The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Randomization and Blinding
2.3. Preparation of SM70EE and the Placebo
2.4. Clinical Trial
2.5. Measurement of Biomarkers
2.6. Statistical Analysis
3. Results
3.1. Demographic Information and Compliance Assessment
3.2. Comparison of SM70EE and Placebo Groups during the 12-Week Trial
3.3. Safety Issues and Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, R.S.; Wang, T.; Yu, L.; Bennett, D.A.; Boyle, P.A. Normative cognitive decline in old age. Ann. Neurol. 2020, 87, 816–829. [Google Scholar] [CrossRef] [PubMed]
- Sengoku, R. Aging and Alzheimer’s disease pathology. Neuropathology 2020, 40, 22–29. [Google Scholar] [CrossRef]
- Lissek, V.; Suchan, B. Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci. Biobehav. Rev. 2021, 122, 143–164. [Google Scholar] [CrossRef] [PubMed]
- Zvěřová, M. Clinical aspects of Alzheimer’s disease. Clin. Biochem. 2019, 72, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Miczke, A.; Szulińska, M.; Hansdorfer-Korzon, R.; Kręgielska-Narożna, M.; Suliburska, J.; Walkowiak, J.; Bogdański, P. Effects of Spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: A double-blind, placebo-controlled, randomized trial. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 150–156. [Google Scholar] [PubMed]
- Moradi, S.; Ziaei, R.; Foshati, S.; Mohammadi, H.; Nachvak, S.M.; Rouhani, M.H. Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2019, 47, 102211–102217. [Google Scholar] [CrossRef]
- Koh, E.-J.; Seo, Y.-J.; Choi, J.; Lee, H.Y.; Kang, D.-H.; Kim, K.-J.; Lee, B.-Y. Spirulina maxima extract prevents neurotoxicity via promoting activation of BDNF/CREB signaling pathways in neuronal cells and mice. Molecules 2017, 22, 1363. [Google Scholar] [CrossRef]
- Koh, E.-J.; Kim, K.-J.; Song, J.-H.; Choi, J.; Lee, H.Y.; Kang, D.-H.; Heo, H.J.; Lee, B.-Y. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1–42 in mice. Int. J. Mol. Sci. 2017, 18, 2401. [Google Scholar] [CrossRef]
- Choi, W.Y.; Kang, D.H.; Lee, H.Y. Enhancement of neuroprotective effects of Spirulina maxima by a low-temperature extraction process with ultrasonic pretreatment. Biotechnol. Bioprocess Eng. 2018, 23, 415–423. [Google Scholar] [CrossRef]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment-beyond controversies, towards a consensus: Report of the international working group on mild cognitive impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Stephan, B.C.; Hunter, S.; Harris, D.; Llewellyn, D.J.; Siervo, M.; Matthews, F.E.; Brayne, C. The neuropathological profile of mild cognitive impairment (MCI): A systematic review. Mol. Psychiatry 2012, 17, 1056–1076. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.; Kwon, Y.; Han, S.; Shim, S. The characteristics of cognitive function in mild cognitive impairment. J. Soonchunhyang Med. Coll. 2006, 12, 287–292. [Google Scholar]
