A Novel Method for Dynamic Molecular Weight Distribution Determination in Organometallic Catalyzed Olefin Polymerizations
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
- Site activation by alkyl aluminum assumed to be instantaneous (i.e., reaction between catalyst and co-catalyst). Therefore, the site activation mechanism was ignored.
- Transfer reactions assumed to form the same site type, C*, which originally formed by activation of catalyst with the co-catalyst.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahri-Laleh, N.; Hanifpour, A.; Mirmohammadi, S.A.; Poater, A.; Nekoomanesh-Haghighi, M.; Talarico, G.; Cavallo, L. Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog. Polym. Sci. 2018, 84, 89–114. [Google Scholar] [CrossRef]
- Rezaeian, A.; Hanifpour, A.; Teimoury, H.R.; Nekoomanesh-Haghighi, M.; Ahmadi, M.; Bahri-Laleh, N. Synthesis of Highly Spherical Ziegler–Natta Catalyst by Employing Span 80 as an Emulsifier Suitable for UHMWPE Production. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Piovano, A.; Groppo, E. Flexible ligands in heterogeneous catalysts for olefin polymerization: Insights from spectroscopy. Coord. Chem. Rev. 2022, 451, 214258. [Google Scholar] [CrossRef]
- Mansouri, A.M.; Emami, M.; Yousefi, S.; Chen, C.; Gargari, M.H.; Hanifpour, A.; Bahri-Laleh, N. Structure–property relationship in film and blow molding type high-density polyethylene polymers from a slurry-process industrial plant. J. Appl. Polym. Sci. 2022, 139, e52877. [Google Scholar] [CrossRef]
- Kuryndin, I.; Kostromin, S.; Mamalimov, R.; Chervov, A.; Grebennikov, A.; Bronnikov, S. Organic solvents effect on the physical and mechanical properties of polyethylene. Polyolefins J. 2022, 9, 25–31. [Google Scholar]
- Yakimov, A.; Xu, J.; Searles, K.; Liao, W.-C.; Antinucci, G.; Friederichs, N.; Busico, V.; Copéret, C. DNP-SENS Formulation Protocols To Study Surface Sites in Ziegler–Natta Catalyst MgCl2 Supports Modified with Internal Donors. J. Phys. Chem. C 2021, 125, 15994–16003. [Google Scholar] [CrossRef]
- Piovano, A.; Signorile, M.; Braglia, L.; Torelli, P.; Martini, A.; Wada, T.; Takasao, G.; Taniike, T.; Groppo, E. Electronic Properties of Ti Sites in Ziegler–Natta Catalysts. ACS Catal. 2021, 11, 9949–9961. [Google Scholar] [CrossRef]
- Tabrizi, M.; Sadjadi, S.; Pareras, G.; Nekoomanesh-Haghighi, M.; Bahri-Laleh, N.; Poater, A. Efficient hydro-finishing of polyalfaolefin based lubricants under mild reaction condition using Pd on ligands decorated halloysite. J. Colloid Interface Sci. 2021, 581, 939–953. [Google Scholar] [CrossRef]
- Shams, A.; Sadjadi, S.; Duran, J.; Simon, S.; Poater, A.; Bahri-Laleh, N. Effect of support hydrophobicity of halloysite based catalysts on the PAO hydrofinishing performance. Appl. Organomet. Chem. 2022, 36, e6719. [Google Scholar] [CrossRef]
- Hanifpour, A.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Poater, A. Coordinative chain transfer polymerization of 1-decene in the presence of a Ti-based diamine bis (phenolate) catalyst: A sustainable approach to produce low viscosity PAOs. Green Chem. 2020, 22, 4617–4626. [Google Scholar] [CrossRef]
- Hanifpour, A.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Poater, A. Group IV diamine bis(phenolate) catalysts for 1-decene oligomerization. Mol. Catal. 2020, 493, 111047. [Google Scholar] [CrossRef]
