeneration on six permanent plots managed with single-tree selection. For. Ecol. Manag. 1991, 46, 49–57. [Google Scholar] [CrossRef]
- De Chantal, M.; Holt Hansen, K.; Granhus, A.; Bergsten, U.; Ottosson Löfvenius, M.; Grip, H. Frost heaving damage to one-year-old Picea abies increases with soil horizon depth and canopy size. Can. J. For. Res. 2007, 37, 1236–1243. [Google Scholar] [CrossRef]
- Johansson, K.; Nilsson, U.; Örlander, G. A comparison of long-term effects of scarification methods on the establishment of Norway spruce. Forestry 2013, 86, 91–98. [Google Scholar] [CrossRef]
- Beland, M.; Agestam, E.; Ekö, P.M.; Gemmel, P.; Nilsson, U. Scarification and seedfall affects natural regeneration of Scots pine under two shelterwood densities and a clear-cut in southern Sweden. Scand. J. For. Res. 2000, 15, 247–255. [Google Scholar] [CrossRef]
- Karlsson, M.; Nilsson, U. The effects of scarification and shelterwood treatments on naturally regenerated seedlings in southern Sweden. For. Ecol. Manag. 2005, 205, 183–197. [Google Scholar] [CrossRef]
- Kuuluvainen, T. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: A review. Ann. Zool. Fennici. 1994, 31, 35–51. [Google Scholar]
- Huth, F. Untersuchungen zur Verjüngungsökologie der Sand-Birke (Betula pendula Roth) (Investigations about the regeneration ecology of sandy birch). Doctoral Thesis, Faculty of Forest-, Geo-and Hydrological Sciences, TU Dresden, Germany, 2009. [Google Scholar]
- Röhrig, E.; Bartsch, N.; Lüpke, B. Waldbau auf ökologischer Grundlage (Silviculture Based on Ecology); Ulmer: Stuttgart, Germany, 2006. (In German) [Google Scholar]
- Agestam, E.; Ekö, P.M.; Nilsson, U.; Welander, N.T. The effects of shelterwood density and soil preparation on natural regeneration of Fagus Sylvatica in southern Sweden. For. Ecol. Manag. 2003, 176, 61–73. [Google Scholar] [CrossRef]
- Frost, I. Dispersal and Establishment of Quercus Robur. Ph.D. Thesis 305, Faculty of Science and Technology, Uppsala University, Uppsala, Sweden, 1997. [Google Scholar]
- Gimingham, C.H. Ecological aspects of birch. Proceedings of the Royal society of Edinburgh 1984, 85B, 65–72. [Google Scholar] [CrossRef]
- Engelmark, O.; Hytteborn, H. Coniferous forests. Acta Phytogeogr. Suec. 1999, 84, 55–74. [Google Scholar]
- Greis, I.; Kellomäki, S. Crown structure and stem growth of Norway spruce undergrowth under varying shading. Silva Fenn. 1981, 15, 306–322. [Google Scholar] [CrossRef]
- Wagner, S.; Fischer, H.; Huth, F. Canopy effects on vegetation caused by harvesting and regeneration treatments. Eur. J. For. Res. 2011, 130, 17–40. [Google Scholar] [CrossRef]
- Drössler, L.; Nilsson, U.; Lundqvist, L. Simulated transformation of even-aged Norway spruce stands to multi-layered forests: An experiment to explore the potential of tree size differentiation. Forestry 2014, 87, 239–248. [Google Scholar] [CrossRef]
- Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.A.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.R.; Cramer, W.; et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species based dynamic vegetation model. Glob. Ecol. Biogeog. 2012, 21, 50–63. [Google Scholar] [CrossRef]
Tree Species | TDH/TDH+ | TDH2 | |
---|---|---|---|
Class 1 | Class 2 | Class 1&2 | |
Scots pine | 40 | 30 | 40 |
Norway spruce | 36 | 26 | 26 |
Silver birch | 30 | 20 | 30 |
Sessile oak | 60 | 30 | 60 |
European beech | 50 | 30 | 50 |
Treatment | CON | TDH | TDH+ | TDH2 |
---|---|---|---|---|
N before harvest (trees·ha−1) | 1151 ± 79 | 1045 ± 56 | 1082 ± 98 | 849 ± 69 |
N (trees·ha−1) | 1151 ± 79 | 815 ± 64 | 905 ± 113 | 698 ± 81 |
BA (m2·ha−1) | 36 ± 3.6 | 19 ± 2.0 | 23 ± 2.4 | 20 ± 1.9 |
BA pine (%) | 41 | 35 | 44 | 50 |
BA spruce (%) | 44 | 52 | 40 | 28 |
BA oak (%) | 7 | 18 | 12 | 14 |
BA birch (%) | 7 | 1 | 3 | 5 |
