The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach
Abstract
:1. Introduction
2. Previous Literature on Board of Directors
2.1. Board Size and Independence
2.2. Board Diversity
3. Data & Variables
3.1. Sample Construction
3.2. Dependent Variables
3.3. Board Characteristics
4. Research Methods
4.1. Quantile Regression
4.2. Vine Copula Based Quantile Regression
4.2.1. Copula
4.2.2. D-Vine Quantile Regression (DVQR)
5. Empirical Analysis and Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Descriptions (Sources) | Selected Studies |
---|---|---|
Dependent variable | ||
Q | (Book value of total assets − Book value of equity + Market value of equity)/Book value of total assets: (data6 − data60 + data25 × data199)/data6 (Compustat) | Yermack (1996) |
Board Characteristics | ||
Size | The number of directors on the board (RiskMetrics) | Yermack (1996) |
Indepen | The fraction of outside (independent) directors (RiskMetrics) | Yermack (1996) |
Outside | The fraction of non-employee directors that are active CEOs (RiskMetrics) | Ferris et al. (2003) |
Dage | The average age of directors on the board (RiskMetrics) | Faleye (2011) |
Financial | The fraction of independent directors whose profession types are a banker (RiskMetrics) | Guner et al. (2008) |
Foreign | The fraction of directors whose primary employer’s country of origin is not the US (RiskMetrics) | Masulis et al. (2012) |
Female | The fraction of directors who are female (RiskMetrics) | Adams and Ferreira (2009) |
Family | One of the company’s founding family is present on the board and zero otherwise (RiskMetrics) | Anderson and Reeb (2003) |
Firm Characteristics | ||
Segments | The number of business segments (Compustat) | Fich and Shivdasani (2006) |
Sales | The natural logarithm of Sales (data12) (Compustat) | Fich and Shivdasani (2006) |
ROA | Net income/ book value of total assets: data172/data6 (Compustat) | Masulis et al. (2012) |
Fage | Number of years the firm is listed in CRSP | Fich and Shivdasani (2006) |
Capx | Capital expenditure to sales: data128/data12 (Compustat) | Anderson and Reeb (2003) |
Panel A: Kendall Correlation Matrix | ||||||||||||||
Var. | Q | Size | Indepen | Dage | Family | Outside | Female | Foreign | Financial | Sales | Capx | ROA | Fage | Segments |
Q | 1.000 | −0.055 | −0.027 | −0.066 | −0.017 | 0.002 | 0.020 | 0.003 | 0.008 | −0.032 | 0.070 | 0.326 | −0.067 | −0.080 |
Size | −0.055 | 1.000 | 0.148 | 0.095 | 0.080 | 0.100 | 0.214 | 0.114 | 0.018 | 0.441 | 0.013 | 0.033 | 0.288 | 0.122 |
Indepen | −0.027 | 0.148 | 1.000 | 0.111 | −0.214 | −0.034 | 0.183 | 0.072 | 0.016 | 0.160 | −0.042 | −0.008 | 0.158 | 0.063 |
Dage | −0.066 | 0.095 | 0.111 | 1.000 | 0.047 | −0.194 | −0.027 | 0.011 | 0.014 | 0.094 | −0.055 | −0.028 | 0.187 | 0.067 |
Family | −0.017 | 0.080 | −0.214 | 0.047 | 1.000 | −0.023 | −0.002 | 0.000 | 0.017 | 0.012 | 0.000 | 0.010 | 0.030 | 0.002 |
Outside | 0.002 | 0.100 | −0.034 | −0.194 | −0.023 | 1.000 | 0.022 | −0.024 | −0.024 | 0.087 | 0.057 | 0.016 | 0.069 | 0.063 |
Female | 0.020 | 0.214 | 0.183 | −0.027 | −0.002 | 0.022 | 1.000 | 0.074 | 0.017 | 0.271 | −0.047 | 0.065 | 0.141 | 0.023 |
Foreign | 0.003 | 0.114 | 0.072 | 0.011 | 0.000 | −0.024 | 0.074 | 1.000 | 0.013 | 0.097 | 0.033 | −0.016 | 0.061 | −0.007 |
Financial | 0.008 | 0.018 | 0.016 | 0.014 | 0.017 | −0.024 | 0.017 | 0.013 | 1.000 | 0.012 | −0.001 | 0.004 | 0.018 | 0.009 |
Sales | −0.032 | 0.441 | 0.160 | 0.094 | 0.012 | 0.087 | 0.271 | 0.097 | 0.012 | 1.000 | −0.046 | 0.070 | 0.267 | 0.111 |