- Missonnier, P.; Deiber, M.P.; Gold, G.; Herrmann, F.R.; Millet, P.; Michon, A.; Fazio-Costa, L.; Ibanez, V.; Giannakopoulos, P. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience 2007, 150, 346–356. [Google Scholar] [CrossRef]
- Alescio-Lautier, B.; Michel, B.F.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V. Visual and visuospatial short-term memory in mild cognitive impairment and Alzheimer disease: Role of attention. Neuropsychologia 2007, 45, 1948–1960. [Google Scholar] [CrossRef]
- Yetkin, F.Z.; Rosenberg, R.N.; Weiner, M.F.; Purdy, P.D.; Cullum, C.M. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur. Radiol. 2006, 16, 193–206. [Google Scholar] [CrossRef]
- Larrieu, S.; Letenneur, L.; Orgogozo, J.M.; Fabrigoule, C.; Amieva, H.; Le Carret, N.; Barberger-Gateau, P.; Dartigues, J.F. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002, 59, 1594–1599. [Google Scholar] [CrossRef]
- Ko, H.-E.; Kim, J.-W.; Kim, H.-D.; Jang, Y.-S.; Chung, H.-A. Construction validity of the MoCA-K to MMSE-K, LOTCA-G in the community living elderly. J. Korea Acad.-Ind. Coop Soc. 2013, 14, 312–320. [Google Scholar] [CrossRef]
- De Oliveira, M.O.; Brucki, S.M.D. Computerized Neurocognitive Test (CNT) in mild cognitive impairment and Alzheimer’s disease. Dement. Neuropsychol. 2014, 8, 112–116. [Google Scholar] [CrossRef]
- Jung, S.-J.; Jung, E.-S.; Ha, K.-C.; Baek, H.-I.; Park, Y.-K.; Han, S.-K.; Chae, S.-W.; Lee, S.-O.; Chung, Y.-C. Efficacy and safety of sesame oil cake extract on memory function improvement: A 12-week, randomized, double-blind, placebo-controlled pilot study. Nutrients 2021, 13, 2606. [Google Scholar] [CrossRef]
- Aggett, P.J.; Antoine, J.-M.; Asp, N.-G.; Bellisle, F.; Contor, L.; Cummings, J.H.; Howlett, J.; Müller, D.J.G.; Persin, C.; Pijls, L.T.J.; et al. PASSCLAIM: Consensus on criteria. Eur. J. Nutr. 2005, 44, i5–i30. [Google Scholar] [CrossRef]
- Kazemipoor, M.; Radzi, C.W.; Hajifaraji, M.; Haerian, B.S.; Mosaddegh, M.H.; Cordell, G.A. Antiobesity effect of caraway extract on overweight and obese women: A randomized, triple-blind, placebo-controlled clinical trial. Evid.-Based Complement. Altern. Med. 2013, 2013, 928582. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Choi, W.-S.; Ye, B.-R.; Heo, S.-J.; Oh, D.; Kim, S.; Choi, K.-S.; Kang, D.-H. Cultivating Spirulina maxima: Innovative approaches. In Cyanobacteria; IntechOpen: London, UK, 2018; Volume 61, pp. 61–83. [Google Scholar]
- Hsu, C.H.; Tsai, T.H.; Kao, Y.H.; Hwang, K.C.; Tseng, T.Y.; Chou, P. Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2008, 27, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Proaño, J.V.; Jia, J.; Froelich, L.; Vester, J.C.; Doppler, E. Cerebrolysin in mild-to-moderate Alzheimer’s disease: A meta-analysis of randomized controlled clinical trials. Dement. Geriatr. Cogn. Disord. 2015, 39, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Devanand, D.P.; Pelton, G.H.; Cunqueiro, K.; Sackeim, H.A.; Marder, K. A 6-month, randomized, double-blind, placebo-controlled pilot discontinuation trial following response to haloperidol treatment of psychosis and agitation in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2011, 26, 937–943. [Google Scholar] [CrossRef] [PubMed]
