Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Substrate
3.2. Microorganisms and Maintenance
3.3. Biotransformation Procedure
3.4. GC-MS Analyses
4. Conclusions
Acknowledgements
References
- Shibuya, M.; Xiang, T.; Katsube, Y.; Otsuka, M.; Zhang, H.; Ebizuka, Y. Origin of structural diversity in natural triterpenes: direct synthesis of seco-triterpene skeletons by oxidosqualene cyclase. J. Am. Chem. Soc. 2007, 129, 1450–1455. [Google Scholar] [CrossRef]
- Barroso-González, J.; Jaber-Vazdekis, N.E.; García-Expósito, L.; Machado, J.D.; Zárate, R.; Ravelo, A.G.; Estévez-Braun, A.; Valenzuela-Fernández, A. The Lupane-type triterpene 30-oxo-calenduladiol is a CCR5 antagonist with anti-HIV-1 and anti-chemotactic activities. J. Biol. Chem. 2009, 284, 16609–16620. [Google Scholar]
- Qian, K.; Yu, D.; Chen, C.; Huang, L.; Morris-Natschke, S.L.; Nitz, T.J.; Salzwedel, K.; Reddick, M.; Allaway, G.P.; Lee, K. Anti-AIDS agents 78. Design, synthesis, metabolic stability assessment, and antiviral evaluation of novel betulinic acid derivatives as potent anti-human immunodeficiency virus (HIV) agents. J. Med. Chem. 2009, 52, 3248–3258. [Google Scholar]
- Badria, F. A.; Abu-Karam, M.; Mikhaeil, B.R.; Maatooq, G.T.; Amer, M.M. Anti-herpes activity of isolated compounds from frankincense. Biosci. Biotechnol. Res. Asia 2003, 1, 1–10. [Google Scholar]
- Nakagawa-Goto, K.; Yamada, K.; Taniguchi, M.; Tokuda, H.; Lee, K. Cancer preventive agents 9. Betulinic acid derivatives as potent cancer chemopreventive agents. Bioorg. Med. Chem. Lett. 2009, 19, 3378–3381. [Google Scholar] [CrossRef]
- Nguemfo, E.L.; Dimo1, T.; Dongmo, A.B.; Azebaze, A.G.B.; Alaoui, K.; Asongalem, A.E.; Cherrah, Y.; Kamtchouingl, P. Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae). Inflammopharmacology 2009, 17, 37–41. [Google Scholar] [CrossRef]
- Fulda, S.; Kroemer, G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today 2009, 14, 885–890. [Google Scholar] [CrossRef]
- Saleem, M.; Murtaza, I.; Tarapore, R.S.; Suh, Y.; Adhami, V.M.; Johnson, J.J.; Siddiqui, I.A.; Khan, N.; Asim, M.; Hafeez, B.B.; Shekhani, M.T.; Li, B.; Mukhtar, H. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. Carcinogenesis 2009, 30, 808–817. [Google Scholar] [CrossRef]
- Xu, R.; Fazio, G.C.; Matsuda, S.P.T. On the origins of triterpenoid skeletal diversity. Phytochemistry 2004, 65, 261–291. [Google Scholar]
- Reddy, K.P.; Singh, A.B.; Puri, A.; Srivastava, A.K.; Narender, T. Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg. Med. Chem. Lett. 2009, 19, 4463–4466. [Google Scholar] [CrossRef]
- Huang, L.; Yub, D.; Hoa, P.; Leeb, K.; Chen, C. Synthesis and anti-HIV activity of bi-functional triterpene derivatives. Lett. Drug Des. Discov. 2007, 4, 471–478. [Google Scholar] [CrossRef]
- Petronelli, A.; Pannitteri, G.; Testa, U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs 2009, 20, 880–892. [Google Scholar] [CrossRef]
- Martin, D.E.; Blum, R.; Wilton, J.; Doto, J.; Galbraith, H.; Burgess, G.L.; Smith, P.C.; Ballow, C. Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob. Agents Chemother. 2007, 51, 3063–3066. [Google Scholar]
- Smith, P.F.; Ogundele, A.; Forrest, A.; Wilton, J.; Salzwedel, K.; Doto, J.; Allaway, G.P.; Martin, D.E. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3’,3’-Dimethylsuccinyl) betulinic acid (Bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007, 51, 3574–3581. [Google Scholar] [CrossRef]
- Willmann, M.; Wacheck, V.; Buckley, J.; Nagy, K.; Thalhammer, J.; Paschke, R.; Triche, T.; Jansen, B.; Selzer, E. Characterization of NVX-207, a novel betulinic acid-derived anti-cancer compound. Eur. J. Clin. Invest. 2009, 39, 384–394. [Google Scholar] [CrossRef]