- Karimi, S.; Bahri-Laleh, N.; Sadjadi, S.; Pareras, G.; Nekoomanesh-Haghighi, M.; Poater, A. Pd on nitrogen rich polymer-halloysite nanocomposite as an environmentally benign and sustainable catalyst for hydrogenation of polyalfaolefin based lubricants. J. Ind. Eng. Chem. 2021, 97, 441–451. [Google Scholar] [CrossRef]
- Fallah, M.; Bahri-Laleh, N.; Didehban, K.; Poater, A. Interaction of common cocatalysts in Ziegler-Natta catalyzed olefin polymerization. Appl. Organomet. Chem. 2020, 34, e5333. [Google Scholar] [CrossRef]
- Shams, A.; Mehdizadeh, M.; Teimoury, H.-R.; Emami, M.; Mirmohammadi, S.A.; Sadjadi, S.; Bardají, E.; Poater, A.; Bahri-Laleh, N. Effect of the Pore Architecture of Ziegler-Natta Catalyst on Its Behavior in Propylene/1-Hexene Copolymerization. J. Ind. Eng. Chem. 2022. [CrossRef]
- Ahmadi, M.; Nekoomanesh, M.; Arabi, H. A Simplified Comprehensive Kinetic Scheme for Modeling of Ethylene/1-butene Copolymerization Using Ziegler-Natta Catalysts. Macromol. React. Eng. 2010, 4, 135–144. [Google Scholar] [CrossRef]
- Mccoy, J.T.; Soares, J.B.P.; Rawatlal, R. Analysis of Slurry-Phase Co-Polymerization of Ethylene and 1-Butene by Ziegler–Natta Catalysts Part 1: Experimental Activity Profiles. Macromol. React. Eng. 2013, 7, 350–361. [Google Scholar] [CrossRef]
- Mehdiabadi, S.; Lhost, O.; Vantomme, A.; Soares, J.B.P. Ethylene Polymerization Kinetics and Microstructure of Polyethylenes Made with Supported Metallocene Catalysts. Ind. Eng. Chem. Res. 2021, 60, 9739–9754. [Google Scholar] [CrossRef]
- Hanifpour, A.; Hashemzadeh Gargari, M.; Rostami Darounkola, M.R.; Kalantari, Z.; Bahri-Laleh, N. Kinetic and microstructural studies of Cp2ZrCl2 and Cp2HfCl2-catalyzed oligomerization of higher α-olefins in mPAO oil base stocks production. Polyolefins J. 2021, 8, 31–40. [Google Scholar]
- Domanskyi, S.; Gentekos, D.T.; Privman, V.; Fors, B.P. Predictive design of polymer molecular weight distributions in anionic polymerization. Polym. Chem. 2020, 11, 326–336. [Google Scholar] [CrossRef]
- Walsh, D.J.; Schinski, D.A.; Schneider, R.A.; Guironnet, D. General route to design polymer molecular weight distributions through flow chemistry. Nat. Commun. 2020, 11, 3094. [Google Scholar] [CrossRef]
- Ashuiev, A.; Humbert, M.; Norsic, S.; Blahut, J.; Gajan, D.; Searles, K.; Klose, D.; Lesage, A.; Pintacuda, G.; Raynaud, J.; et al. Spectroscopic Signature and Structure of the Active Sites in Ziegler–Natta Polymerization Catalysts Revealed by Electron Paramagnetic Resonance. J. Am. Chem. Soc. 2021, 143, 9791–9797. [Google Scholar] [CrossRef] [PubMed]
- Saldívar-Guerra, E. Numerical Techniques for the Solution of the Molecular Weight Distribution in Polymerization Mechanisms, State of the Art. Macromol. React. Eng. 2020, 14, 2000010. [Google Scholar] [CrossRef]
- Ali, A.; Jamil, M.I.; Uddin, A.; Hussain, M.; Aziz, T.; Tufail, M.K.; Guo, Y.; Jiang, B.; Fan, Z.; Guo, L. Kinetic and thermal study of ethylene-propylene copolymerization catalyzed by ansa-zirconocene activated with Alkylaluminium/borate: Effects of linear and branched alkylaluminium compounds as cocatalyst. J. Polym. Res. 2021, 28, 186. [Google Scholar]
- Charoenpanich, T.; Anantawaraskul, S.; Soares, J.B.P.; Wongmahasirikun, P.; Shiohara, S. Modeling Propylene Polymerization in a Two-Reactor System: Model Development and Parameter Estimation. Macromol. React. Eng. 2022. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Mink, R.I.; Nowlin, T.E.; Brandolini, A.J. Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler-Natta catalysts. Top. Catal. 1999, 7, 69–88. [Google Scholar] [CrossRef]