Capx | 0.070 | 0.013 | −0.042 | −0.055 | 0.000 | 0.057 | −0.047 | 0.033 | −0.001 | −0.046 | 1.000 | 0.093 | −0.035 | −0.047 |
ROA | 0.326 | 0.033 | −0.008 | −0.028 | 0.010 | 0.016 | 0.065 | −0.016 | 0.004 | 0.070 | 0.093 | 1.000 | 0.015 | −0.050 |
Fage | −0.067 | 0.288 | 0.158 | 0.187 | 0.030 | 0.069 | 0.141 | 0.061 | 0.018 | 0.267 | −0.035 | 0.015 | 1.000 | 0.145 |
Segment | −0.080 | 0.122 | 0.063 | 0.067 | 0.002 | 0.063 | 0.023 | −0.007 | 0.009 | 0.111 | −0.047 | −0.050 | 0.145 | 1.000 |
Panel B: Spearman Correlation Matrix | ||||||||||||||
Var. | Q | Size | Indepen | Dage | Family | Outside | Female | Foreign | Financial | Sales | Capx | ROA | Fage | Segments |
Q | 1.000 | −0.079 | −0.039 | −0.099 | −0.020 | 0.003 | 0.028 | 0.004 | 0.010 | −0.048 | 0.104 | 0.461 | −0.100 | −0.111 |
Size | −0.079 | 1.000 | 0.163 | 0.134 | 0.092 | 0.149 | 0.341 | 0.145 | 0.021 | 0.595 | 0.018 | 0.045 | 0.396 | 0.154 |
Indepen | −0.039 | 0.163 | 1.000 | 0.163 | −0.257 | −0.043 | 0.261 | 0.091 | 0.019 | 0.233 | −0.062 | −0.013 | 0.228 | 0.084 |
Dage | −0.099 | 0.134 | 0.163 | 1.000 | 0.057 | −0.263 | −0.035 | 0.014 | 0.017 | 0.140 | −0.080 | −0.040 | 0.278 | 0.091 |
Family | −0.020 | 0.092 | −0.257 | 0.057 | 1.000 | −0.026 | −0.002 | 0.000 | 0.017 | 0.014 | 0.000 | 0.012 | 0.037 | 0.003 |
Outside | 0.003 | 0.149 | −0.043 | −0.263 | −0.026 | 1.000 | 0.023 | −0.028 | −0.027 | 0.120 | 0.077 | 0.022 | 0.094 | 0.079 |
Female | 0.028 | 0.341 | 0.261 | −0.035 | −0.002 | 0.023 | 1.000 | 0.087 | 0.020 | 0.381 | −0.065 | 0.091 | 0.195 | 0.029 |
Foreign | 0.004 | 0.145 | 0.091 | 0.014 | 0.000 | −0.028 | 0.087 | 1.000 | 0.013 | 0.123 | 0.041 | −0.021 | 0.076 | −0.009 |
Financial | 0.010 | 0.021 | 0.019 | 0.017 | 0.017 | −0.027 | 0.020 | 0.013 | 1.000 | 0.014 | −0.002 | 0.005 | 0.022 | 0.011 |
Sales | −0.048 | 0.595 | 0.233 | 0.140 | 0.014 | 0.120 | 0.381 | 0.123 | 0.014 | 1.000 | −0.068 | 0.105 | 0.385 | 0.146 |
Capx | 0.104 | 0.018 | −0.062 | −0.080 | 0.000 | 0.077 | −0.065 | 0.041 | −0.002 | −0.068 | 1.000 | 0.137 | −0.053 | −0.065 |
ROA | 0.461 | 0.045 | −0.013 | −0.040 | 0.012 | 0.022 | 0.091 | −0.021 | 0.005 | 0.105 | 0.137 | 1.000 | 0.023 | −0.069 |
Fage | −0.100 | 0.396 | 0.228 | 0.278 | 0.037 | 0.094 | 0.195 | 0.076 | 0.022 | 0.385 | −0.053 | 0.023 | 1.000 | 0.193 |
Segment | −0.111 | 0.154 | 0.084 | 0.091 | 0.003 | 0.079 | 0.029 | −0.009 | 0.011 | 0.146 | −0.065 | −0.069 | 0.193 | 1.000 |
References
- Adams, Renee, and Daniel Ferreira. 2009. Women in the Boardroom and Their Impact on Governance and Performance. Journal of Financial Economics 94: 291–309. [Google Scholar] [CrossRef] [Green Version]
- Adams, Renee, Heitor Almeida, and Daniel Ferreira. 2005. Powerful CEOs and their impact on corporate performance. Review of Financial Studies 18: 1403–32. [Google Scholar] [CrossRef]
- Agrawal, Anup, and Tareque Nasser. 2019. Blockholders on boards and CEO compensation, turnover and firm valuation. Quarterly Journal of Finance 9: 1950010. [Google Scholar] [CrossRef]
- Ahern, Kenneth, and Amy Dittmar. 2012. The changing of the board: The impact on firm valuation of mandated female board. The Quarterly Journal of Economics 127: 137–97. [Google Scholar] [CrossRef]
- Anderson, Ronald, and David Reeb. 2003. Founding-family ownership and firm performance: Evidence from the S&P500. Journal of Finance 58: 1301–28. [Google Scholar]
- Barnea, Amir, and Iian Guedj. 2009. Director Networks. Paper presented at EFA 2007 Ljubljana Meetings, Zurich, Switzerland, August 24. [Google Scholar]
