The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications
Abstract
:1. Introduction
2. Interrelations between Coagulation and Inflammation
3. Endothelial Cells at the Interface of Coagulation and Inflammation
4. Vascular Involvement in Acute Pancreatitis
5. Laboratory Markers of Endothelial Activation and Injury in Acute Pancreatitis
6. Disturbances of Hemostasis in Relation to Inflammation in Acute Pancreatitis
7. Therapeutic Effects of Anticoagulants in Acute Pancreatitis
7.1. Heparin
7.2. Activated Protein C
7.3. Soluble Thrombomodulin
7.4. Other Anticoagulants
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AP | acute pancreatitis |
NFκB | nuclear factor κB |
SAP | severe acute pancreatitis |
TF | tissue factor |
PAR | protease-activated receptor |
sCD40L | soluble CD40 ligand |
TNF | tumor necrosis factor |
vWF | von Willebrand factor |
IL | interleukin |
CRP | C-reactive protein |
PAI-1 | plasminogen activator inhibitor-1 |
ICAM-1 | intercellular adhesion molecule-1 |
VCAM-1 | vascular cell adhesion molecule-1 |
VEGF | vascular endothelial growth factor |
PAF | platelet activating factor |
ERCP | endoscopic retrograde cholangiopancreatography |
SIRS | systemic inflammatory response syndrome |
sFlt-1 | soluble fms-like tyrosine kinase 1 |
APACHE | acute physiology and chronic health evaluation |
SOFA | sequential organ failure assessment |
ADAMTS-13 | disintegrin-like and metalloproteinase with thrombospondin type-1 motifs 13 |
DIC | disseminated intravascular coagulation |
CT | computed tomography |
TFPI | tissue factor pathway inhibitor |
tPA | tissue plasminogen activator |
LMWH | low molecular weight heparin |
APC | activated protein C |
rTM | recombinant human soluble thrombomodulin |
References
- Roberts, S.E.; Akbari, A.; Thorne, K.; Atkinson, M.; Evans, P.A. The incidence of acute pancreatitis: Impact of social deprivation, alcohol consumption, seasonal and demographic factors. Aliment. Pharmacol. Ther. 2013, 38, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Peery, A.F.; Dellon, E.S.; Lund, J.; Crockett, S.D.; McGowan, C.E.; Bulsiewicz, W.J.; Gangarosa, L.M.; Thiny, M.T.; Stizenberg, K.; Morgan, D.R.; et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 2012. [Google Scholar] [CrossRef] [PubMed]
- Szentesi, A.; Tóth, E.; Bálint, E.; Fanczal, J.; Madácsy, T.; Laczkó, D.; Ignáth, I.; Balázs, A.; Pallagi, P.; Maléth, J.; et al. Hungarian pancreatic study group analysis of research activity in gastroenterology: Pancreatitis is in real danger. PLoS ONE 2016, 11, e0165244. [Google Scholar] [CrossRef] [PubMed]
- Frey, C.F.; Zhou, H.; Harvey, D.J.; White, R.H. The incidence and case-fatality rates of acute biliary, alcoholic, and idiopathic pancreatitis in California, 1994–2001. Pancreas 2006, 33, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Classification of acute pancreatitis 2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Párniczky, A.; Kui, B.; Szentesi, A.; Balázs, A.; Szűcs, Á.; Mosztbacher, D.; Czimmer, J.; Sarlós, P.; Bajor, J.; Gódi, S.; et al. Hungarian pancreatic study group prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis. PLoS ONE 2016, 11, e0165309. [Google Scholar] [CrossRef] [PubMed]
- Besselink, M.; van Santvoort, H.; Freeman, M.; Gardner, T.; Mayerle, J.; Vege, S.S.; Werner, J.; Banks, P.; McKay, C.; Fernandez del Castillo, C.; et al. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 2013, 13, 1–15. [Google Scholar]
- Forsmark, C.E.; Swaroop Vege, S.; Wilcox, C.M. Acute pancreatitis. N. Engl. J. Med. 2016, 375, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
- Raraty, M.G.T.; Murphy, J.A.; McLoughlin, E.; Smith, D.; Criddle, D.; Sutton, R. Mechanisms of acinar cell injury in acute pancreatitis. Scand. J. Surg. 2005, 94, 89–96. [Google Scholar] [PubMed]
- Leung, P.S.; Ip, S.P. Pancreatic acinar cell: Its role in acute pancreatitis. Int. J. Biochem. Cell Biol. 2006, 38, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Maléth, J.; Hegyi, P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: Translational overview. Philos. Trans. R. Soc. B Biol. Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, J.V.; Gerasimenko, O.V.; Petersen, O.H. The role of Ca2+ in the pathophysiology of pancreatitis. J. Physiol. 2014, 592, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, P.; Rakonczay, Z. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. Pancreatology 2015, 15, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, P.; Petersen, O.H. The exocrine pancreas: The acinar-ductal tango in physiology and pathophysiology. Rev. Physiol. Biochem. Pharmacol. 2013, 165, 1–30. [Google Scholar] [PubMed]
- Sah, R.P.; Dawra, R.K.; Saluja, A.K. New insights into the pathogenesis of pancreatitis. Curr. Opin. Gastroenterol. 2013, 29, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.; Fei, L.W.; Cao, Y.; Hon, Y.L.; Huang, J.; Puneet, P.; Chevali, L. Pathophysiology of acute pancreatitis. Pancreatology 2005, 5, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Kylänpää, L.; Rakonczay, Z.; O’Reilly, D.A. The clinical course of acute pancreatitis and the inflammatory mediators that drive it. Int. J. Inflam. 2012, 2012, 360685. [Google Scholar] [CrossRef] [PubMed]
- Mayerle, J.; Dummer, A.; Sendler, M.; Malla, S.R.; van den Brandt, C.; Teller, S.; Aghdassi, A.; Nitsche, C.; Lerch, M.M. Differential roles of inflammatory cells in pancreatitis. J. Gastroenterol. Hepatol. 2012, 27, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Meng, X.; Xu, P. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J. Cell. Mol. Med. 2015, 19, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Leppkes, M.; Maueröder, C.; Hirth, S.; Nowecki, S.; Günther, C.; Billmeier, U.; Paulus, S.; Biermann, M.; Munoz, L.E.; Hoffmann, M.; et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat. Commun. 2016, 7, 10973. [Google Scholar] [CrossRef] [PubMed]
- Merza, M.; Hartman, H.; Rahman, M.; Hwaiz, R.; Zhang, E.; Renström, E.; Luo, L.; Mörgelin, M.; Regner, S.; Thorlacius, H. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 2015, 149, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Afghani, E.; Pandol, S.J.; Shimosegawa, T.; Sutton, R.; Wu, B.U.; Vege, S.S.; Gorelick, F.; Hirota, M.; Windsor, J.; Lo, S.K.; et al. Acute pancreatitis-progress and challenges: A report on an international symposium. Pancreas 2015, 44, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, C.M.; Christophi, C. Disturbances of the microcirculation in acute pancreatitis. Br. J. Surg. 2006, 93, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Staubli, S.M.; Oertli, D.; Nebiker, C.A. Laboratory markers predicting severity of acute pancreatitis. Crit. Rev. Clin. Lab. Sci. 2015, 52, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M. Acute pancreatitis as a model of SIRS. Front. Biosci. 2009, 14, 2042–2050. [Google Scholar] [CrossRef]