- AbuMweis, S.S.; Jew, S.; Jones, P.J.H. Optimizing clinical trial design for assessing the efficacy of functional foods. Nutr. Rev. 2010, 68, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Neshatdoust, S.; Saunders, C.; Castle, S.M.; Vauzour, D.; Williams, C.; Butler, L.; Lovegrove, J.A.; Spencer, J.P.E. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: Two randomised, controlled trials. Nutr. Healthy Aging 2016, 4, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Agahi, A.; Hamidi, G.A.; Daneshvar, R.; Hamdieh, M.; Soheili, M.; Alinaghipour, A.; Esmaeili Taba, S.M.; Salami, M. Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front. Neurol. 2018, 9, 662. [Google Scholar] [CrossRef] [PubMed]
- Krauss, S.; Zhang, C.Y.; Lowell, B.B. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 2005, 6, 248–261. [Google Scholar] [CrossRef]
- Papa, S.; Skulachev, V. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 1997, 174, 305–319. [Google Scholar] [CrossRef]
- Corti, O.; Lesage, S.; Brice, A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol. Rev. 2011, 91, 1161–1218. [Google Scholar] [CrossRef]
- Maurya, P.K.; Kumar, P.; Siddiqui, N.; Tripathi, P.; Rizvi, S.I. Age-associated changes in erythrocyte glutathione peroxidase activity: Correlation with total antioxidant potential. Indian J. Biochem. Biophys. 2010, 47, 319–321. [Google Scholar]
- Kawarabayashi, T.; Younkin, L.H.; Saido, T.C.; Shoji, M.; Ashe, K.H.; Younkin, S.G. Age-dependent changes in Brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J. Neurosci. 2001, 21, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Maurya, P.K. L-cysteine efflux in erythrocytes as a function of human age: Correlation with reduced glutathione and total anti-oxidant potential. Rejuvenation Res. 2013, 16, 179–184. [Google Scholar] [CrossRef]
- Jung, S.J.; Hwang, J.H.; Oh, M.R.; Chae, S.W. Effects of Cordyceps militaris supplementation on the immune response and upper respiratory infection in healthy adults: A randomized, double-blind, placebo-controlled study. J. Nutr. Health 2019, 52, 258–267. [Google Scholar] [CrossRef]
- Ng, T.K.S.; Ho, C.S.H.; Tam, W.W.S.; Kua, E.H.; Ho, R.C. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): A systematic review and meta-analysis. Int. J. Mol. Sci. 2019, 20, 257. [Google Scholar] [CrossRef]
- Risacher, S.L.; Fandos, N.; Romero, J.; Sherriff, I.; Pesini, P.; Saykin, A.J.; Apostolova, L.G. Plasma amyloid beta levels are associated with cerebral amyloid and tau deposition. Alzheimer’s Dement. 2019, 11, 510–519. [Google Scholar] [CrossRef]