BA others (%) | 1 | 15 | 1 | 3 |
Vol (m³·ha−1) | 325 ± 27 | 160 ± 19 | 193 ± 17 | 164 ± 19 |
Removal (m³·ha−1) | 0 | 133 ± 24 | 155 ± 28 | 130 ± 24 |
2009 | 2014 | |||
---|---|---|---|---|
Stand | Gaps | Stand | Gaps | |
Number of sample plots | 192 | - | 192 | 636 |
Sampling area (m2) | 960 | 28 620 | 1 920 | 6 360 |
Number of sampled seedlings | 29 | 2 862 | 351 | 5 215 |
Tree Species | 2009 | 2014 | ||||
---|---|---|---|---|---|---|
Stand | Gaps | Stand | Gaps | |||
TDH | TDH+ | CON | ||||
Spruce | 135 ± 42 | 422 ± 65 | 229 ± 144 | 104 ± 106 | 354 ± 427 | 929 ± 93 |
Oak | 10 ± 69 | 36 ± 8 | 167 ± 160 | 83 ± 80 | 21 ± 41 | 263 ± 23 |
Beech | 63 ± 53 | 37 ± 16 | 21 ± 41 | 125 ± 173 | 41 ± 10 | |
Birch | 10 ± 10 | 167 ± 31 | 771 ± 619 | 500 ± 400 | 5031 ± 271 | |
Rowan | 42 ± 21 | 220 ± 70 | 458 ± 243 | 375 ± 192 | 83 ± 80 | 925 ± 59 |
Pine | 5 ± 2 | 149 ± 25 | ||||
Willow | 14 ± 11 | 42 ± 82 | 83 ± 80 | 357 ± 45 | ||
Aspen | 21 ± 41 | 94 ± 18 | ||||
Others | 52 ± 34 | 98 ± 43 | 146 ±148 | 188 ± 183 | 472 ± 48 | |
Total N·ha−1 | 300 ± 80 | 1000 ± 158 | 1800 ± 440 | 1400 ± 270 | 600 ± 250 | 8300 ± 320 |
N of plots | 192 | 174 gaps | 48 | 48 | 48 | 636 |
Tree Species | 2009 | 2014 | Browsing | |||
---|---|---|---|---|---|---|
Stand | Gaps | Stand | Gaps | Damage | ||
TDH/TDH+ | CON | 2009 | ||||
Spruce | 3 ± 0.5 | 8 ± 0.6 | 10 ± 1.9 | 5 ± 0.7 | 10 ± 1.0 | 2% |
Oak | 8 ± 0.8 | 6 ± 0.8 | 8 ± 0.6 | 51% | ||
Beech | 11 ± 0.9 | 11 ± 2.7 | 16 ± 3.0 | 37% | ||
Birch | 18 ± 1.2 | 14 ± 1.3 | 17 ± 0.8 | 42% | ||
Pine | 8 ± 0.8 | 5.5 ± 0.7 | 11 ± 0.7 | 33% |
Canopy Coverage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–33% | 34%–66% | 67%–100% | ||||||||||
Tree Species | Plot No. | N·ha−1 | SE | p | Plot No. | N·ha−1 | SE | p | Plot No. | N·ha−1 | SE | p |
Spruce | 121 | 620 | 110 | 0.04 | 298 | 970 | 140 | 0.83 | 217 | 1100 | 180 | 0.52 |
Oak | 121 | 370 | 60 | 0.10 | 298 | 280 | 40 | 0.68 | 217 | 180 | 30 | 0.03 |
Birch | 121 | 7600 | 770 | <0.01 | 298 | 5100 | 400 | 0.94 | 217 | 3600 | 360 | <0.01 |
Pine | 121 | 170 | 50 | 0.79 | 298 | 220 | 50 | 0.16 | 217 | 40 | 20 | <0.01 |
Total | 121 | 11,000 | 890 | <0.01 | 298 | 8500 | 470 | 0.67 | 217 | 6500 | 440 | <0.01 |
Predictor | Seedling Density | Relative Proportion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beech | Birch | Oak | Rowan | Spruce | ||||||||
Intercept | −0.7066 | *** | −4.2552 | *** | −2.7897 | *** | −3.8160 | *** | −0.9641 | * | −1.1238 | *** |
Time since harvest | 0.4165 | *** | −0.2767 | ** | ||||||||
Gap size | 0.0007 | *** | −0.0218 | * | 0.0011 | * | −0.0035 | ** | −0.0038 | ** | ||
Soil scarification | −0.8925 | ** | ||||||||||
Skid road | 0.3894 | *** | −2.0437 | * | ||||||||
SMC ‘moist’ | 0.3521 | *** | 0.9051 | ** | ||||||||
SMC ‘wet’ | 2.9427 | *** | ||||||||||
VT ‘blueberry’ | −0.6955 | * | 0.9130 | * | ||||||||
VT ‘grass’ | 0.4002 | *** | −1.3305 | *** | ||||||||
VT ‘moss’ | ||||||||||||
VT ‘fern’ | 7.2066 | ** | 1.6109 | * | 2.0296 | * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drössler, L.; Fahlvik, N.; Wysocka, N.K.; Hjelm, K.; Kuehne, C. Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification. Forests 2017, 8, 35. https://doi.org/10.3390/f8020035
Drössler L, Fahlvik N, Wysocka NK, Hjelm K, Kuehne C. Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification. Forests. 2017; 8(2):35. https://doi.org/10.3390/f8020035
Chicago/Turabian StyleDrössler, Lars, Nils Fahlvik, Natalia K. Wysocka, Karin Hjelm, and Christian Kuehne. 2017. "Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification" Forests 8, no. 2: 35. https://doi.org/10.3390/f8020035
APA StyleDrössler, L., Fahlvik, N., Wysocka, N. K., Hjelm, K., & Kuehne, C. (2017). Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification. Forests, 8(2), 35. https://doi.org/10.3390/f8020035