- Kakafika, A.; Papadopoulos, V.; Mimidis, K.; Mikhailidis, D.P. Coagulation, platelets, and acute pancreatitis. Pancreas 2007, 34, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Mole, D.J.; Olabi, B.; Robinson, V.; Garden, O.J.; Parks, R.W. Incidence of individual organ dysfunction in fatal acute pancreatitis: Analysis of 1024 death records. HPB 2009, 11, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.U.; Johannes, R.S.; Sun, X.; Tabak, Y.; Conwell, D.L.; Banks, P. The early prediction of mortality in acute pancreatitis: A large population-based study. Gut 2008, 57, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, G.I.; Muddana, V.; Yadav, D.; O’Connell, M.; Sanders, M.K.; Slivka, A.; Whitcomb, D.C. Comparison of BISAP, Ranson’s, APACHE-II, and CTSI scores in predicting organ failure, complications, and mortality in acute pancreatitis. Am. J. Gastroenterol. 2010, 105, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Danckwardt, S.; Hentze, M.W.; Kulozik, A.E. Pathologies at the nexus of blood coagulation and inflammation: Thrombin in hemostasis, cancer, and beyond. J. Mol. Med. 2013, 91, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. Crosstalk between inflammation and thrombosis. Maturitas 2004, 47, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Camerer, E.; Røttingen, J.A.; Gjernes, E.; Larsen, K.; Skartlien, A.H.; Iversen, J.G.; Prydz, H. Coagulation factors VIIa and Xa induce cell signaling leading to up-regulation of the egr-1 gene. J. Biol. Chem. 1999, 274, 32225–32233. [Google Scholar] [CrossRef] [PubMed]
- Camerer, E.; Kataoka, H.; Kahn, M.; Lease, K.; Coughlin, S.R. Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J. Biol. Chem. 2002, 277, 16081–16087. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 2000, 407, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.R. Protease-activated receptor signalling by coagulation proteases in endothelial cells. Thromb. Haemost. 2014, 112, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Nonoyama, S.; Morio, T.; Imai, K.; Ochs, H.D.; Mizutani, S. Characterization of soluble CD40 ligand released from human activated platelets. J. Med. Dent. Sci. 2001, 48, 23–27. [Google Scholar] [PubMed]
- Enomoto, Y.; Adachi, S.; Matsushima-Nishiwaki, R.; Doi, T.; Niwa, M.; Akamatsu, S.; Tokuda, H.; Ogura, S.; Yoshimura, S.; Iwama, T.; et al. Thromboxane A2 promotes soluble CD40 ligand release from human platelets. Atherosclerosis 2010, 209, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Croce, K.; Libby, P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr. Opin. Hematol. 2007, 14, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Henn, V.; Slupsky, J.R.; Gräfe, M.; Anagnostopoulos, I.; Förster, R.; Müller-Berghaus, G.; Kroczek, R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998, 391, 591–594. [Google Scholar] [PubMed]
- Klaska, I.; Nowak, J.Z. The role of complement in physiology and pathology. Postepy Hig. Med. Dosw. 2007, 61, 167–177. [Google Scholar]
- Huber-Lang, M.; Sarma, J.V.; Zetoune, F.S.; Rittirsch, D.; Neff, T.A.; McGuire, S.R.; Lambris, J.D.; Warner, R.L.; Flierl, M.A.; Hoesel, L.M.; et al. Generation of C5a in the absence of C3: A new complement activation pathway. Nat. Med. 2006, 12, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.A.; Romas, P.; Hutchinson, P.; Holdsworth, S.R.; Tipping, P.G. Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages. Blood 1999, 94, 3413–3420. [Google Scholar] [PubMed]
- Loike, J.D.; Khoury, J.; Cao, L.; Richards, C.P.; Rascoff, H.; Mandeville, J.T.; Maxfield, F.R.; Silverstein, S.C. Fibrin regulates neutrophil migration in response to interleukin 8, leukotriene B4, tumor necrosis factor, and formyl-methionyl-leucyl-phenylalanine. J. Exp. Med. 1995, 181, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Skogen, W.F.; Senior, R.M.; Griffin, G.L.; Wilner, G.D. Fibrinogen-derived peptide Bβ 1–42 is a multidomained neutrophil chemoattractant. Blood 1988, 71, 1475–1479. [Google Scholar] [PubMed]
- Qi, J.; Goralnick, S.; Kreutzer, D.L. Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood 1997, 90, 3595–3602. [Google Scholar] [PubMed]
- Maegele, M.; Paffrath, T.; Bouillon, B. Acute traumatic coagulopathy in severe injury: Incidence, risk stratification, and treatment options. Dtsch. Arztebl. Int. 2011, 108, 827–835. [Google Scholar] [PubMed]
- Levi, M.; van der Poll, T.; Schultz, M. New insights into pathways that determine the link between infection and thrombosis. Neth. J. Med. 2012, 70, 114–120. [Google Scholar] [PubMed]
- Levi, M.; van der Poll, T.; ten Cate, H.; van Deventer, S.J. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur. J. Clin. Investig. 1997, 27, 3–9. [Google Scholar] [CrossRef]
- Revenko, A.S.; Gao, D.; Crosby, J.R.; Bhattacharjee, G.; Zhao, C.; May, C.; Gailani, D.; Monia, B.P.; MacLeod, A.R. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood 2011, 118, 5302–5311. [Google Scholar] [CrossRef] [PubMed]
- Kokoye, Y.; Ivanov, I.; Cheng, Q.; Matafonov, A.; Dickeson, S.K.; Mason, S.; Sexton, D.J.; Renné, T.; McCrae, K.; Feener, E.P.; et al. A comparison of the effects of factor XII deficiency and prekallikrein deficiency on thrombus formation. Thromb. Res. 2016, 140, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Mutch, N.J.; Schenk, W.A.; Smith, S.A.; Esterl, L.; Spronk, H.M.; Schmidbauer, S.; Gahl, W.A.; Morrissey, J.H.; Renné, T. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009, 139, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- De Maat, S.; de Groot, P.; Maas, C. Contact system activation on endothelial cells. Semin. Thromb. Hemost. 2014, 40, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T. Two-way interactions between inflammation and coagulation. Trends Cardiovasc. Med. 2005, 15, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Han, K.H.; Hong, K.-H.; Park, J.-H.; Ko, J.; Kang, D.-H.; Choi, K.-J.; Hong, M.-K.; Park, S.-W.; Park, S.-J. C-reactive protein promotes monocyte chemoattractant protein-1—Mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 2004, 109, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Cermak, J.; Key, N.S.; Bach, R.R.; Balla, J.; Jacob, H.S.; Vercellotti, G.M. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993, 82, 513–520. [Google Scholar] [PubMed]
- Maugeri, N.; Brambilla, M.; Camera, M.; Carbone, A.; Tremoli, E.; Donati, M.B.; de Gaetano, G.; Cerletti, C. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost. 2006, 4, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Xu, D.Y.; Jialal, I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: Implications for the metabolic syndrome and atherothrombosis. Circulation 2003, 107, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, K.S.; Devaraj, S.; Jialal, I. C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation 2003, 108, 1676–1678. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M. Therapeutic rationale for antithrombin III in sepsis. Crit. Care Med. 2000, 28, 34–37. [Google Scholar] [CrossRef]
- Heyderman, R.S.; Klein, N.J.; Shennan, G.I.; Levin, M. Reduction of the anticoagulant activity of glycosaminoglycans on the surface of the vascular endothelium by endotoxin and neutrophils: Evaluation by an amidolytic assay. Thromb. Res. 1992, 67, 677–685. [Google Scholar] [CrossRef]
- Conway, E.M.; Rosenberg, R.D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol. Cell. Biol. 1988, 8, 5588–5592. [Google Scholar] [CrossRef] [PubMed]
- Faust, S.N.; Levin, M.; Harrison, O.B.; Goldin, R.D.; Lockhart, M.S.; Kondaveeti, S.; Laszik, Z.; Esmon, C.T.; Heyderman, R.S. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N. Engl. J. Med. 2001, 345, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.R.; Kuebler, W.M. Normal endothelium. Handb. Exp. Pharmacol. 2006, 176, 1–40. [Google Scholar]