- Bhagat, Sanjai, and Bernard Black. 2001. The non-correlation between board independence and long-term firm performance. The Journal of Corporation Law 27: 231. [Google Scholar] [CrossRef]
- Bhagat, Sanjai, and Brian Bolton. 2008. Corporate governance and firm performance. Journal of Corporate Finance 14: 257–73. [Google Scholar] [CrossRef]
- Bhatti, M. Ishaq, and Hung Quang Do. 2019. Recent development in copula and its applications to the energy, forestry and environmental sciences. International Journal of Hydrogen Energy 44: 19453–73. [Google Scholar] [CrossRef]
- Bhatti, M. Ishaq, and Hung Quang Do. 2020. Development in Copula Applications in Forestry and Environmental Sciences. In Statistical Methods and Applications in Forestry and Environmental Sciences. Singapore: Springer, pp. 213–30. [Google Scholar]
- Brickley, James, Jeffrey Coles, and Rory Terry. 1994. Outside directors and the adoption of poison pills. Journal of Financial Economics 35: 371–90. [Google Scholar] [CrossRef]
- Byrd, John, and Kent Hickman. 1992. Do outside directors monitor managers? Evidence from tender offer bids. Journal of Financial Economics 32: 195–221. [Google Scholar] [CrossRef]
- Calabrese, Raffaella, and Silvia Angela Osmetti. 2013. Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics 40: 1172–88. [Google Scholar] [CrossRef]
- Carter, David, Betty Simkins, and W. Gary Simpson. 2003. Corporate governance, board diversity, and firm value. Financial Review 38: 33–53. [Google Scholar] [CrossRef]
- Cheng, Shijun. 2008. Board size and the variability of corporate performance. Journal of Financial Economics 87: 157–76. [Google Scholar] [CrossRef]
- Cherubini, Umberto, Elisa Luciano, and Walter Vecchiato. 2004. Copula Methods in Finance. Chichester: John Wiley. [Google Scholar]
- Chhaochharia, Vidhi, and Yaniv Grinstein. 2009. CEO Compensation and Board Structure. Journal of Finance 64: 231–61. [Google Scholar] [CrossRef]
- Coles, Jeffrey, Naveen Daniel, and Lalitha Naveen. 2008. Boards: Does one size fit all? Journal of Financial Economics 87: 329–56. [Google Scholar] [CrossRef] [Green Version]
- Core, John, Robert Holthausen, and David Larcker. 1999. Corporate governance, chief executive officer compensation, and firm performance. Journal of Financial Economics 51: 371–406. [Google Scholar] [CrossRef]
- Davino, Cristina, Marilena Furno, and Domenico Vistocco. 2013. Quantile Regression: Theory and Applications. Hoboken: Wiley. [Google Scholar]
- Ding, Wenzhi, Ross Levine, Chen Lin, and Wensi Xie. 2020. Corporate Immunity to the COVID-19 Pandemic. NBER Working Paper 27055. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Eisenberg, Theodore, Stefan Sundgren, and Martin Wells. 1998. Larger board size and decreasing firm value in small firms. Journal of financial Economics 48: 35–54. [Google Scholar] [CrossRef]
- Faleye, Olubunmi. 2011. CEO directors, executive incentives, and corporate strategic initiatives. Journal of Financial Research 34: 241–77. [Google Scholar] [CrossRef]
- Faleye, Olubunmi, Rani Hoitash, and Udi Hoitash. 2011. The costs of intense board monitoring. Journal of Financial Economics 101: 160–81. [Google Scholar] [CrossRef]
- Fama, Eugene, and Michael Jensen. 1983. Separation of ownership and control. Journal of Law and Economics 26: 301–25. [Google Scholar] [CrossRef]
- Ferris, Stephen, Murali Jagannathan, and Adam Pritchard. 2003. Too busy to mind the business? Monitoring by directors with multiple board appointments. Journal of Finance 58: 1087–111. [Google Scholar] [CrossRef] [Green Version]
