Use of Eco-Friendly Materials in the Stabilization of Expansive Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Bentonite
2.1.2. Natural Soil
2.1.3. Natural Fibers
2.2. Methods
3. Results and Discussion
3.1. Effect of Diss Fibers on Atterberg Limits
3.2. Effect of Diss Fibers on Compaction Properties
3.3. Effect of Diss Fibers on Mechanical Shear Characteristics
3.4. Effect of Diss Fibers on Compressibility Properties
3.5. Effect of Diss Fibers on Microstructural Analysis
4. Conclusions
5. Future Recommendation
6. Suggestions Implement the Practice in a Real World Projects
- Diss fibers are obtained using a harvester (machine that cuts and collects the fibers). The preparation of the fibers is done in a shredder. The length of the fiber depends on the shredding time (adjustable).
- The mixing is carried out in the real world by the use of machines such as backhoe loaders, by mixing the materials according to the quantities defined by the formulation.
- Another procedure is to use a large motorized mixer specially designed to mix the materials used with the quantities already calculated.
- Alternative technology proposed for the preparation of composite involves the technology of large machinery such as the paver, which is used for the preparation of bituminous concretes where the aggregates can be replaced by soil, and bentonite and the bitumen tank can be replaced by Diss fibers. The mixing of the materials is carried out following the mixing of the bituminous concretes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, J.; Miller, D.J. Expansive Soils: Problems and Practice in Foundation and Pavement Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1997; ISBN 0471181145. [Google Scholar]
- Reddy, P.V.S.; Rao, K.M.; Rani, C.S. Identification of expansive soils and assessment of expansion potential by fuzzy approach. Electron. J. Geotech. Eng. 2009, 14, 1–11. [Google Scholar]
- Subba Rao, K.S. Swelling potential with cycles of swelling and shrinkage. In Proceedings of the 6th International Conference on Expansive Soils, New Delhi, India, 1–4 December 1987; Volume 1, pp. 137–142. [Google Scholar]
- Zada, U.; Haleem, K.; Saqlain, M.; Abbas, A.; Khan, A.U. Reutilization of Eggshell Powder for Improvement of Expansive Clayey Soil. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 1–8. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, S.; Bate, B.; Xu, L. Evaluation on expansive performance of the expansive soil using electrical responses. J. Appl. Geophys. 2018, 148, 265–271. [Google Scholar] [CrossRef]
- Maheshwari, K.V.; Desai, A.K.; Solanki, C.H. Performance of fiber reinforced clayey soil. Electron. J. Geotech. Eng. 2011, 16, 1067–1082. [Google Scholar]
- Imane, I.; Souhila, R.B.; Riad, B.; Inas, B. Use of Biopolymers in the Stabilization of Clay Soils. Sel. Sci. Pap. Civ. Eng. 2021, 16, 37–53. [Google Scholar] [CrossRef]
- Khatib, J.; Jahami, A.; El Kordi, A.; Sonebi, M.; Malek, Z.; Elchamaa, R.; Dakkour, S. Effect of municipal solid waste incineration bottom ash (MSWI-BA) on the structural performance of reinforced concrete (RC) beams. J. Eng. Des. Technol. 2021. [Google Scholar] [CrossRef]
- Bell, F.G. Cement stabilization and clay soils, with examples. Environ. Eng. Geosci. 1995, 1, 139–151. [Google Scholar] [CrossRef]
- Mckinley, J.D.; Thomas, H.R.; Williams, K.P.; Reid, J.M. Chemical analysis of contaminated soil strengthened by the addition of lime. Eng. Geol. 2001, 60, 181–192. [Google Scholar] [CrossRef]
- Narani, S.S.; Zare, P.; Abbaspour, M.; Fahimifar, A.; Siddiqua, S.; Hosseini, S.M.M.M. Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading. Constr. Build. Mater. 2021, 296, 123746. [Google Scholar] [CrossRef]
- Barry, P.V.; Turco, R.F.; Stott, D.E.; Bradford, J.M. Organic polymers’ effect on soil shear strength and detachment by single raindrops. Soil Sci. Soc. Am. J. 1991, 55, 799–804. [Google Scholar] [CrossRef]
- Bekkouche, S.R.; Boukhatem, G. Experimental characterization of clay soils behavior stabilized by polymers. J. Fundam. Appl. Sci. 2016, 8, 1193–1205. [Google Scholar] [CrossRef] [Green Version]
- Belouahem, S.; Bekkouche, S.R.; Nouaouria, M.S.; Messast, S.; Idoui, I. Experimental Study on the Sol-Bentonite mixture stabilized by different types of Polymers. Sel. Sci. Pap. Civ. Eng. 2021, 16, 45–55. [Google Scholar]