- Kleinegris, M.C.; Ten Cate-Hoek, A.J.; Ten Cate, H. Coagulation and the vessel wall in thrombosis and atherosclerosis. Pol. Arch. Med. Wewn. 2012, 122, 557–566. [Google Scholar] [PubMed]
- Rondaij, M.G.; Bierings, R.; Kragt, A.; van Mourik, J.A.; Voorberg, J. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Hippenstiel, S.; Krüll, M.; Ikemann, A.; Risau, W.; Clauss, M.; Suttorp, N. VEGF induces hyperpermeability by a direct action on endothelial cells. Am. J. Physiol. 1998, 274, 678–684. [Google Scholar]
- Shapiro, N.I.; Schuetz, P.; Yano, K.; Sorasaki, M.; Parikh, S.M.; Jones, A.E.; Trzeciak, S.; Ngo, L.; Aird, W.C. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit. Care 2010, 14, R182. [Google Scholar] [CrossRef] [PubMed]
- Scharpfenecker, M.; Fiedler, U.; Reiss, Y.; Augustin, H.G. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell. Sci. 2005, 118, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Ebeling, D.; Ryschich, E.; Werner, J.; Gebhard, M.M.; Klar, E. Pancreatic capillary blood flow in an improved model of necrotizing pancreatitis in the rat. J. Surg. Res. 2002, 106, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Gullo, L.; Cavicchi, L.; Tomassetti, P.; Spagnolo, C.; Freyrie, A.; D’Addato, M. Effects of ischemia on the human pancreas. Gastroenterology 1996, 111, 1033–1038. [Google Scholar] [CrossRef]
- Klar, E.; Messmer, K.; Warshaw, A.L.; Herfarth, C. Pancreatic ischaemia in experimental acute pancreatitis: Mechanism, significance and therapy. Br. J. Surg. 1990, 77, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Vollmar, B.; Menger, M.D. Microcirculatory dysfunction in acute pancreatitis. A new concept of pathogenesis involving vasomotion-associated arteriolar constriction and dilation. Pancreatology 2003, 3, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Tomkötter, L.; Erbes, J.; Trepte, C.; Hinsch, A.; Dupree, A.; Bockhorn, M.; Mann, O.; Izbicki, J.R.; Bachmann, K. The effects of pancreatic microcirculatory disturbances on histopathologic tissue damage and the outcome in severe acute pancreatitis. Pancreas 2016, 45, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Waldner, H. Vascular mechanisms to induce acute pancreatitis. Eur. Surg. Res. 1992, 24, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Ceranowicz, P.; Cieszkowski, J.; Warzecha, Z.; Dembiński, A. Experimental models of acute pancreatitis. Postep. Hig. Med. Dosw. 2015, 69, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Dembiński, A.; Warzecha, Z.; Ceranowicz, P.; Stachura, J.; Tomaszewska, R.; Konturek, S.J.; Sendur, R.; Dembiński, M.; Pawlik, W.W. Pancreatic damage and regeneration in the course of ischemia-reperfusion induced pancreatitis in rats. J. Physiol. Pharmacol. 2001, 52, 221–235. [Google Scholar] [PubMed]
- Kovalska, I.; Dronov, O.; Zemskov, S.; Deneka, E.; Zemskova, M. Patterns of pathomorphological changes in acute necrotizing pancreatitis. Int. J. Inflam. 2012, 2012, 508915. [Google Scholar] [CrossRef] [PubMed]
- Warzecha, Z.; Dembiński, A.; Ceranowicz, P.; Konturek, P.C.; Stachura, J.; Konturek, S.J.; Niemiec, J. Protective effect of calcitonin gene-related peptide against caerulein-induced pancreatitis in rats. J. Physiol. Pharmacol. 1997, 48, 775–787. [Google Scholar] [PubMed]
- Warzecha, Z.; Dembinski, A.; Ceranowicz, P.; Konturek, S.J.; Tomaszewska, R.; Stachura, J.; Konturek, P.C. IGF-1 stimulates production of interleukin-10 and inhibits development of caerulein-induced pancreatitis. J. Physiol. Pharmacol. 2003, 54, 575–590. [Google Scholar] [PubMed]
- Hernández-Barbáchano, E.; San Román, J.I.; López, M.A.; Coveñas, R.; López-Novoa, J.M.; Calvo, J.J. Beneficial effects of vasodilators in preventing severe acute pancreatitis shock. Pancreas 2006, 32, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Bukowczan, J.; Warzecha, Z.; Ceranowicz, P.; Kusnierz-Cabala, B.; Tomaszewska, R.; Dembinski, A. Therapeutic effect of ghrelin in the course of ischemia/reperfusion-induced acute pancreatitis. Curr. Pharm. Des. 2015, 21, 2284–2290. [Google Scholar] [CrossRef] [PubMed]
- Bukowczan, J.; Cieszkowski, J.; Warzecha, Z.; Ceranowicz, P.; Kusnierz-Cabala, B.; Tomaszewska, R.; Dembinski, A. Therapeutic effect of obestatin in the course of cerulein-induced acute pancreatitis. Pancreas 2016, 45, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Ceranowicz, P.; Warzecha, Z.; Dembinski, A. Peptidyl hormones of endocrine cells origin in the gut—Their discovery and physiological relevance. J. Physiol. Pharmacol. 2015, 66, 11–27. [Google Scholar] [PubMed]
- Foitzik, T.; Eibl, G.; Hotz, B.; Hotz, H.; Kahrau, S.; Kasten, C.; Schneider, P.; Buhr, H.J. Persistent multiple organ microcirculatory disorders in severe acute pancreatitis: Experimental findings and clinical implications. Dig. Dis. Sci. 2002, 47, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, H.; Ko, I.; Hiura, A.; Ha, S.S.; Satake, K.; Sowa, M. Renal microcirculation in experimental acute pancreatitis of dogs. Ren. Fail. 1993, 15, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Kahrau, S.; Schneider, P.; Loddenkemper, C.; Buhr, H.J.; Foitzik, T. Pulmonary Microcirculation in Mild and Severe Experimental Pancreatitis. Eur. Surg. Res. 2003, 35, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-P.; Zhang, J.; Ma, M.-L.; Cai, Y.; Xu, R.-J.; Xie, Q.; Jiang, X.-G.; Ye, Q. Pathological changes at early stage of multiple organ injury in a rat model of severe acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 2010, 9, 83–87. [Google Scholar] [PubMed]
- Østergaard, L.; Granfeldt, A.; Secher, N.; Tietze, A.; Iversen, N.K.; Jensen, M.S.; Andersen, K.K.; Nagenthiraja, K.; Gutiérrez-Lizardi, P.; Mouridsen, K.; et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol. Scand. 2015, 59, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.G.; Chen, Y.D. Influencing factors of pancreatic microcirculatory impairment in acute panceatitis. World J. Gastroenterol. 2002, 8, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, P.; Rakonczay, Z. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas. Antioxid. Redox Signal. 2011, 15, 2723–2741. [Google Scholar] [CrossRef] [PubMed]
- Yekebas, E.; Treede, H.; Jochum, M.; Gippner-Steppert, C.; Bloechle, C.; Knoefel, W.T.; Scholz, J.; Fink, E.; Izbicki, J.R. Bradykinin B2-receptor antagonism attenuates fatal cardiocirculatory breakdown induced by severe experimental pancreatitis. Crit. Care Med. 2000, 28, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Camargo, E.A.; Ferreira, T.; Ribela, M.T.C.P.; de Nucci, G.; Landucci, E.C.T.; Antunes, E. Role of substance P and bradykinin in acute pancreatitis induced by secretory phospholipase A2. Pancreas 2008, 37, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Bloechle, C.; Kusterer, K.; Kuehn, R.M.; Schneider, C.; Knoefel, W.T.; Izbicki, J.R. Inhibition of bradykinin B2 receptor preserves microcirculation in experimental pancreatitis in rats. Am. J. Physiol. 1998, 274, 42–51. [Google Scholar]