- Soares, J.B.P. Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: A review. Chem. Eng. Sci. 2001, 56, 4131–4153. [Google Scholar] [CrossRef]
- Pladis, P.; Baltsas, A.; Meimaroglou, D.; Kiparissides, C. A Dynamic Simulator for Slurry-Phase Catalytic Olefin Copolymerization in a Series of CSTRs: Prediction of Distributed Molecular and Rheological Properties. Macromol. React. Eng. 2018, 12, 1800017. [Google Scholar] [CrossRef]
- Soares, J.B.P.; McKenna, T.F.L. A conceptual multilevel approach to polyolefin reaction engineering. Can. J. Chem. Eng. 2022, 100, 2432–2474. [Google Scholar] [CrossRef]
- Burange, A.S.; Gawande, M.B.; Lam, F.L.Y.; Jayaram, R.V.; Luque, R. Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: Plastic waste valorisation to fuels. Green Chem. 2015, 17, 146–156. [Google Scholar] [CrossRef]
- Urciuoli, G.; Vittoria, A.; Talarico, G.; Luise, D.; De Rosa, C.; Busico, V.; Cipullo, R.; Ruiz De Ballesteros, O.; Auriemma, F. In-Depth Analysis of the Nonuniform Chain Microstructure of Multiblock Copolymers from Chain-Shuttling Polymerization. Macromolecules 2021, 54, 10891–10902. [Google Scholar] [CrossRef]
- Falivene, L.; Cavallo, L.; Talarico, G. Buried Volume Analysis for Propene Polymerization Catalysis Promoted by Group 4 Metals: A Tool for Molecular Mass Prediction. ACS Catal. 2015, 5, 6815–6822. [Google Scholar] [CrossRef]
- Kulkarni, S.; Mishra, V.; Bontu, N.M. A comprehensive model for the micro and meso-scale level olefin polymerization: Framework and predictions. Iran. Polym. J. 2019, 28, 597–609. [Google Scholar] [CrossRef]
- Khan, A.; Guo, Y.; Fu, Z.; Fan, Z. Kinetics of short-duration ethylene polymerization with MgCl2-supported Ziegler–Natta catalyst: Two-stage initiation evidenced by changes in active center concentration. J. Appl. Polym. Sci. 2017, 137, 45187. [Google Scholar] [CrossRef]
- Jiang, B.; Weng, Y.; Zhang, S.; Zhang, Z.; Fu, Z.; Fa, Z. Kinetics and mechanism of ethylene polymerization with TiCl4/MgCl2 model catalysts: Effects of titanium content. J. Catal. 2018, 360, 57–65. [Google Scholar] [CrossRef]
- Wulkow, M. The simulation of molecular weight distributions in polyreaction kinetics by discrete Galerkin methods. Macromol. Theory Simul. 1996, 5, 393–416. [Google Scholar] [CrossRef]
- Mehdiabadi, S.; Lhost, O.; Vantomme, A.; Soares, J.B.P. Ethylene/1-Hexene Copolymerization Kinetics and Microstructure of Copolymers Made with a Supported Metallocene Catalyst. Macromol. React. Eng. 2021, 15, 2100041. [Google Scholar] [CrossRef]
- Soares, J.B.P.; Touloupidis, V. Polymerization kinetics and the effect of reactor residence time on polymer microstructure. In Multimodal Polymers with Supported Catalysts; Springer: Cham, Swizerland, 2019; pp. 115–153. [Google Scholar]
- Reza, M.; Shamiri, A.; Azlan, M. Dynamic modeling and Molecular Weight Distribution of ethylene copolymerization in an industrial gas-phase Fluidized-Bed Reactor. Adv. Powder Technol. 2016, 27, 1526–1538. [Google Scholar]
- Kang, J.; Shao, Z.; Chen, X.; Gu, X.; Feng, L. Fast and reliable computational strategy for developing a rigorous model-driven soft sensor of dynamic molecular weight distribution. J. Process Control 2017, 56, 79–99. [Google Scholar] [CrossRef]
- Chen, X.; Shao, Z.; Gu, X.; Feng, L.; Biegler, L.T. Process Intensification of Polymerization Processes with Embedded Molecular Weight Distributions Models: An Advanced Optimization Approach. Ind. Eng. Chem. Res. 2018, 58, 6133–6145. [Google Scholar] [CrossRef]