- Nagata, T.; Kobayashi, N.; Shinagawa, S.; Yamada, H.; Kondo, K.; Nakayama, K. Plasma BDNF levels are correlated with aggressiveness in patients with amnestic mild cognitive impairment or Alzheimer disease. J. Neural Transm. 2014, 121, 433–441. [Google Scholar] [CrossRef]
- Janelidze, S.; Stomrud, E.; Palmqvist, S.; Zetterberg, H.; van Westen, D.; Jeromin, A.; Song, L.; Hanlon, D.; Tan Hehir, C.A.; Baker, D.; et al. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep 2016, 6, 26801. [Google Scholar] [CrossRef]
- Mehta, P.D.; Pirttila, T.; Patrick, B.A.; Barshatzky, M.; Mehta, S.P. Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett. 2001, 304, 102–106. [Google Scholar] [CrossRef]
- Gupta, P.; MacWhinney, B. Vocabulary acquisition and verbal short-term memory: Computational and neural bases. Brain Lang. 1997, 59, 267–333. [Google Scholar] [CrossRef]
- Burgess, C.; Chiarello, C. Neurocognitive mechanisms underlying metaphor comprehension and other figurative language. Metaphor. Symbol 1996, 11, 67–84. [Google Scholar] [CrossRef]
- De Graaf, T.A.; Roebroeck, A.; Goebel, R.; Sack, A.T. Brain network dynamics underlying visuospatial judgment: An FMRI connectivity study. J. Cogn. Neurosci. 2010, 22, 2012–2026. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.; Anderson, S. The association between visual, nonverbal cognitive abilities and speech, phonological processing, vocabulary and reading outcomes in children with cochlear implants. Ear Hear. 2014, 35, 366–374. [Google Scholar] [CrossRef] [PubMed]
Variables | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | Total (n = 80) | p Value 1 |
---|---|---|---|---|
Sex (male/female) | 12/28 | 9/31 | 21/59 | 0.446 |
Education (years) | 10.58 ± 3.66 | 10.05 ± 3.86 | 10.31 ± 3.75 | 0.534 |
Age (years) | 67.68 ± 4.43 | 68.85 ± 4.89 | 68.26 ± 4.68 | 0.264 |
Alcohol drinking (unit/week) | 2.52 ± 5.92 | 1.30 ± 3.89 | 1.91 ± 5.02 | 0.280 |
Alcohol drinking history (yes/no) | 15/25 | 13/27 | 28/52 | 0.639 |
Smoking (unit/day) | 0.25 ± 1.58 | 0.00 ± 0.00 | 0.13 ± 1.12 | 0.323 |
Smoking history (yes/no) | 1/39 | 0/40 | 1/79 | 0.314 |
Systolic blood pressure (mmHg) | 131.50 ± 13.59 | 134.78 ± 13.03 | 133.14 ± 13.33 | 0.275 |
Diastolic blood pressure (mmHg) | 78.03 ± 10.40 | 80.50 ± 9.01 | 79.26 ± 9.75 | 0.259 |
Heart rate (beats/min) | 71.20 ± 8.35 | 74.40 ± 9.09 | 72.80 ± 8.82 | 0.105 |
Height (cm) | 157.73 ± 8.33 | 157.18 ± 7.69 | 157.45 ± 7.97 | 0.760 |
Weight (kg) | 63.19 ± 10.67 | 63.60 ± 10.13 | 63.39 ± 10.34 | 0.861 |
Body mass index (kg/m2) | 25.32 ± 3.11 | 25.67 ± 2.94 | 25.49 ± 3.01 | 0.607 |
K-MMSE | 26.38 ± 1.15 | 26.38 ± 0.98 | 26.38 ± 1.06 | 1.000 |
Variables | SM70EE (n = 37) | Placebo (n = 37) | Total (n = 74) | p Value 1 |
---|---|---|---|---|
Prescriptions | 253.35 ± 7.62 | 252.14 ± 7.01 | 252.74 ± 7.30 | 0.477 |