- Liu, L.-T.; Li, Y.; Fan, L.-Q.; Zhao, Q.; Wang, D.; Cheng, S.-J.; Zhang, A.-M.; Qin, Y.; Zhang, B. Effect of vascular bradykinin on pancreatic microcirculation and hemorheology in rats with severe acute pancreatitis. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2646–2650. [Google Scholar] [PubMed]
- Inoue, K.; Hirota, M.; Kimura, Y.; Kuwata, K.; Ohmuraya, M.; Ogawa, M. Endothelin is involved in pancreatic and intestinal ischemia during severe acute pancreatitis. Int. Congr. Ser. 2003, 1255, 187–191. [Google Scholar] [CrossRef]
- Uhlmann, D.; Lauer, H.; Serr, F.; Ludwig, S.; Tannapfel, A.; Fiedler, M.; Hauss, J.; Witzigmann, H. Pathophysiological role of platelets in acute experimental pancreatitis: Influence of endothelin A receptor blockade. Cell. Tissue Res. 2007, 327, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P.; Wang, L.; Zhou, Y.F. The pathogenic mechanism of severe acute pancreatitis complicated with renal injury: A review of current knowledge. Dig. Dis. Sci. 2008, 53, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xia, S.-H.; Chen, H.; Li, X.-H. Therapy for acute pancreatitis with platelet-activating factor receptor antagonists. World J. Gastroenterol. 2008, 14, 4735–4738. [Google Scholar] [CrossRef] [PubMed]
- Kingsnorth, A.N.; Galloway, S.W.; Formela, L.J. Randomized, double-blind phase II trial of Lexipafant, a platelet-activating factor antagonist, in human acute pancreatitis. Br. J. Surg. 1995, 82, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.J.; Curran, F.; Sharples, C.; Baxter, J.N.; Imrie, C.W. Prospective placebo-controlled randomized trial of lexipafant in predicted severe acute pancreatitis. Br. J. Surg. 1997, 84, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Kingsnorth, A.N.; Imrie, C.W.; McMahon, M.J.; Neoptolemos, J.P.; McKay, C.; Toh, S.K.; Skaife, P.; Leeder, P.C.; Wilson, P.; et al. Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 2001, 48, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.; Alazmi, W.M.; Lehman, G.A.; Geenen, J.E.; Chuttani, R.; Kozarek, R.A.; Welch, W.D.; Souza, S.; Pribble, J. rPAF-AH ERCP study group evaluation of recombinant platelet-activating factor acetylhydrolase for reducing the incidence and severity of post-ERCP acute pancreatitis. Gastrointest. Endosc. 2009, 69, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Rybak, K.; Sporek, M.; Gala-Błądzińska, A.; Mazur-Laskowska, M.; Dumnicka, P.; Walocha, J.; Drożdż, R.; Kuźniewski, M.; Ceranowicz, P.; Kuśnierz-Cabala, B. Urinalysis in patients at the early stage of acute pancreatitis. Przegl. Lek. 2016, 73, 88–92. [Google Scholar] [PubMed]
- Sporek, M.; Dumnicka, P.; Gala-Błądzińska, A.; Ceranowicz, P.; Warzecha, Z.; Dembiński, A.; Stępień, E.; Walocha, J.; Drożdż, R.; Kuźniewski, M.; et al. Angiopoietin-2 is an early indicator of acute pancreatic-renal syndrome in patients with acute pancreatitis. Mediat. Inflamm. 2016, 2016, 5780903. [Google Scholar] [CrossRef] [PubMed]
- De Madaria, E.; Banks, P.A.; Moya-Hoyo, N.; Wu, B.U.; Rey-Riveiro, M.; Acevedo-Piedra, N.G.; Martínez, J.; Lluís, F.; Sánchez-Payá, J.; Singh, V.K. Early factors associated with fluid sequestration and outcomes of patients with acute pancreatitis. Clin. Gastroenterol. Hepatol. 2014, 12, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Warzecha, Z.; Dembiński, A.; Ceranowicz, P.; Dembiński, M.; Kownacki, P.; Konturek, S.J.; Tomaszewska, R.; Stachura, J.; Hlładki, W.; Pawlik, W.W. Immunohistochemical expression of FGF-2, PDGF-A, VEGF and TGFβ RII in the pancreas in the course of ischemia/reperfusion-induced acute pancreatitis. J. Physiol. Pharmacol. 2004, 55, 791–810. [Google Scholar] [PubMed]
- Von Dobschuetz, E.; Meyer, S.; Thorn, D.; Marme, D.; Hopt, U.T.; Thomusch, O. Targeting vascular endothelial growth factor pathway offers new possibilities to counteract microvascular disturbances during ischemia/reperfusion of the pancreas. Transplantation 2006, 82, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Ueda, T.; Takeyama, Y.; Yasuda, T.; Shinzeki, M.; Sawa, H.; Kuroda, Y. Protective effects of vascular endothelial growth factor on intestinal epithelial apoptosis and bacterial translocation in experimental severe acute pancreatitis. Pancreas 2007, 34, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Takeyama, Y.; Yasuda, T.; Matsumura, N.; Sawa, H.; Nakajima, T.; Kuroda, Y. Vascular endothelial growth factor increases in serum and protects against the organ injuries in severe acute pancreatitis. J. Surg. Res. 2006, 134, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Mentula, P.; Kylänpää, M.; Kemppainen, E.; Eklund, K.K.; Orpana, A.; Puolakkainen, P.; Haapiainen, R.; Repo, H. Serum levels of mast cell tryptase, vascular endothelial growth factor and basic fibroblast growth factor in patients with acute pancreatitis. Pancreas 2003, 27, 29–33. [Google Scholar] [CrossRef]
- Skibsted, S.; Jones, A.E.; Puskarich, M.A.; Arnold, R.; Sherwin, R.; Trzeciak, S.; Schuetz, P.; Aird, W.C.; Shapiro, N.I. Biomarkers of endothelial cell activation in early sepsis. Shock 2013, 39, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Dumnicka, P.; Sporek, M.; Mazur-Laskowska, M.; Ceranowicz, P.; Kuźniewski, M.; Drożdż, R.; Ambroży, T.; Olszanecki, R.; Kuśnierz-Cabala, B. Serum soluble fms-like tyrosine kinase 1 (sFlt-1) predicts the severity of acute pancreatitis. Int. J. Mol. Sci. 2016, 17, 2038. [Google Scholar] [CrossRef] [PubMed]
- Whitcomb, D.C.; Muddana, V.; Langmead, C.J.; Houghton, F.D.; Guenther, A.; Eagon, P.K.; Mayerle, J.; Aghdassi, A.; Weiss, F.U.; Evans, A.; et al. Angiopoietin-2, a regulator of vascular permeability in inflammation, is associated with persistent organ failure in patients with acute pancreatitis from the United States and Germany. Am. J. Gastroenterol. 2010, 105, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Buddingh, K.T.; Koudstaal, L.G.; van Santvoort, H.C.; Besselink, M.G.; Timmer, R.; Rosman, C.; van Goor, H.; Nijmeijer, R.M.; Gooszen, H.; Leuvenink, H.G.D.; et al. Early angiopoietin-2 levels after onset predict the advent of severe pancreatitis, multiple organ failure, and infectious complications in patients with acute pancreatitis. J. Am. Coll. Surg. 2014, 218, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ge, N.; Xia, Q.; Yang, Z.H.; Ding, Q.F.; Zeng, Z. Vascular endothelial injury and apoptosis in rats with severe acute pancreatitis. Gastroenterol. Res. Pract. 2015, 2015, 235017. [Google Scholar] [CrossRef] [PubMed]
- Siemiatkowski, A.; Wereszczynska-Siemiatkowska, U.; Mroczko, B.; Galar, M.; Maziewski, T. Circulating endothelial mediators in human pancreatitis-associated lung injury. Eur. J. Gastroenterol. Hepatol. 2015, 27, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Morioka, C.; Uemura, M.; Matsuyama, T.; Matsumoto, M.; Kato, S.; Ishikawa, M.; Ishizashi, H.; Fujimoto, M.; Sawai, M.; Yoshida, M.; et al. Plasma ADAMTS13 activity parallels the APACHE II score, reflecting an early prognostic indicator for patients with severe acute pancreatitis. Scand. J. Gastroenterol. 2008, 43, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Swisher, K.K.; Doan, J.T.; Vesely, S.K.; Kwaan, H.C.; Kim, B.; Lämmle, B.; Hovinga, J.A.K.; George, J.N. Pancreatitis preceding acute episodes of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: Report of five patients with a systematic review of published reports. Haematologica 2007, 92, 936–943. [Google Scholar] [CrossRef] [PubMed]