- Akihisa, T.; Takamine, Y.; Yoshizumi, K.; Tokuda, H.; Kimura, Y.; Ukiya, M.; Nakahara, T.; Yokochi, T.; Ichiishi, E.; Nishino, H. Microbial transformations of two lupane-type triterpenes and anti-tumor-promoting effects of the transformation products. J. Nat. Prod. 2002, 65, 278–282. [Google Scholar] [CrossRef]
- Bastos, D.Z.L.; Pimentel, I.C.; Jesus, D.A.; Oliveira, B.H. Biotransformation of betulinic and betulonic acids by fungi. Phytochemistry 2007, 68, 834–839. [Google Scholar] [CrossRef]
- Tolstikova, T.G.; Sorokina, I.V.; Tolstikov, G.A.; Tolstikov, A.G.; Flekhter, O.B. Biological activity and pharmacological prospects of Lupane terpenoids: I. Natural Lupane derivatives. Russ. J. Bioorganic Chem. 2006, 32, 37–49. [Google Scholar] [CrossRef]
- Hudlicky, T.; Reed, J.W. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem. Soc. Rev. 2009, 38, 3117–3132. [Google Scholar] [CrossRef]
- Thomason, M.J.; Rhys-Williams, W.; Lloyd, A.W.; Hanlon, G.W. The stereo inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs and structurally related compounds by Verticillium lecanii. J. Appl. Microbiol. 1998, 85, 155–163. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Badiee, M.; Yazdi, M.T.; Amini, M.; Torshabi, M. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus. J. Mol. Catal., B Enzym. 2008, 50, 7–12. [Google Scholar] [CrossRef]
- Pekala, E.; Kochan, M.; Carnell, A.J. Microbial transformation of hydroxy metabolites of 1-oxohexyl derivatives of theobromine by Cunninghamella echinulata NRRL 1384. Lett. Appl. Microbiol. 2009, 48, 19–24. [Google Scholar] [CrossRef]
- Thiericke, R.; Rohr, J. Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat. Prod. Rep. 1993, 10, 265–289. [Google Scholar] [CrossRef]
- Branco, A.; Pinto, A.C.; Braz-Filho, R. Chemical constituents of Vellozia graminifolia (Velloziaceae). Ann. Braz. Acad. Sci. 2004, 76, 505–518. [Google Scholar]
- Sutherland, J.B.; Freeman, J.P.; Heinze, T.M.; Moody, J.D.; Parshikov, I.A.; Williams, A.J.; Zhang, D. Oxidation of phenothiazine and phenoxazine by Cunninghamella elegans. Xenobiotica 2001, 31, 799–809. [Google Scholar] [CrossRef]
- Duhart, B.T.; Zhang, D.; Deck, J.; Freeman, J.P.; Cerniglia, C.E. Biotransformation of protriptyline by filamentous fungi and yeasts. Xenobiotica 1999, 29, 733–746. [Google Scholar] [CrossRef]
- Pohl, C.H.; Botha, A.; Kock, J.L.F.; Coetzee, D.J.; Botes, P.J.; Schewe, T.; Nigam, S. Oxylipin formation in fungi: biotransformation of arachidonic acid to 3-hydroxy-5,8-tetradecadienoic acid by Mucor genevensis. Biochem. Biophys. Res. Commun. 1998, 253, 703–706. [Google Scholar] [CrossRef]
- Demyttenaere, J.; De Kimpe, N. Biotransformation of terpenes by fungi. Study of the pathways involved. J. Mol. Catal., B Enzym. 2001, 11, 265–270. [Google Scholar] [CrossRef]
- Tomer, K.B. Separations combined with mass spectrometry. Chem. Rev. 2001, 101, 297–328. [Google Scholar] [CrossRef]
- Budzikiewicz, H.; Wilson, J.M.; Djerassi, C. Mass spectrometry in structural and stereochemical problems. XXXII. Pentacyclic triterpenes. J. Am. Chem. Soc. 1963, 85, 3688–3699. [Google Scholar] [CrossRef]
- Ogunkoya, L. Application of mass spectrometry in structural problems in triterpenes. Phytochemistry 1981, 20, 121–126. [Google Scholar] [CrossRef]
- Heizen, H.; De Vries, J.X.; Moyna, P.; Remberg, G.; Martinez, R.; Tietze, L.F. Mass spectrometry of labelled triterpenoids: thermospray and electron impact ionization analysis. Phytochem. Anal. 1996, 7, 237–244. [Google Scholar] [CrossRef]
- Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Biomed. Chromatogr. 2005, 19, 586–605. [Google Scholar] [CrossRef]
- Aguiar, G.P.; Wakabayashi, K.A.L.; Luz, G.F.; Oliveira, V.B.; Mathias, L.; Vieira, I.J.C.; Braz-Filho, R.B.; Crotti, A.E.M. Fragmentation of plumeran índole alkaloids from Aspidosperma spruceanum by electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 295–308. [Google Scholar]
- Saratale, G.D.; Humnabadkar, R.P.; Govindwar, S.P. Study of mixed function oxidase system in Aspergillus ochraceus (NCIM 1146). Indian J. Microbiol. 2007, 47, 304–309. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Zolfaghary, N.; Yazdi, M.T.; Adrangi, S.; Rastegar, H.; Amini, M.; Badiee, M. Microbial conversion of androst-1,4-dien-3,17-dione by Mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives. J. Chem. Technol. Biotechnol. 2009, 84, 1021–1025. [Google Scholar] [CrossRef]
- Lacroix, I.; Biton, J.; Azerad, R. Microbial models of drug metabolism: microbial transformations of Trimegestone® (RU27987), a 3-Keto-Δ4,9(10)-19-norsteroid drug. Bioorg. Med. Chem. 1999, 7, 2329–2341. [Google Scholar] [CrossRef]
- Velayos, A.; Fuentes-Vicente, M.; Aguilar-Elena, R.; Eslava, A.P.; Iturriaga, E.A. A novel fungal prenyl diphosphate synthase in the dimorphic zygomycete Mucor circinelloides. Curr. Genet. 2004, 45, 371–377. [Google Scholar] [CrossRef]
- Rocha, R.F.; Lapa, A.J.; Vale, J.R.; Braz-Filho, R.; Silva, S.B. Pharmacological activity of crude and purified extracts from Acosmium dasycarpum (Vog) Yakvol. Cienc. Cult. 1980, 33, 158–162. [Google Scholar]
- Burns, D.; Reynolds, W.F.; Buchanan, G.; Reese, P.B.; Enriquez, R.G. Assignment of 1H and 13C spectra and investigation of hindered side-chain rotation in lupeol derivatives. Magn. Reson. Chem. 2000, 38, 488–493. [Google Scholar] [CrossRef]
- Jackson, M.; Karwoswski, J.P.; Humphrey, P.E.; Kohl, W.L.; Barlow, G.J.; Tanaka, S.K. Calbistrins, novel antifungal agents produced by Penicillium restrictum. J. Antibiot. 1993, 46, 34–38. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compound studied in the present manuscript are available from the authors.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Carvalho, T.C.d.; Polizeli, A.M.; Turatti, I.C.C.; Severiano, M.E.; Carvalho, C.E.d.; Ambrósio, S.R.; Crotti, A.E.M.; Figueiredo, U.S.d.; Vieira, P.C.; Furtado, N.A.J.C. Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation. Molecules 2010, 15, 6140-6151. https://doi.org/10.3390/molecules15096140
Carvalho TCd, Polizeli AM, Turatti ICC, Severiano ME, Carvalho CEd, Ambrósio SR, Crotti AEM, Figueiredo USd, Vieira PC, Furtado NAJC. Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation. Molecules. 2010; 15(9):6140-6151. https://doi.org/10.3390/molecules15096140
Chicago/Turabian StyleCarvalho, Tatiane C. de, Aline M. Polizeli, Izabel C. C. Turatti, Marcela E. Severiano, Carlos E. de Carvalho, Sérgio R. Ambrósio, Antônio E. M. Crotti, Uir S. de Figueiredo, Paulo C. Vieira, and Niege A. J. C. Furtado. 2010. "Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation" Molecules 15, no. 9: 6140-6151. https://doi.org/10.3390/molecules15096140
APA StyleCarvalho, T. C. d., Polizeli, A. M., Turatti, I. C. C., Severiano, M. E., Carvalho, C. E. d., Ambrósio, S. R., Crotti, A. E. M., Figueiredo, U. S. d., Vieira, P. C., & Furtado, N. A. J. C. (2010). Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation. Molecules, 15(9), 6140-6151. https://doi.org/10.3390/molecules15096140