- Fich, Eliezer, and Anil Shivdasani. 2006. Are busy boards effective monitors? Journal of Finance 61: 689–724. [Google Scholar] [CrossRef]
- Field, Laura, Michelle Lowry, and Anahit Mkrtchyan. 2013. Are busy boards detrimental. Journal of Financial Economics 109: 63–82. [Google Scholar] [CrossRef]
- Garner, Jacqueline, Taek-yul Kim, and Won Yong Kim. 2017. Board of directors: A literature review. Managerial Finance 43: 1189–98. [Google Scholar] [CrossRef]
- Gul, Ferdinand, Bin Srinidhi, and Anthony Ng. 2011. Does board gender diversity improve the informativeness of stock prices? Journal of Accounting Economics 51: 314–38. [Google Scholar] [CrossRef]
- Guner, Burak, Ulrike Malmendier, and Geoffrey Tate. 2008. Financial Expertise of Directors. Journal of Financial Economics 88: 323–54. [Google Scholar] [CrossRef] [Green Version]
- Hallock, Kevin. 1997. Reciprocally interlocking boards of directors and executive compensation. Journal of Financial and Quantitative Analysis 32: 331–44. [Google Scholar] [CrossRef] [Green Version]
- Harris, Milton, and Artur Raviv. 2008. A theory of board control and size. The Review of Financial Studies 21: 1797–832. [Google Scholar] [CrossRef] [Green Version]
- Huson, Mark, Robert Parrino, and Laura Starks. 2001. Internal monitoring mechanisms and CEO turnover: A long-term perspective. The Journal of Finance 56: 2265–97. [Google Scholar] [CrossRef]
- Jensen, Michael. 1993. The modern industrial revolution, exit, and the failure of internal control systems. Journal of Finance 48: 831–80. [Google Scholar] [CrossRef]
- Kim, Daehyun, and Laura Starks. 2016. Gender diversity on corporate boards: Do women contribute unique skills? American Economic Review 106: 267–71. [Google Scholar] [CrossRef]
- Koenker, Roger. 2005. Quantile Regression. Cambridge: Cambridge University Press. [Google Scholar]
- Kurowicka, Dorota, and Roger. M. Cooke. 2007. Sampling algorithms for generating joint uniform distributions using the vine-copula method. Computational Statistics & Data Analysis 51: 2889–906. [Google Scholar]
- Levine, Ross, and Renelt David. 1992. A sensitivity analysis of cross-country growth regressions. American Economic Review 82: 942–63. [Google Scholar]
- Linck, James, Jeffry Netter, and Tina Yang. 2008. The determinants of board structure. Journal of Financial Economics 87: 308–28. [Google Scholar] [CrossRef]
- Masulis, Ronald, and Shawn Mobbs. 2011. Are all inside director the same? Evidence from the external directorship market. Journal of Finance 66: 823–72. [Google Scholar] [CrossRef]
- Masulis, Ronald, Cong Wang, and Fei Xie. 2012. Globalizing the boardroom-the effects of foreign directors on Corporate governance and firm performance. Journal of Accounting and Economics 53: 527–54. [Google Scholar] [CrossRef]
- Pellegrini, Carlo Bellavite, and Emiliano Sironi. 2017. Does a one-tier board affect firms’ performances? Evidences from Italian unlisted enterprises. Small Business Economics 48: 213–24. [Google Scholar] [CrossRef]
- Raheja, Charu. 2005. Determinants of board size and composition: A theory of corporate board. The Journal of Financial and Quantitative Analysis 40: 283–306. [Google Scholar] [CrossRef]
- Rosenstein, Stuart, and Jeffry Wyatt. 1990. Outside directors, board independence, and shareholder wealth. Journal of Financial Economics 26: 175–91. [Google Scholar] [CrossRef]