- Tiwari, N.; Satyam, N.; Puppala, A.J. Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers. Transp. Geotech. 2021, 29, 100556. [Google Scholar] [CrossRef]
- Kafodya, I.; Okonta, F. Compressive and tensile strength properties of pre-compressed and soaked natural fiber reinforced lime—Fly ash stabilised soil. Int. J. Pavement Res. Technol. 2020, 13, 497–509. [Google Scholar] [CrossRef]
- Boutarfa, M.; Belouettar, R.; Makradi, A. Comparative Study of Cement Mortar Reinforced with Vegetable Fibers Alfa, Date Palm and Diss: Mechanical Properties and Shrinkage. J. Mater. Environ. Sci. 2018, 9, 2304–2314. [Google Scholar]
- Benzerara, M.; Guihéneuf, S.; Belouettar, R.; Perrot, A. Combined and synergic effect of algerian natural fibres and biopolymers on the reinforcement of extruded raw earth. Constr. Build. Mater. 2021, 289, 123211. [Google Scholar] [CrossRef]
- Zaid, I.; Merzoud, M.; Benazzouk, A. Morphological and mineralogical analysis of treated Diss fibers and their effect on physico-mechanical characteristics of Diss concrete based on alternative binder. Constr. Build. Mater. 2021, 307, 124936. [Google Scholar] [CrossRef]
- Gheris, A.; Hamrouni, A. Treatment of an expansive soil using vegetable (DISS) fibre. Innov. Infrastruct. Solut. 2020, 5, 30. [Google Scholar] [CrossRef]
- Maity, J.; Chattopadhyay, B.C.; Mukherjee, S.P. Variation of compaction characteristics of sand randomly mixing with various natural fibers. In Proceedings of the Indian Geotechnical Conference, Kochi, India, 15–17 December 2011. [Google Scholar]
- Santhi, K.K.; Sayida, M.K. Behaviour of black cotton soil reinforced with sisal fibre. In Proceedings of the 10th National Conference on Technological Trends (NCTT09), Kerala, India, 6–7 November 2009. [Google Scholar]
- Dasaka, S.M.; Sumesh, K.S. Effect of coir fiber on the stress–strain behavior of a reconstituted fine-grained soil. J. Nat. Fibers 2011, 8, 189–204. [Google Scholar] [CrossRef]
- Marandi, S.M.; Bagheripou, M.H.; Rahgozar, R.; Zare, H. Strength and Ductility of Randomly Distributed Palm Fibers Reinforced Silty-Sand Soils. Am. J. Appl. Sci. 2008, 5, 209–220. [Google Scholar] [CrossRef]
- Prajisha, J.P.; Ajitha, A.R. Effect of Banana Fibre Reinforcement in Lime Stabilized Kuttanad Soil. In Proceedings of the 50th Indian Geotechnical Conference, Kochi, India, 17–19 December 2015. [Google Scholar]
- Khelifi, Z.; Allal, M.A.; Abou-Bekr, N.; Taïbi, S.; Duchemin, B. The mechanical and crystallographic evolution of stipa tenacissima leaves during in-soil biodegradation. J. Renew. Mater. 2018, 6, 336–346. [Google Scholar] [CrossRef]
- Grim, R.E.; Guven, N. Bentonites: Geology, Mineralogy, Properties and Uses; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 008086936X. [Google Scholar]
- Debieche, M.; Kaoua, F. Characterization and valorization of two Algerian bentonites in the waterproofing systems. Mater. Sci. Appl. 2014, 5, 347. [Google Scholar] [CrossRef] [Green Version]
- ASTM-D4318-17e1; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM-C837-09; Standard Test Method for Methylene Blue Index of Clay. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM-D1557-12e1; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 Ft-lbf/ft3 (2700 KN-m/m3)) 1. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM-D2435; Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM-D1883-16; Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM-D3080-98; Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 2017.
- STM-D7928-16e1; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soil Using the Sedimentation (Hydrometer) Analysis. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM-D5444-15; Standard Test Method for Mechanical Size Analysis of Extracted Aggregate. ASTM International: West Conshohocken, PA, USA, 2016.
- Bourahli, M.E.H.; Osmani, H. Chemical and mechanical properties of diss (Ampelodesmos mauritanicus) fibers. J. Nat. Fibers 2013, 10, 219–232. [Google Scholar] [CrossRef]
- ASTM-D3822-07; Standard Test Method for Tensile Properties of Single Textile Fibers. ASTM International: West Conshohocken, PA, USA, 2010.