- McDonald, V.; Laffan, M.; Benjamin, S.; Bevan, D.; Machin, S.; Scully, M.A. Thrombotic thrombocytopenic purpura precipitated by acute pancreatitis: A report of seven cases from a regional UK TTP registry. Br. J. Haematol. 2009, 144, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Dumnicka, P.; Żyłka, A.; Kuśnierz-Cabala, B.; Gurda-Duda, A.; Kuźniewski, M.; Drożdż, R.; Kulig, J. Osteoprotegerin, TRAIL and osteoprotegerin/TRAIL ratio in patients at early phase of acute pancreatitis. Folia Med. Cracov. 2014, 54, 17–26. [Google Scholar] [PubMed]
- Espinosa, L.; Linares, P.M.; Bejerano, A.; Lopez, C.; Sanchez, A.; Moreno-Otero, R.; Gisbert, J.P. Soluble angiogenic factors in patients with acute pancreatitis. J. Clin. Gastroenterol. 2011, 45, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Wereszczynska-Siemiatkowska, U.; Dabrowski, A.; Siemiatkowski, A.; Mroczko, B.; Laszewicz, W.; Gabryelewicz, A. Serum profiles of E-selectin, interleukin-10, and interleukin-6 and oxidative stress parameters in patients with acute pancreatitis and nonpancreatic acute abdominal pain. Pancreas 2003, 26, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Pezzilli, R.; Corsi, M.M.; Barassi, A.; Morselli-Labate, A.M.; D’Alessandro, A.; Dogliotti, G.; Fantini, L.; Malesci, A.; Corinaldesi, R.; Melzi D’Eril, G. Serum adhesion molecules in acute pancreatitis: Time course and early assessment of disease severity. Pancreas 2008, 37, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Mantke, R.; Pross, M.; Kunz, D.; Ebert, M.; Kahl, S.; Peters, B.; Malfertheiner, P.; Lippert, H.; Schulz, H.U. Soluble thrombomodulin plasma levels are an early indication of a lethal course in human acute pancreatitis. Surgery 2002, 131, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-L.; Cai, J.-T.; Lu, X.-G.; Si, J.-M.; Qian, K.-D. Plasma level of thrombomodulin is an early indication of pancreatic necrosis in patients with acute pancreatitis. Intern. Med. 2007, 46, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Ida, S.; Fujimura, Y.; Hirota, M.; Imamura, Y.; Ozaki, N.; Suyama, K.; Hashimoto, D.; Ohmuraya, M.; Tanaka, H.; Takamori, H.; et al. Significance of endothelial molecular markers in the evaluation of the severity of acute pancreatitis. Surg. Today 2009, 39, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Hackert, T.; Sperber, R.; Hartwig, W.; Fritz, S.; Schneider, L.; Gebhard, M.M.; Werner, J. P-selectin inhibition reduces severity of acute experimental pancreatitis. Pancreatology 2009, 9, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, A.H.; Granger, D.N.; Russell, J.; Sabek, O.; Henry, J.; Gaber, L.; Kotb, M.; Gaber, A.O. Quantitative measurement of P- and E-selectin adhesion molecules in acute pancreatitis: Correlation with distant organ injury. Ann. Surg. 2000, 231, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, A.H.; Fukatsu, K.; Gaber, L.; Callicutt, S.; Kotb, M.; Wilcox, H.; Kudsk, K.; Gaber, A.O. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis. Ann. Surg. 2001, 233, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Frossard, J.L.; Saluja, A.; Bhagat, L.; Lee, H.S.; Bhatia, M.; Hofbauer, B.; Steer, M.L. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 1999, 116, 694–701. [Google Scholar] [CrossRef]
- Kleinhans, H.; Kaifi, J.T.; Mann, O.; Reinknecht, F.; Freitag, M.; Hansen, B.; Schurr, P.G.; Izbicki, J.R.; Strate, T.G. The role of vascular adhesion molecules PECAM-1 (CD31), VCAM-1 (CD106), E-Selectin (CD62E) and P-Selectin (CD62P) in severe porcine pancreatitis. Histol. Histopathol. 2009, 24, 551–557. [Google Scholar] [PubMed]
- Powell, J.J.; Siriwardena, A.K.; Fearon, K.C.; Ross, J.A. Endothelial-derived selectins in the development of organ dysfunction in acute pancreatitis. Crit. Care Med. 2001, 29, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Nakae, H.; Endo, S.; Sato, N.; Wakabayashi, G.; Inada, K.; Sato, S. Involvement of soluble adhesion molecules in acute pancreatitis. Eur. Surg. Res. 2001, 33, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Hynninen, M.; Valtonen, M.; Markkanen, H.; Vaara, M.; Kuusela, P.; Jousela, I.; Piilonen, A.; Takkunen, O. Interleukin 1 receptor antagonist and E-selectin concentrations: A comparison in patients with severe acute pancreatitis and severe sepsis. J. Crit. Care 1999, 14, 63–68. [Google Scholar] [CrossRef]
- Kylänpää-Bäck, M.L.; Takala, A.; Kemppainen, E.A.; Puolakkainen, P.A.; Leppäniemi, A.K.; Karonen, S.L.; Orpana, A.; Haapiainen, R.K.; Repo, H. Procalcitonin, soluble interleukin-2 receptor, and soluble E-selectin in predicting the severity of acute pancreatitis. Crit. Care Med. 2001, 29, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Hoshino, M.; Hayakawa, T.; Ohara, H.; Yamada, T.; Yamada, H.; Iida, M.; Nakazawa, T.; Ogasawara, T.; Uchida, A.; et al. Interleukin-6 is a useful marker for early prediction of the severity of acute pancreatitis. Pancreas 1997, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Ueda, T.; Kamei, K.; Shinzaki, W.; Sawa, H.; Shinzeki, M.; Ku, Y.; Takeyama, Y. Plasma tissue factor pathway inhibitor levels in patients with acute pancreatitis. J. Gastroenterol. 2009, 44, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Kuśnierz-Cabala, B.; Nowak, E.; Sporek, M.; Kowalik, A.; Kuźniewski, M.; Enguita, F.J.; Stępień, E. Serum levels of unique miR-551-5p and endothelial-specific miR-126a-5p allow discrimination of patients in the early phase of acute pancreatitis. Pancreatology 2015, 15, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Feldman, B.F.; Attix, E.A.; Strombeck, D.R.; O’Neill, S. Biochemical and coagulation changes in a canine model of acute necrotizing pancreatitis. Am. J. Vet. Res. 1981, 42, 805–809. [Google Scholar] [PubMed]
- Lukaszyk, A.; Bodzenta-Lukaszyk, A.; Gabryelewicz, A.; Bielawiec, M. Does acute experimental pancreatitis affect blood platelet function? Thromb. Res. 1989, 53, 319–325. [Google Scholar] [CrossRef]
- Mimidis, K.; Papadopoulos, V.; Kotsianidis, J.; Filippou, D.; Spanoudakis, E.; Bourikas, G.; Dervenis, C.; Kartalis, G. Alterations of platelet function, number and indexes during acute pancreatitis. Pancreatology 2004, 4, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Hirota, M.; Ichihara, A.; Ohmuraya, M.; Hashimoto, D.; Sugita, H.; Takamori, H.; Kanemitsu, K.; Baba, H. Applicability of disseminated intravascular coagulation parameters in the assessment of the severity of acute pancreatitis. Pancreas 2006, 32, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Akbal, E.; Demirci, S.; Koçak, E.; Köklü, S.; Başar, O.; Tuna, Y. Alterations of platelet function and coagulation parameters during acute pancreatitis. Blood Coagul. Fibrinolysis 2013, 24, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Sawa, H.; Ueda, T.; Takeyama, Y.; Yasuda, T.; Matsumura, N.; Nakajima, T.; Ajiki, T.; Fujino, Y.; Suzuki, Y.; Kuroda, Y. Elevation of plasma tissue factor levels in patients with severe acute pancreatitis. J. Gastroenterol. 2006, 41, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Axelsson, J.; Eckerwall, G.; Ansari, D.; Andersson, R. Tissue factor in predicted severe acute pancreatitis. World J. Gastroenterol. 2010, 16, 6128–6134. [Google Scholar] [CrossRef] [PubMed]