- Abedi, S.; Hosseinzadeh, M.; Kazemzadeh, M.A.; Daftari-Besheli, M. Effect of polymerization time on the molecular weight and molecular weight distribution of polypropylene. J. Appl. Polym. Sci. 2006, 100, 368–371. [Google Scholar] [CrossRef]
- Floyd, S.; Choi, K.Y.; Taylor, T.W.; Ray, W.H. Polymerization of olefines through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. J. Appl. Polym. Sci. 1986, 31, 2231–2265. [Google Scholar] [CrossRef]
- McKenna, T.F.; Soares, J.B.P. Polyolefin Reaction Engineering; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Nassiri, H.; Arabi, H.; Hakim, S. Kinetic modeling of slurry propylene polymerization using a heterogeneous multi-site type ziegler-natta catalyst. React. Kinet. Mech. Catal. 2012, 105, 345–359. [Google Scholar] [CrossRef]
- Najafi, M.; Parvazinia, M.; Ghoreishy, M.H.R.; Kiparissides, C. Development of a 2D Single Particle Model to Analyze the Effect of Initial Particle Shape and Breakage in Olefin Polymerization. Macromol. React. Eng. 2014, 8, 29–45. [Google Scholar] [CrossRef]
- Thompson, D.E. Modelling of Molecular Weight Distributions in Ziegler-Natta Catalyzed Ethylene Copolymerizations. Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 2009. [Google Scholar]
- Tongtummachat, T.; Ma-In, R.; Anantawaraskul, S.; Soares, J.B.P. Dynamic Monte Carlo Simulation for Chain-Shuttling Polymerization of Olefin Block Copolymers in Continuous Stirred-Tank Reactor. Macromol. React. Eng. 2020, 14, 2000030. [Google Scholar] [CrossRef]
- Kissin, Y.V. Alkene-Polymerization-Reactions-with-Transition-Metal-Catalysts; Elsevier Science & Technology: Oxford, UK, 2008; Volume 173. [Google Scholar]
- Kissin, Y.V. Main kinetic features of ethylene polymerization reactions with heterogeneous Ziegler-Natta catalysts in the light of a multicenter reaction mechanism. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 1681–1695. [Google Scholar] [CrossRef]
- Kissin, Y.V. Molecular Weight Distributions of linear Polymers: Detailed Analysis from GPC Data. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 227–237. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Brandolini, A.J. Ethylene Polymerization Reactions with Ziegler–Natta Catalysts. II. Ethylene Polymerization Reactions in the Presence of Deuterium. J. Polym. Sci. Part A Polym. Chem. 2000, 37, 4273–4280. [Google Scholar] [CrossRef]
- Choi, Y.; Soares, J.B.P. Supported single-site catalysts for slurry and gas-phase olefin polymerisation. Can. J. Chem. Eng. 2012, 90, 646–671. [Google Scholar] [CrossRef]
- Khan, M.J.H.; Hussain, M.A.; Mujtaba, I.M. Multiphasic reaction modeling for polypropylene production in a pilot-scale catalytic reactor. Polymers 2016, 8, 220. [Google Scholar] [CrossRef]
- Wells, G.J.; Harmon Ray, W. Prediction of polymer properties in LDPE reactors. Macromol. Mater. Eng. 2005, 290, 319–346. [Google Scholar] [CrossRef]
- McKenna, T.F.; Soares, J.B.P. Single particle modelling for olefin polymerization on supported catalysts: A review and proposals for future developments. Chem. Eng. Sci. 2001, 56, 3931–3949. [Google Scholar] [CrossRef]
- Floyd, S.; Choi, K.Y.; Taylor, T.W.; Ray, W.H. Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. J. Appl. Polym. Sci. 1986, 32, 2935–2960. [Google Scholar] [CrossRef]