- Ghavami, K.; Toledo Filho, R.D.; Barbosa, N.P. Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 1999, 21, 39–48. [Google Scholar] [CrossRef]
- Kumar, K.A.; Bhavannarayana, C. Stabilization of Lime Treated Black Cotton Soil with Bamboo Fibre. Int. J. Sci. Eng. Adv. Technol. 2020, 8, 13–21. [Google Scholar]
- Suresh, R.; Murugaiyan, V. Improvement of clay soil using natural fibers and nano silica: A review. Indian J Sci Res 2018, 17, 252–256. [Google Scholar]
- Ramesh, H.N.; Manoj Krishna, K.V.; Mamatha, H.V. Compaction and strength behavior of lime-coir fiber treated Black Cotton soil. Geomech. Eng. 2010, 2, 19–28. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Humidity (%) | <12 |
Granulometry of fine elements (%) | 95 |
Water content (%) | 9 |
Swelling rate (mL/2 g) | 25–27 |
Liquid limit (%) | 181 |
Plastic limit (%) | 30 |
Plasticity Index (%) | 151 |
Impact Resistance (kg cm/cm3) | 40 |
MgO3 (%) | 1 |
Na2O (%) | 4 |
CaO (%) | 2 |
Fe2O3 (%) | 3 |
Al2O3 (%) | 19 |
SiO2 (%) | 58 |
Other minerals (%) | 13 |
pH | 5 |
Property | Value | Standard |
---|---|---|
Liquid limit (%) | 68 | (ASTM D4318-17e1) [29] |
Plastic limit (%) | 34 | |
Plasticity index (%) | 34 | |
Consistency index | 1 | |
Methylene Blue value | 7.33 | (ASTM C837-09) [30] |
Maximum dry density (t/m3) | 1.6 | (ASTM D1557-12e1) [31] |
Optimal water content (%) | 19.95 | |
Swelling index (%) | 12.11 | (ASTM-D2435) [32] |
Compressibility index (%) | 24.65 | |
Compressibility pressure (bars) | 1.02 | |
Immediate Bearing Index (%) | 3.3 | (ASTM D1883-16) [33] |
Friction angle (°) | 10.61 | (ASTM D3080-98) [34] |
Cohesion (bars) | 0.99 | |
Grain size distribution | (ASTM D7928-16e1) [35] | |
Clay (%) | 70 | |
Silt (%) | 23 | |
Sand (%) | 7 |
Characteristics | Details | Diss Fiber |
---|---|---|
Physical | Absolute density (kg/m3) (ASTM D5444-15) [36] | 950 |
Diameter (mm) | 0.85 | |
Cross-sectional area (mm2) | 0.57 | |
Chemicals (% by mass) [37] | Cellulose | 45.2 |
Lignin | 15.6 | |
Hemicelluloses/pectin | 26 | |
Extraction & others | 13.2 | |
Mechanical^2(ASTM D3822-07) [38] | Elastic modulus (MPa) | 5477.42 |
Standard deviation | 1734.87 | |
Tensile strength (MPa) | 78 | |
Standard deviation | 8 | |
Fracture strain (%) | 2 | |
Standard deviation | 0.22 | |
Fracture elongation (mm) | 1.12 | |
Standard deviation | 0.11 | |
Water absorption (%) | 5 min | 72 |
24 h | 155 |
Test | Standard | Purpose of the Test |
---|---|---|
Atterberg limits | ASTM D4318 [29] | Determine Atterberg limits of soil: liquid limit, plastic limit, plasticity index and consistency index. |
Proctor standard compaction test | ASTM D1557 [31] | Determine the maximum dry density and the optimum moisture content. |
Direct shear strength | ASTM D 3080 [34] | Determine the resistance parameters using the Casagrande box. |
Compressibility test | ASTM D 3080 [32] | Determines the compressibility parameters of fine soils. |
Compressibility Parameters | 0% Diss Fiber | 1% Diss Fiber | 5% Diss Fiber | 10% Diss Fiber |
---|---|---|---|---|
Swelling index (%) | 12.11 | 11.79 | 7.29 | 1.69 |
Compressibility index (%) | 27.65 | 27.09 | 27.01 | 19.99 |
Preconsolidation pressure (bars) | 1.29 | 1.02 | 0.81 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekkouche, S.R.; Benzerara, M.; Zada, U.; Muhammad, G.; Ali, Z. Use of Eco-Friendly Materials in the Stabilization of Expansive Soils. Buildings 2022, 12, 1770. https://doi.org/10.3390/buildings12101770
Bekkouche SR, Benzerara M, Zada U, Muhammad G, Ali Z. Use of Eco-Friendly Materials in the Stabilization of Expansive Soils. Buildings. 2022; 12(10):1770. https://doi.org/10.3390/buildings12101770
Chicago/Turabian StyleBekkouche, Souhila Rehab, Mohammed Benzerara, Umar Zada, Ghulam Muhammad, and Zulfiqar Ali. 2022. "Use of Eco-Friendly Materials in the Stabilization of Expansive Soils" Buildings 12, no. 10: 1770. https://doi.org/10.3390/buildings12101770
APA StyleBekkouche, S. R., Benzerara, M., Zada, U., Muhammad, G., & Ali, Z. (2022). Use of Eco-Friendly Materials in the Stabilization of Expansive Soils. Buildings, 12(10), 1770. https://doi.org/10.3390/buildings12101770