- Lasson, A.; Ohlsson, K. Consumptive coagulopathy, fibrinolysis and protease-antiprotease interactions during acute human pancreatitis. Thromb. Res. 1986, 41, 167–183. [Google Scholar] [CrossRef]
- Salomone, T.; Tosi, P.; Palareti, G.; Tomassetti, P.; Migliori, M.; Guariento, A.; Saieva, C.; Raiti, C.; Romboli, M.; Gullo, L. Coagulative disorders in human acute pancreatitis: Role for the d-dimer. Pancreas 2003, 26, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, O.; Kylanpaa, L.; Mentula, P.; Puolakkainen, P.; Kemppainen, E.; Haapiainen, R.; Fernandez, J.A.; Griffin, J.H.; Repo, H.; Petaja, J. Upregulated but insufficient generation of activated protein C is associated with development of multiorgan failure in severe acute pancreatitis. Crit. Care 2006, 10, R16. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, Y.; Qiao, M.; Yuan, Y. Activated protein C, an anticoagulant polypeptide, ameliorates severe acute pancreatitis via regulation of mitogen-activated protein kinases. J. Gastroenterol. 2007, 42, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Badhal, S.S.; Sharma, S.; Saraya, A.; Mukhopadhyay, K. Prognostic significance of d-dimer, natural anticoagulants and routine coagulation parameters in acute pancreatitis. Trop. Gastroenterol. 2012, 33, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Etoh, Y.; Sumi, H.; Tsushima, H.; Maruyama, M.; Mihara, H. Fibrinolytic enzymes in ascites during experimental acute pancreatitis in rats. Int. J. Pancreatol. 1992, 12, 127–137. [Google Scholar] [PubMed]
- Rydzewska, G.; Kosidlo, S.; Gabryelewicz, A.; Rydzewski, A. Tissue plasminogen activator, plasminogen activator inhibitor, and other parameters of fibrinolysis in the early stages of taurocholate acute pancreatitis in rats. Int. J. Pancreatol. 1992, 11, 161–168. [Google Scholar] [PubMed]
- Saif, M.W. DIC secondary to acute pancreatitis. Clin. Lab. Haematol. 2005, 27, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Ni, H.-B.; Tong, Z.-H.; Li, W.-Q.; Li, N.; Li, J.-S. d-Dimer as a marker of severity in patients with severe acute pancreatitis. J. Hepatobiliary Pancreat. Sci. 2012, 19, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Thajudeen, B.; Budhiraja, P.; Bracamonte, E.R. Bilateral renal artery thrombosis secondary to acute necrotizing pancreatitis. Clin. Kidney J. 2013, 6, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Herath, M.T.B.; Kulatunga, A. Acute pancreatitis complicated with deep vein thrombosis and pulmonary embolism: A case report. J. Med. Case Rep. 2016, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Nadkarni, N.A.; Naina, H.V.; Vege, S.S. Splanchnic vein thrombosis in acute pancreatitis: A single-center experience. Pancreas 2013, 42, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Toqué, L.; Hamy, A.; Hamel, J.-F.; Cesbron, E.; Hulo, P.; Robert, S.; Aube, C.; Lermite, E.; Venara, A. Predictive factors of splanchnic vein thrombosis in acute pancreatitis: A 6-year single-center experience. J. Dig. Dis. 2015, 16, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Deiss, R.; Young, P.; Yeh, J.; Reicher, S. Pulmonary embolism and acute pancreatitis: Case series and review. Turk. J. Gastroenterol. 2014, 25, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Lasson, A.; Ohlsson, K. Disseminated intravascular coagulation and antiprotease activity in acute human pancreatitis. Scand. J. Gastroenterol. 1986, 126, 35–39. [Google Scholar] [CrossRef]
- Radenkovic, D.; Bajec, D.; Ivancevic, N.; Milic, N.; Bumbasirevic, V.; Jeremic, V.; Djukic, V.; Stefanovic, B.; Stefanovic, B.; Milosevic-Zbutega, G.; et al. d-Dimer in acute pancreatitis: A new approach for an early assessment of organ failure. Pancreas 2009, 38, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhang, D.-L.; Hao, J.-Y. Coagulopathy and the prognostic potential of d-dimer in hyperlipidemia-induced acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 633–641. [Google Scholar] [CrossRef]
- Radenković, D.; Bajec, D.; Karamarkovic, A.; Stefanovic, B.; Milic, N.; Ignjatović, S.; Gregoric, P.; Milicevic, M. Disorders of hemostasis during the surgical management of severe necrotizing pancreatitis. Pancreas 2004, 29, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Boskovic, A.; Pasic, S.; Soldatovic, I.; Milinic, N.; Stankovic, I. The role of d-dimer in prediction of the course and outcome in pediatric acute pancreatitis. Pancreatology 2014, 14, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Tong, Z.; Li, W.; Wu, C.; Li, N.; Windsor, J.A.; Li, J.; Petrov, M.S. Predictors of critical acute pancreatitis: A prospective cohort study. Medicine 2014, 93, e108. [Google Scholar] [CrossRef] [PubMed]
- Uhlmann, D.; Lauer, H.; Serr, F.; Witzigmann, H. Pathophysiological role of platelets and platelet system in acute pancreatitis. Microvasc. Res. 2008, 76, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, A.; Awla, D.; Hartman, H.; Weiber, H.; Jeppsson, B.; Regnér, S.; Thorlacius, H. Platelets regulate P-selectin expression and leukocyte rolling in inflamed venules of the pancreas. Eur. J. Pharmacol. 2012, 682, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Hartman, H.; Abdulla, A.; Awla, D.; Lindkvist, B.; Jeppsson, B.; Thorlacius, H.; Regnér, S. P-selectin mediates neutrophil rolling and recruitment in acute pancreatitis. Br. J. Surg. 2012, 99, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Michael, E.S.; Kuliopulos, A.; Covic, L.; Steer, M.L.; Perides, G. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, 516–526. [Google Scholar] [CrossRef] [PubMed]
- De Madaria, E.; del Mar Francés, M.; Gea-Sorlí, S.; Gutiérrez, L.M.; Viniegra, S.; Pérez-Mateo, M.; Closa, D.; Lopez-Font, I. Role of protease-activated receptor 2 in lung injury development during acute pancreatitis in rats. Pancreas 2014, 43, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Ceranowicz, P.; Dembinski, A.; Warzecha, Z.; Dembinski, M.; Cieszkowski, J.; Rembisz, K.; Konturek, S.J.; Kusnierz-Cabala, B.; Tomaszewska, R.; Pawlik, W.W. Protective and therapeutic effect of heparin in acute pancreatitis. J. Physiol. Pharmacol. 2008, 59, 103–125. [Google Scholar] [PubMed]
- Trzaskoma, A.; Kruczek, M.; Rawski, B.; Poniewierka, E.; Kempiński, R. The use of heparin in the treatment of acute pancreatitis. Pol. Przegl. Chir. 2013, 85, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Lü, X.; Huang, Y. Effect of low molecular weight heparin on pancreatic micro-circulation in severe acute pancreatitis in a rodent model. Chin. Med. J. 2007, 120, 2260–2263. [Google Scholar] [PubMed]
- Ceranowicz, P.; Dembiński, M.; Warzecha, Z.; Cieszkowski, J.; Kuśnierz-Cabala, B.; Tomaszewska, R.; Dembiński, A. Healing effect of heparin in the course of acute cerulein-induced pancreatitis. Przegląd Gastroenterol. 2009, 4, 199–205. [Google Scholar]
- Warzecha, Z.; Dembinski, A.; Ceranowicz, P.; Dembinski, M.; Sendur, R.; Cieszkowski, J.; Sendur, P.; Tomaszewska, R. Heparin inhibits protective effect of ischemic preconditioning in ischemia/reperfusion-induced acute pancreatitis. J. Physiol. Pharmacol. 2012, 63, 355–365. [Google Scholar] [PubMed]