- Floyd, S.; Heiskanen, T.; Taylor, T.W.; Mann, G.E.; Ray, W.H. Polymerization of olefins through heterogeneous catalysis. VI. Effect of particle heat and mass transfer on polymerization behavior and polymer properties. J. Appl. Polym. Sci. 1987, 33, 1021–1065. [Google Scholar] [CrossRef]
- Kissin, Y.V. Active centers in Ziegler-Natta catalysts: Formation kinetics and structure. J. Catal. 2012, 292, 188–200. [Google Scholar] [CrossRef]
- Najafi, M.; Parvazinia, M.; Ghoreishy, M.H.R. Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization. Polyolefins J. 2014, 1, 77–91. [Google Scholar]
- Das, T.K.; Poater, A. Review on Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int. J. Mol. Sci. 2021, 22, 13383. [Google Scholar] [CrossRef]
- Altass, H.M.; Khder, A.S.; Ahmed, S.A.; Morad, M.; Alsabei, A.A.; Jassas, R.S.; Althagafy, K.; Ahmed, A.I.; Salama, R.S. Highly efficient, recyclable cerium-phosphate solid acid catalysts for the synthesis of tetrahydrocarbazole derivatives by Borsche–Drechsel cyclization. Reac. Kinet. Mech. Cat. 2021, 134, 143–161. [Google Scholar] [CrossRef]
- Salama, R.S.; El-Bahy, S.M.; Mannaa, M.A. Sulfamic acid supported on mesoporous MCM-41 as a novel, efficient and reusable heterogenous solid acid catalyst for synthesis of xanthene, dihydropyrimidinone and coumarin derivatives. Colloids Surf. A Physicochem. Eng. 2021, 628, 127261. [Google Scholar] [CrossRef]
- Altass, H.M.; Morad, M.; Khder, A.S.; Raafat, M.; Alsantali, R.I.; Khder, M.A.; Salama, R.S.; Shaheer Malik, M.; Moussa, Z.; Abourehab, M.A.S.; et al. Exploitation the unique acidity of novel cerium-tungstate catalysts in the preparation of indole derivatives under eco-friendly acid catalyzed Fischer indole reaction protocol. Arab. J. Chem. 2022, 15, 103670. [Google Scholar] [CrossRef]
- Luo, Z.-H.; Zheng, Y.; Cao, Z.-K.; Wen, S.H. Mathematical Modeling of the Molecular Weight Distribution of Polypropylene Produced in a Loop Reactor. Polym. Eng. Sci. 2007, 47, 1643–1649. [Google Scholar] [CrossRef]
Kinetic Constant | Acceptable Range |
---|---|
kp | 10–5000 s−1/(mol/L) |
ki | 0–500 s−1/(mol/L) |
ktβ | 0–5 s−1 |
ktH | 0–1000 s−1/(mol/L) |
ktAl | 0–50 s−1/(mol/L) |
ktM | 0–100 s−1/(mol/L) |
kd | 0–100 s−1 |
kdI | 0–1000 s−1/(mol/L) |
[M] | 0–30 mol/L |
[H2] | 0–1 mol/L |
[Al] | 0–1 mol/L |
[I] | 0–1 mol/L |
KP | 0–150,000 s−1 |
KI | 0–15,000 s−1 |
KT | 0–4000 s−1 |
KD | 0–1000 s−1 |
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
---|---|---|---|---|---|
Weight Percentage of Each Site | 21.88 | 27.18 | 26.02 | 14.70 | 10.22 |
Mn,avg (g/mol) | 17,940 | 38,690 | 95,430 | 252,470 | 724,230 |
Mw,avg (g/mol) | 35,877 | 77,377 | 190,860 | 504,940 | 1,448,500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiri, M.; Parvazinia, M.; Yousefi, A.A.; Bahri-Laleh, N.; Poater, A. A Novel Method for Dynamic Molecular Weight Distribution Determination in Organometallic Catalyzed Olefin Polymerizations. Catalysts 2022, 12, 1130. https://doi.org/10.3390/catal12101130
Shiri M, Parvazinia M, Yousefi AA, Bahri-Laleh N, Poater A. A Novel Method for Dynamic Molecular Weight Distribution Determination in Organometallic Catalyzed Olefin Polymerizations. Catalysts. 2022; 12(10):1130. https://doi.org/10.3390/catal12101130
Chicago/Turabian StyleShiri, Masoud, Mahmoud Parvazinia, Ali Akbar Yousefi, Naeimeh Bahri-Laleh, and Albert Poater. 2022. "A Novel Method for Dynamic Molecular Weight Distribution Determination in Organometallic Catalyzed Olefin Polymerizations" Catalysts 12, no. 10: 1130. https://doi.org/10.3390/catal12101130