Total intake | 234.07 ± 20.05 | 235.61 ± 15.93 | 234.84 ± 18.00 | 0.715 |
Compliance (%) | 92.41 ± 8.15 | 93.43 ± 6.27 | 92.92 ± 7.24 | 0.545 |
Variables | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | p2 | p3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | |||
Visual learning test A1 | 9.77 ± 1.61 | 10.37 ± 2.30 | 0.78 ± 1.85 | 0.130 | 9.28 ± 1.41 | 9.75 ± 2.22 | 0.68 ± 1.42 | 0.173 | 0.792 | 0.242 |
Visual learning test A2 | 10.06 ± 1.64 | 11.00 ± 1.60 | 0.94 ± 1.54 | 0.001 | 10.15 ± 1.50 | 10.56 ± 1.26 | 0.38 ± 1.86 | 0.225 | 0.177 | 0.169 |
Visual learning test A3 | 10.44 ± 1.86 | 11.14 ± 1.44 | 0.69 ± 1.79 | 0.026 | 10.56 ± 1.67 | 10.26 ± 1.44 | −0.27 ± 1.82 | 0.373 | 0.025 | 0.007 |
Visual learning test A4 | 10.94 ± 1.43 | 11.14 ± 1.59 | 0.20 ± 1.39 | 0.400 | 11.11 ± 1.75 | 10.97 ± 1.81 | −0.14 ± 1.81 | 0.653 | 0.384 | 0.460 |
Visual learning test A5 | 11.06 ± 1.46 | 11.15 ± 1.50 | 0.09 ± 1.51 | 0.731 | 11.27 ± 1.10 | 11.18 ± 1.49 | −0.08 ± 1.30 | 0.707 | 0.610 | 0.796 |
Visual learning test (recognition) | 10.66 ± 1.11 | 10.80 ± 1.84 | 0.14 ± 1.56 | 0.590 | 10.26 ± 1.48 | 10.53 ± 1.52 | 0.24 ± 1.75 | 0.405 | 0.798 | 0.844 |
Visual working memory test (accuracy) | 26.77 ± 14.85 | 41.51 ± 11.03 | 14.75 ± 17.42 | 0.000 | 29.31 ± 14.11 | 33.53 ± 18.78 | 3.87 ± 18.85 | 0.220 | 0.015 | 0.024 |
Visual working memory test (corrected accuracy) | 20.15 ± 14.12 | 32.70 ± 15.47 | 12.55 ± 18.09 | 0.000 | 23.29 ± 15.90 | 26.86 ± 17.09 | 3.38 ± 17.27 | 0.242 | 0.032 | 0.064 |
Visual working memory test (reaction time) | 636.14 ± 81.08 | 634.16 ± 71.83 | −1.98 ± 86.99 | 0.895 | 617.25 ± 80.14 | 604.70 ± 84.77 | −11.87 ± 92.04 | 0.438 | 0.644 | 0.205 |
Verbal learning test A1 | 4.59 ± 1.52 | 5.91 ± 1.64 | 1.32 ± 1.90 | 0.000 | 5.03 ± 1.47 | 6.55 ± 1.70 | 1.35 ± 2.06 | 0.000 | 0.953 | 0.191 |
Verbal learning test A2 | 7.53 ± 1.81 | 8.12 ± 2.01 | 0.59 ± 1.94 | 0.086 | 7.36 ± 1.62 | 8.79 ± 2.00 | 1.27 ± 1.79 | 0.000 | 0.128 | 0.080 |
Verbal learning test A3 | 8.92 ± 1.95 | 9.25 ± 2.14 | 0.33 ± 1.84 | 0.283 | 9.12 ± 2.04 | 9.79 ± 1.86 | 0.62 ± 2.06 | 0.075 | 0.530 | 0.294 |
Verbal learning test A4 | 9.84 ± 2.03 | 10.06 ± 1.69 | 0.23 ± 1.98 | 0.530 | 9.79 ± 2.10 | 10.85 ± 2.19 | 0.97 ± 1.96 | 0.005 | 0.124 | 0.061 |
Verbal learning test A5 | 10.11 ± 1.51 | 10.91 ± 2.32 | 0.80 ± 1.62 | 0.006 | 10.23 ± 2.16 | 11.26 ± 2.12 | 0.97 ± 1.82 | 0.002 | 0.672 | 0.534 |
Verbal learning test B | 4.57 ± 1.46 | 4.57 ± 1.42 | 0.00 ± 1.31 | 1.000 | 4.35 ± 1.45 | 4.12 ± 1.43 | −0.22 ± 1.73 | 0.454 | 0.551 | 0.251 |
Verbal learning test A6 | 7.91 ± 1.91 | 8.79 ± 2.59 | 0.88 ± 1.72 | 0.005 | 8.40 ± 2.72 | 9.46 ± 2.78 | 1.00 ± 1.96 | 0.004 | 0.789 | 0.569 |
VLT A20 (delayed recall) | 7.19 ± 3.11 | 8.81 ± 2.93 | 1.61 ± 2.45 | 0.000 | 7.06 ± 2.33 | 8.79 ± 3.04 | 1.54 ± 2.44 | 0.000 | 0.902 | 0.898 |