- Ke, L.; Ni, H.; Tong, Z.; Li, W.; Li, N.; Li, J. Efficacy of continuous regional arterial infusion with low-molecular-weight heparin for severe acute pancreatitis in a porcine model. Shock 2014, 41, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, G.; Chen, X.; Wu, T. Low-dose heparin in the prevention of post endoscopic retrograde cholangiopancreatography pancreatitis: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2012, 24, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, X.; Wu, T.; Zhang, M.; Zhang, X.; Ji, Z. Role of heparin on serum VEGF levels and local VEGF contents in reducing the severity of experimental severe acute pancreatitis in rats. Scand. J. Gastroenterol. 2012, 47, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Hackert, T.; Werner, J.; Gebhard, M.-M.; Klar, E. Effects of heparin in experimental models of acute pancreatitis and post-ERCP pancreatitis. Surgery 2004, 135, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Rabenstein, T.; Roggenbuck, S.; Framke, B.; Martus, P.; Fischer, B.; Nusko, G.; Muehldorfer, S.; Hochberger, J.; Ell, C.; Hahn, E.G.; et al. Complications of endoscopic sphincterotomy: Can heparin prevent acute pancreatitis after ERCP? Gastrointest. Endosc. 2002, 55, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Rabenstein, T.; Fischer, B.; Wießner, V.; Schmidt, H.; Radespiel-Tröger, M.; Hochberger, J.; Mühldorfer, S.; Nusko, G.; Messmann, H.; Schölmerich, J.; et al. Low-molecular-weight heparin does not prevent acute post-ERCP pancreatitis. Gastrointest. Endosc. 2004, 59, 606–613. [Google Scholar] [CrossRef]
- Barkay, O.; Niv, E.; Santo, E.; Bruck, R.; Hallak, A.; Konikoff, F.M. Low-dose heparin for the prevention of post-ERCP pancreatitis: A randomized placebo-controlled trial. Surg. Endosc. Other Interv. Tech. 2008, 22, 1971–1976. [Google Scholar] [CrossRef] [PubMed]
- Ung, K.-A.; Rydberg, L.; Modin, S.; Kylebäck, A.; Modin, M. A preventive effect of unfractionated heparin on post-ERCP pancreatitis is suggested by positive effects on laboratory markers. Hepatogastroenterology 2011, 58, 168–173. [Google Scholar] [PubMed]
- Alagözlü, H.; Cindoruk, M.; Karakan, T.; Ünal, S. Heparin and insulin in the treatment of hypertriglyceridemia-induced severe acute pancreatitis. Dig. Dis. Sci. 2006, 51, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Berger, Z.; Quera, R.; Poniachik, J.; Oksenberg, D.; Guerrero, J. Heparin and insulin treatment of acute pancreatitis caused by hypertriglyceridemia. Experience of 5 cases. Rev. Med. Chil. 2001, 129, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.-I.; Edwards, A.-L.; Symonds, C.-J.; Beck, P.-L. Hypertriglyceridemia-induced pancreatitis: A case-based review. World J. Gastroenterol. 2006, 12, 7197–7202. [Google Scholar] [CrossRef] [PubMed]
- Twilla, J.D.; Mancell, J. Hypertriglyceridemia-induced acute pancreatitis treated with insulin and heparin. Am. J. Heal. Pharm. 2012, 69, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Du, J.-D.; Zheng, X.; Huang, Z.-Q.; Cai, S.-W.; Tan, J.-W.; Li, Z.-L.; Yao, Y.-M.; Jiao, H.-B.; Yin, H.-N.; Zhu, Z.-M. Effects of intensive insulin therapy combined with low molecular weight heparin anticoagulant therapy on severe pancreatitis. Exp. Ther. Med. 2014, 8, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Qiu, F.; Li, Y.; Li, J.; Fan, Q.; Zhou, R. Effect of lower-molecular weight heparin in the prevention of pancreatic encephalopathy in the patient with severe acute pancreatitis. Pancreas 2010, 39, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-S.; Qiu, F.; Li, J.-Q.; Fan, Q.-Q.; Zhou, R.-G.; Ai, Y.-H.; Zhang, K.-C.; Li, Y.-X. Low molecular weight heparin in the treatment of severe acute pancreatitis: A multiple centre prospective clinical study. Asian J. Surg. 2009, 32, 89–94. [Google Scholar] [PubMed]
- Ping, C.; Yongping, Z.; Minmin, Q.; Weiyan, Y.; Yaozong, Y. Activated protein C improves the severity of severe acute pancreatitis via up-regulating the expressions of endothelial cell protein C receptor and thrombomodulin. Dig. Dis. Sci. 2010, 55, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Yamanel, L.; Yamenel, L.; Mas, M.R.; Comert, B.; Isik, A.T.; Aydin, S.; Mas, N.; Deveci, S.; Ozyurt, M.; Tasci, I.; et al. The effect of activated protein C on experimental acute necrotizing pancreatitis. Crit. Care 2005, 9, R184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akay, S.; Ozutemiz, O.; Yenisey, C.; Simsek, N.G.; Yuce, G.; Batur, Y. Use of activated protein C has no avail in the early phase of acute pancreatitis. HPB (Oxf.) 2008, 10, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Alsfasser, G.; Warshaw, A.L.; Thayer, S.P.; Antoniu, B.; Laposata, M.; Lewandrowski, K.B.; Fernández-del Castillo, C. Decreased inflammation and improved survival with recombinant human activated protein C treatment in experimental acute pancreatitis. Arch. Surg. 2006, 141, 670. [Google Scholar] [CrossRef] [PubMed]
- Pettilä, V.; Kyhälä, L.; Kylänpää, M.-L.; Leppäniemi, A.; Tallgren, M.; Markkola, A.; Puolakkainen, P.; Repo, H.; Kemppainen, E. APCAP—Activated protein C in acute pancreatitis: A double-blind randomized human pilot trial. Crit. Care 2010, 14, R139. [Google Scholar] [CrossRef] [PubMed]
- Kyhälä, L.; Lindström, O.; Kylänpää, L.; Mustonen, H.; Puolakkainen, P.; Kemppainen, E.; Tallgren, M.; Pettilä, V.; Repo, H.; Petäjä, J. Activated protein C retards recovery from coagulopathy in severe acute pancreatitis. Scand. J. Clin. Lab. Invest. 2016, 76, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, T.; Tsuji, Y.; Yamashita, H.; Fukuchi, T.; Kanamori, A.; Matsumoto, K.; Hasegawa, T.; Koizumi, A.; Kitada, R.; Tsujimae, M.; et al. Efficacy of recombinant human soluble thrombomodulin in preventing walled-off necrosis in severe acute pancreatitis patients. Pancreatology 2015, 15, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Warzecha, Z.; Sendur, P.; Ceranowicz, P.; Dembinski, M.; Cieszkowski, J.; Kusnierz-Cabala, B.; Tomaszewska, R.; Dembinski, A. Pretreatment with low doses of acenocoumarol inhibits the development of acute ischemia/reperfusion-induced pancreatitis. J. Physiol. Pharmacol. 2015, 66, 731–740. [Google Scholar] [PubMed]
- Warzecha, Z.; Sendur, P.; Ceranowicz, P.; Dembiński, M.; Cieszkowski, J.; Kuśnierz-Cabala, B.; Olszanecki, R.; Tomaszewska, R.; Ambroży, T.; Dembiński, A. Protective effect of pretreatment with acenocoumarol in cerulein-induced acute pancreatitis. Int. J. Mol. Sci. 2016, 17, 1709. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, S.; Iwasaka, H.; Shingu, C.; Matsumoto, S.; Uchida, T.; Noguchi, T. Antithrombin III prevents cerulein-induced acute pancreatitis in rats. Pancreas 2009, 38, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, S.; Iwasaka, H.; Uchida, T.; Hasegawa, A.; Asai, N.; Noguchi, T. Danaparoid sodium prevents cerulein-induced acute pancreatitis in rats. Shock 2009, 32, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Axelsson, J.; Pedersen, L.C.; Elm, T.; Andersson, R. Treatment with anti-factor VIIa in acute pancreatitis in rats: Blocking both coagulation and inflammation? Scand. J. Gastroenterol. 2007, 42, 765–770. [Google Scholar] [CrossRef] [PubMed]
Laboratory Test | Studied Group | Time of Blood Collection | Outcome Variable (Number of Cases) | Values Associated with Outcome Variable | Se., % 1 | Sp., % 2 | AUC 3 | Ref. 4 |