VLT REC (delayed recognition) | 11.28 ± 1.54 | 12.25 ± 1.83 | 0.97 ± 1.78 | 0.002 | 10.83 ± 2.05 | 12.08 ± 1.78 | 1.22 ± 1.87 | 0.000 | 0.570 | 0.900 |
VLT A1A5 total (trial-learning) | 41.27 ± 8.09 | 58.70 ± 16.02 | 17.42 ± 14.86 | 0.000 | 42.44 ± 9.97 | 64.36 ± 22.37 | 21.32 ± 20.95 | 0.000 | 0.369 | 0.289 |
VLT A1A5 total (average) | 8.25 ± 1.62 | 11.74 ± 3.20 | 3.48 ± 2.97 | 0.000 | 8.49 ± 1.99 | 12.87 ± 4.47 | 4.26 ± 4.19 | 0.000 | 0.369 | 0.289 |
VLT learning slope A5A1 (Learning Indicator) | 5.33 ± 1.41 | 4.82 ± 1.67 | −0.52 ± 1.79 | 0.108 | 4.71 ± 1.86 | 4.31 ± 2.08 | −0.38 ± 2.13 | 0.287 | 0.773 | 0.581 |
VLT A5 A20 (memory retention) | 3.17 ± 1.89 | 2.42 ± 2.12 | −0.75 ± 2.32 | 0.061 | 3.55 ± 1.25 | 2.30 ± 1.61 | −1.11 ± 1.61 | 0.000 | 0.446 | 0.548 |
Variables | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | p2 | p3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | |||
Visuospatial/executive | 3.52 ± 0.83 | 3.76 ± 0.61 | 0.14 ± 1.00 | 0.147 | 3.56 ± 0.80 | 3.63 ± 0.75 | 0.14 ± 1.09 | 0.773 | 1.000 | 0.446 |
Vocabulary | 2.78 ± 0.42 | 2.84 ± 0.37 | 0.17 ± 0.38 | 0.423 | 2.47 ± 0.74 | 2.44 ± 0.69 | 0.06 ± 0.63 | 0.812 | 0.354 | 0.043 |
Attention | 5.22 ± 0.72 | 5.42 ± 0.73 | 0.28 ± 0.74 | 0.165 | 5.00 ± 0.95 | 5.44 ± 0.66 | 0.38 ± 0.92 | 0.023 | 0.602 | 0.676 |
Language | 2.69 ± 0.47 | 2.74 ± 0.44 | 0.00 ± 0.00 | 0.487 | 2.53 ± 0.66 | 2.76 ± 0.43 | 0.03 ± 0.67 | 0.103 | 0.801 | 0.714 |
Abstraction | 1.71 ± 0.46 | 2.00 ± 0.00 | 0.29 ± 0.46 | 0.001 | 1.61 ± 0.50 | 2.00 ± 0.00 | 0.36 ± 0.49 | 0.000 | 0.504 | - |
Delayed recall | 0.66 ± 1.03 | 1.54 ± 1.79 | 0.67 ± 1.53 | 0.003 | 0.82 ± 1.10 | 1.33 ± 1.36 | 0.54 ± 1.04 | 0.004 | 0.691 | 0.300 |
Orientation | 5.72 ± 0.45 | 5.75 ± 0.44 | 0.18 ± 0.39 | 0.744 | 5.68 ± 0.47 | 5.71 ± 0.46 | 0.03 ± 0.57 | 0.768 | 0.202 | 0.767 |
Total | 22.52 ± 2.14 | 23.88 ± 2.39 | 1.58 ± 2.25 | 0.001 | 21.69 ± 2.64 | 23.22 ± 2.93 | 1.49 ± 2.44 | 0.003 | 0.861 | 0.746 |
Variables | SM70EE | Placebo | p2 | p3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | |||
BDNF (pg/mL) | 23499.19 ± 4976.21 | 21352.48 ± 4461 | −2236.5 ± 3359.17 | 0.003 | 26759.21 ± 5458.02 | 23599.93 ± 5182.22 | −3500.73 ± 3319.6 | 0.000 | 0.118 | 0.945 |
TAC (mmol/L) | 0.93 ± 0.15 | 0.93 ± 0.16 | 0.01 ± 0.09 | 0.990 | 0.93 ± 0.18 | 0.86 ± 0.17 | −0.02 ± 0.13 | 0.059 | 0.297 | 0.066 |
Amyloid β (1–40) (pg/mL) | 279.05 ± 55.64 | 275.97 ± 45.37 | 4.32 ± 25.15 | 0.612 | 261.78 ± 45.87 | 268.62 ± 54.35 | 6.28 ± 24.88 | 0.170 | 0.745 | 0.412 |
Amyloid-β (1–42) (pg/mL) | 2.95 ± 1.52 | 2.76 ± 1.24 | −0.27 ± 1.15 | 0.292 | 3.77 ± 3.24 | 3.5 ± 2.46 | −0.04 ± 1.17 | 0.373 | 0.401 | 0.413 |
Amyloid-β (40/42) | 102.46 ± 49.93 | 107.8 ± 52.05 | 5.34 ± 40.6 | 0.435 | 90.86 ± 42.47 | 87.84 ± 38.56 | 3.66 ± 28.67 | 0.986 | 0.841 | 0.224 |
Variables | SM70EE (n = 40) | Placebo (n = 40) | Total (n = 80) | p Value 1 |
---|---|---|---|---|
Frequency of adverse events (%) | 1(2.5) | 0(0) | 1(1.25) | 1.000 |
Variables | Normal Range | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | p 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | |||
WBC (×103/μL) | 4.8~10.8 | 5.72 ± 1.16 | 5.63 ± 1.16 | −0.09 ± 0.91 | 0.554 | 5.54 ± 1.19 | 5.54 ± 1.16 | 0.00 ± 1.22 | 0.979 | 0.705 |
RBC (×1003/μL) | 4.2~5.4 | 4.48 ± 0.32 | 4.40 ± 0.32 | −0.07 ± 0.17 | 0.015 | 4.56 ± 0.39 | 4.51 ± 0.34 | −0.05 ± 0.18 | 0.075 | 0.665 |
Hb (g/dL) | 12~16 | 13.75 ± 1.17 | 13.53 ± 1.14 | −0.22 ± 0.54 | 0.016 | 13.93 ± 1.33 | 13.72 ± 1.15 | −0.21 ± 0.61 | 0.035 | 0.936 |
Hct (%) | 37~47 | 40.97 ± 3.44 | 39.97 ± 3.11 | −1.01 ± 1.48 | 0.000 | 41.51 ± 3.55 | 40.54 ± 2.93 | −0.98 ± 1.78 | 0.001 | 0.940 |
Platelet (×103/μL) | 130~450 | 236.77 ± 41.86 | 230.64 ± 38.44 | −6.13 ± 22.08 | 0.091 | 244.68 ± 45.05 | 247.13 ± 48.39 | 2.45 ± 26.30 | 0.559 | 0.121 |
ALP (IU/L) | 45~129 | 70.18 ± 16.31 | 69.90 ± 16.10 | −0.28 ± 8.02 | 0.827 | 70.58 ± 16.43 | 69.95 ± 16.18 | −0.63 ± 7.34 | 0.593 | 0.843 |
Gamma GT (IU/L) | 8~48 | 22.49 ± 15.84 | 25.56 ± 20.74 | 3.08 ± 11.26 | 0.096 | 28.75 ± 23.65 | 28.58 ± 22.03 | −0.18 ± 9.75 | 0.910 | 0.174 |
AST (IU/L) | 12~33 | 25.51 ± 5.92 | 23.97 ± 4.81 | −1.54 ± 5.12 | 0.068 | 28.33 ± 10.99 | 24.93 ± 6.36 | −3.40 ± 10.17 | 0.041 | 0.310 |
ALT (IU/L) | 5~35 | 23.95 ± 8.73 | 22.62 ± 8.18 | −1.33 ± 6.53 | 0.210 | 28.00 ± 14.17 | 24.83 ± 10.48 | −3.18 ± 11.37 | 0.085 | 0.382 |
Total bilirubin (mg/dL) | 0.2~1.2 | 0.83 ± 0.20 | 0.83 ± 0.23 | 0.00 ± 0.17 | 0.861 | 0.90 ± 0.38 | 0.87 ± 0.36 | −0.03 ± 0.30 | 0.528 | 0.527 |
Total protein (g/dL) | 6.7~8.3 | 7.43 ± 0.35 | 7.14 ± 0.41 | −0.28 ± 0.37 | 0.000 | 7.43 ± 0.35 | 7.25 ± 0.41 | −0.18 ± 0.37 | 0.004 | 0.210 |
Albumin (g/dL) | 3.5~5.3 | 4.39 ± 0.22 | 4.30 ± 0.21 | −0.09 ± 0.18 | 0.002 | 4.45 ± 0.20 | 4.38 ± 0.19 | −0.08 ± 0.20 | 0.024 | 0.644 |
BUN (mg/dL) | 8~23 | 16.00 ± 4.26 | 16.33 ± 4.68 | 0.33 ± 3.36 | 0.539 | 15.30 ± 3.75 | 16.08 ± 4.82 | 0.78 ± 3.99 | 0.227 | 0.597 |
Creatinine (mg/dL) | 0.7~1.7 | 0.70 ± 0.18 | 0.71 ± 0.20 | 0.01 ± 0.08 | 0.305 | 0.67 ± 0.19 | 0.70 ± 0.21 | 0.03 ± 0.09 | 0.073 | 0.479 |
Cholesterol (mg/dL) | ~200 | 197.97 ± 33.26 | 189.54 ± 34.37 | −8.44 ± 22.23 | 0.023 | 198.78 ± 33.03 | 191.03 ± 37. | −7.75 ± 26.91 | 0.076 | 0.902 |
Triglyceride (mg/dL) | ~200 | 127.90 ± 49.97 | 136.31 ± 78.92 | 8.41 ± 58.02 | 0.371 | 145.60 ± 66.77 | 144.15 ± 70.12 | −1.45 ± 53.21 | 0.864 | 0.433 |
HDL Cholesterol (mg/dL) | 48.9~73.5 | 53.67 ± 11.18 | 52.28 ± 12.20 | −1.38 ± 7.30 | 0.244 | 54.35 ± 14.66 | 52.38 ± 14.63 | −1.98 ± 8.59 | 0.154 | 0.743 |
LDL C (mg/dL) | 0~140 | 113.72 ± 24.37 | 110.00 ± 26.85 | −3.72 ± 19.77 | 0.248 | 112.63 ± 27.59 | 110.78 ± 32.58 | −1.85 ± 22.88 | 0.612 | 0.699 |
Glucose (mg/dL) | 74~106 | 95.92 ± 20.65 | 95.31 ± 22.78 | −0.62 ± 9.73 | 0.695 | 98.63 ± 18.61 | 94.95 ± 17.85 | −3.68 ± 11.81 | 0.056 | 0.213 |