---|---|---|---|---|---|---|---|---|
Angiopoietin-2 | 28 patients with AP from University of Pittsburgh Medical Center | Within 3 days from the onset of pain 5 | Severe AP (persistent organ failure >48 h or death) (6 patients form Pittsburg and 14 from Greifswald) | >1.91 ng/mL | 83 | 91 | 0.940 | [113] |
123 patients with AP from Greifswald University | >2.94 ng/mL | 93 | 63 | 0.790 | ||||
25 patients with AP | At 12 h from admission (admission within 72 h from the onset of pain) | Severe AP according to 1992 Atlanta classification (7 patients) | >10 ng/mL | 100 | 88 | 0.970 | [121] | |
115 patients with AP (subsample from PROPATRIA trial cohort) | Within 5 days from admission (median 3 days from the onset of pain) | Severe AP (organ failure or pancreatic necrosis) (37 patients) | >4.56 ng/mL | 81.1 | 73.2 | 0.851 | [114] | |
Multiorgan failure (18 patients) | >5.01 ng/mL | 72.2 | 73.2 | 0.784 | ||||
Infectious complications of AP (39 patients) | >4.51 ng/mL | 79.5 | 76.3 | 0.816 | ||||
Soluble fms-like tyrosine kinase 1 | 66 consecutive adult patients with AP | At 24 h from the onset of pain | Severe and moderately severe AP according to 2012 Atlanta classification (20 patients) | >139 pg/mL | 94% | 63% | 0.808 | [112] |
At 48 h from the onset of pain | >120 pg/mL | 78 | 77 | 0.791 | ||||
Soluble E-selectin | 56 patients with AP | At admission (≤48 h from the onset of pain) | Severe AP according to Ranson’s score and Balthazar CT grading (28 patients) | increased | NR 6 | NR 6 | 0.802 | [122] |
15 consecutive patients with AP | At admission (≤6 h from the onset of pain) and on two subsequent days (pooled results) | Severe AP according to 1992 Atlanta classification (5 patients) | >3.92 ng/mL | 60 | 90 | 0.780 | [123] | |
69 adult patients with severe AP | At admission (≤48 h from the onset of pain) | Acute respiratory distress syndrome in the course of severe AP (39 patients) | >165.6 ng/mL | 48.3 | 86.7 | 0.704 | [116] | |
Soluble ICAM-1 | 15 consecutive patients with AP | At admission (≤6 h from the onset of pain) and on two subsequent days (pooled results) | Severe AP according to 1992 Atlanta classification (5 patients) | >80.4 ng/mL | 73.3 | 70 | 0.684 | [123] |
69 adult patients with severe AP | At admission (≤48 h from the onset of pain) | Acute respiratory distress syndrome in the course of severe AP (39 patients) | >711.2 ng/mL | 61.5 | 93.3 | 0.787 | [116] | |
Soluble thrombomodulin | 73 patients with AP | On day 3 from the onset of pain | Death (12 patients) | <75 ng/mL | 100 | 77 | NR 6 | [124] |
104 patients with AP | At 48 h from the onset of pain | Pancreatic necrosis (32 patients) | >71.5 µg/L | 75 | 99 | 0.949 | [125] | |
27 patients with AP | At admission | Death (5 patients) | >32 TU/mL | 80 | 91 | 0.876 | [126] | |
von Willebrand factor (antigen) | 69 adult patients with severe AP | At admission (≤48 h from the onset of pain) | Acute respiratory distress syndrome in the course of severe AP (39 patients) | >169.2% | 43.2 | 93.3 | 0.686 | [116] |
Laboratory Test | Studied Group | Time of Blood Collection | Outcome Variable (Number of Cases) | Values Associated with Outcome Variable | Se., % 1 | Sp., % 2 | AUC 3 | Ref. 4 |
---|---|---|---|---|---|---|---|---|
Platelet count | 139 consecutive patients with AP | At admission | Death (14 patients) | <92 × 103/µL | 75 | 71 | 0.850 | [142] |
d-dimer | 139 consecutive patients with AP | At admission | Death (14 patients) | >6.1 µg/mL | 85 | 67 | 0.783 | [142] |
91 consecutive patients with AP | At admission | Organ failure: pulmonary or kidney failure, or shock (24 patients) | >0.414 µg/mL | 90 | 89 | 0.908 | [161] | |
24 h from admission | >0.551 µg/mL | 90 | 81 | 0.916 | ||||
38 consecutive patients with AP | At admission | Organ failure (23 patients) | >0.4 µg/mL | 81.7 | 54.2 | 0.683 | [150] | |
Death (14 patients) | >0.4 µg/mL | 90.9 | 58.3 | 0.708 | ||||
45 consecutive adult patients with severe AP | Day 0–2 from admission (mean value) | Multiorgan dysfunction syndrome (16 patients) | >0.812 µg/mL | 81 | 90 | 0.899 | [154] | |
Pancreatic infection (14 patients) | >0.762 µg/mL | 100 | 87 | 0.968 | ||||
Day 0–2 from admission (maximum value) | Multiorgan dysfunction syndrome (16 patients) | >0.975 µg/mL | 81 | 79 | 0.885 | |||
Pancreatic infection (14 patients) | >0.975 µg/mL | 93 | 81 | 0.935 | ||||
36 pediatric patients with AP (aged 1–17 years) | At admission | Multiorgan failure (4 patients) | >1.189 µg/mL | 100 | 87.5 | 0.914 | [164] | |
173 adult patients with AP | At admission (≤96 h from the onset of pain 5) | Critical AP (persistent organ failure plus infected necrosis) (47 patients) | >0.67 µg/mL | 83 | 68 | 0.810 | [165] | |
106 patients with mild to moderately severe AP | Within 24 h from admission (≤48 h from the onset of pain) | Moderately severe AP according to 2012 Atlanta classification | >0.91 µg/mL | 62.2 | 84.1 | 0.747 | [162] | |
Fibrin/fibrinogen degradation product-E | 139 consecutive patients with AP | At admission | Death (14 patients) | >894 ng/mL | 93 | 73 | 0.873 | [142] |
Antithrombin | 139 consecutive patients with AP | At admission | Death (14 patients) | <69% | 81 | 86 | 0.926 | [142] |
91 consecutive patients with AP | 24 h from admission | Organ failure: pulmonary or kidney failure, or shock (24 patients) | <75.5% | 62 | 89 | 0.770 | [161] | |
38 consecutive patients with AP | At admission | Organ failure (23 patients) | ≤71% | 66.7 | 78.6 | 0.748 | [150] | |
Death (14 patients) | ≤71% | 70.8 | 81.8 | 0.830 | ||||
Protein C | 38 consecutive patients with AP | At admission | Organ failure (23 patients) | ≤60% | 62.5 | 64.3 | 0.683 | [150] |
Death (14 patients) | ≤60% | 70.8 | 63.6 | 0.691 | ||||
Thrombin-antithrombin complex | 139 consecutive patients with AP | At admission | Death (14 patients) | >11 ng/mL | 79 | 72 | 0.768 | [142] |
Tissue factor | 19 patients with alcoholic SAP | At admission (≤48 h from the onset of pain) | Pancreatic necrosis (11 patients) | >350 pg/mL | 60 | 100 | 0.773 | [144] |
48 consecutive patients with AP | At inclusion into study (median duration of pain 34 and 25 h in mild and severe AP) | Severe AP according to 1992 Atlanta classification (21 patients) | >32 pg/mL | 86 | 48 | 0.679 | [145] | |
>46 pg/mL | 62 | 74 | ||||||
69 adult patients with severe AP | At admission (≤48 h from the onset of pain) | Acute respiratory distress syndrome in the course of severe AP (39 patients) | >168.4 pg/mL | 61.1 | 90.0 | 0.757 | [116] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumnicka, P.; Maduzia, D.; Ceranowicz, P.; Olszanecki, R.; Drożdż, R.; Kuśnierz-Cabala, B. The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. Int. J. Mol. Sci. 2017, 18, 354. https://doi.org/10.3390/ijms18020354
Dumnicka P, Maduzia D, Ceranowicz P, Olszanecki R, Drożdż R, Kuśnierz-Cabala B. The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. International Journal of Molecular Sciences. 2017; 18(2):354. https://doi.org/10.3390/ijms18020354
Chicago/Turabian StyleDumnicka, Paulina, Dawid Maduzia, Piotr Ceranowicz, Rafał Olszanecki, Ryszard Drożdż, and Beata Kuśnierz-Cabala. 2017. "The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications" International Journal of Molecular Sciences 18, no. 2: 354. https://doi.org/10.3390/ijms18020354