CK (IU/L) | 50~200 | 114.59 ± 80.54 | 121.69 ± 72.51 | 7.10 ± 78.14 | 0.574 | 89.73 ± 32.04 | 100.40 ± 58.73 | 10.68 ± 46.15 | 0.152 | 0.805 |
LD (IU/L) | 218~472 | 387.90 ± 62.52 | 405.69 ± 59.86 | 17.79 ± 50.46 | 0.034 | 405.43 ± 67.57 | 403.23 ± 70.24 | −2.20 ± 58.19 | 0.812 | 0.107 |
SG | 1.005~1.030 | 1.02 ± 0.01 | 1.02 ± 0.01 | 0.00 ± 0.01 | 0.527 | 1.02 ± 0.00 | 1.02 ± 0.01 | 0.00 ± 0.01 | 0.853 | 0.774 |
PH | 4.5 ~9.0 | 6.23 ± 0.68 | 6.15 ± 0.81 | −0.08 ± 0.62 | 0.446 | 6.26 ± 0.82 | 6.19 ± 0.99 | −0.08 ± 0.66 | 0.474 | 0.989 |
Variables | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | p2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | ||
Systolic blood pressure (mmHg) | 128.00 ± 16.00 | 126.63 ± 13.64 | −1.38 ± 14.30 | 0.547 | 125.93 ± 14.29 | 126.30 ± 15.01 | 0.38 ± 12.79 | 0.854 | 0.566 |
Diastolic blood pressure (mmHg) | 76.13 ± 13.20 | 73.85 ± 10.12 | −2.28 ± 12.65 | 0.262 | 75.20 ± 8.59 | 75.70 ± 9.96 | 0.50 ± 9.08 | 0.729 | 0.263 |
Heart rate (beats/min) | 76.45 ± 8.95 | 72.98 ± 8.77 | −3.48 ± 10.20 | 0.037 | 78.63 ± 10.18 | 76.63 ± 9.49 | −2.00 ± 9.38 | 0.185 | 0.503 |
Variables | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | p 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | ||
Body weight (kg) | 63.19 ± 10.67 | 63.23 ± 11.10 | 0.05 ± 1.53 | 0.853 | 63.60 ± 10.13 | 63.39 ± 9.91 | −0.21 ± 1.47 | 0.373 | 0.449 |
BMI (kg/m2) | 25.32 ± 3.11 | 25.35 ± 3.41 | 0.03 ± 0.62 | 0.761 | 25.67 ± 2.94 | 25.58 ± 2.92 | −0.09 ± 0.56 | 0.340 | 0.385 |
Variables | SM70EE (Mean ± SD) | Placebo (Mean ± SD) | p2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change Value | p1 | Baseline | 12 Weeks | Change Value | p1 | ||
MET value (min/week) | 3506.49 ± 3772.38 | 3830.27 ± 3912.30 | 323.78 ± 5273.81 | 0.711 | 2644.32 ± 2829.78 | 2594.16 ± 2685.63 | −50.16 ± 2569.40 | 0.906 | 0.700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-Y.; Lee, W.-K.; Kim, T.-H.; Ryu, Y.-K.; Park, A.; Lee, Y.-J.; Heo, S.-J.; Oh, C.; Chung, Y.-C.; Kang, D.-H. The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2022, 14, 3714. https://doi.org/10.3390/nu14183714
Choi W-Y, Lee W-K, Kim T-H, Ryu Y-K, Park A, Lee Y-J, Heo S-J, Oh C, Chung Y-C, Kang D-H. The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2022; 14(18):3714. https://doi.org/10.3390/nu14183714
Chicago/Turabian StyleChoi, Woon-Yong, Won-Kyu Lee, Tae-Ho Kim, Yong-Kyun Ryu, Areumi Park, Yeon-Ji Lee, Soo-Jin Heo, Chulhong Oh, Young-Chul Chung, and Do-Hyung Kang. 2022. "The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial" Nutrients 14, no. 18: 3714. https://doi.org/10.3390/nu14183714
APA StyleChoi, W.-Y., Lee, W.-K., Kim, T.-H., Ryu, Y.-K., Park, A., Lee, Y.-J., Heo, S.-J., Oh, C., Chung, Y.-C., & Kang, D.-H. (2022). The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients, 14(18), 3714. https://doi.org/10.3390/nu14183714