- Sala-I-Martin, Xavier. 1997. I just ran two million regressions. American Economic Review 87: 178–83. [Google Scholar]
- Shrader, Charles, Virginia Blackburn, and Paul Iles. 1997. Women in management and firm financial value: An exploratory study. Journal of Managerial Issues 9: 355–72. [Google Scholar]
- Yermack, David. 1996. Higher market valuation of companies with a small board of directors. Journal of Financial Economics 40: 185–211. [Google Scholar] [CrossRef]
1 | We recognize that there is debate in the literature as to exactly what Tobin’s Q measures, and that aggregate pay is but one aspect of governance. We simply use these as representative analyses to illustrate the issues. |
2 | Compustat data: Tobin’s Q = (data6 − data60 + (data25 × data199))/(data6). data6: Total assets; data25: common shares outstanding; data199: Price close fiscal year; data60: Common equity; |
3 | For example, we examine variables used by: Yermack (1996); Core et al. (1999); Anderson and Reeb (2003); Ferris et al. (2003); Adams et al. (2005); Fich and Shivdasani (2006); Faleye (2011); Guner et al. (2008); Adams and Ferreira (2009); Agrawal and Nasser (2019); Barnea and Guedj (2009); Chhaochharia and Grinstein (2009); Masulis and Mobbs (2011); Masulis et al. (2012). Appendix A provides a detailed description of the variables, their construction, and selected papers which study each variable. |
4 | The skewness of our sample in Table 1 suggests that the distribution of mean across our sample is not normal. We provide Kendall and Spearman’s two non-parametric correlation coefficients matrix of 14 variables in Table A2 in Appendix A. Although we observe some temporal variation, the relation remains relatively stable. |
Variables | Min | Q1 | Median | Mean | Q3 | Max | SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
Q | 0.748 | 1.243 | 1.627 | 2.026 | 2.338 | 7.917 | 0.721 | 1.407 | 12.094 |
Size | 3 | 7 | 9 | 9.003 | 10 | 21 | 0.989 | 0.265 | 5.509 |
Indepen | 0 | 0.625 | 0.75 | 0.720 | 0.857 | 1 | 0.089 | −0.513 | 5.237 |
Dage | 40.333 | 58 | 60.667 | 60.501 | 63.182 | 78 | 1.993 | −0.147 | 4.524 |
Family | 0 | 0 | 0 | 0.088 | 0 | 1 | 0.183 | 1.338 | 12.170 |
Outside | 0 | 0 | 0 | 0.088 | 0.143 | 0.714 | 0.077 | 0.307 | 4.577 |
Female | 0 | 0 | 0.1 | 0.104 | 0.167 | 0.667 | 0.047 | 0.069 | 5.548 |
Foreign | 0 | 0 | 0 | 0.020 | 0 | 0.714 | 0.036 | 1.226 | 12.482 |
Financial | 0 | 0 | 0 | 0.000 | 0 | 0.167 | 0.004 | 11.087 | 504.405 |
Sales | 4.012 | 6.373 | 7.317 | 7.422 | 8.387 | 11.333 | 0.319 | −0.305 | 6.880 |
Capx | 0.002 | 0.022 | 0.037 | 0.072 | 0.066 | 0.926 | 0.049 | 1.091 | 34.786 |
ROA | −0.188 | 0.084 | 0.138 | 0.140 | 0.195 | 0.455 | 0.067 | −0.043 | 6.867 |
Fage | 1 | 11 | 18 | 24.546 | 34 | 88 | 2.696 | −0.494 | 54.110 |
Segment | 0 | 1 | 2 | 2.349 | 4 | 12 | 0.886 | 0.258 | 9.481 |
Var. | Q | Size | Indepen | Dage | Family | Outside | Female | Foreign | Financial | Sales | Capx | ROA | Fage | Segments |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | 1.000 | |||||||||||||
Size | −0.095 | 1.000 | ||||||||||||
Indepen | −0.071 | 0.108 | 1.000 | |||||||||||
Dage | −0.129 | 0.132 | 0.193 | 1.000 | ||||||||||
Family | −0.024 | 0.101 | −0.265 | 0.068 | 1.000 | |||||||||
Outside | 0.034 | 0.128 | −0.025 | −0.238 | −0.030 | 1.000 | ||||||||
Female | 0.001 | 0.325 | 0.239 | −0.033 | 0.003 | 0.018 | 1.000 | |||||||
Foreign | 0.003 | 0.091 | 0.067 | 0.010 | −0.004 | −0.035 | 0.051 | 1.000 | ||||||
Financial | 0.009 | 0.009 | 0.016 | 0.010 | 0.014 | −0.025 | 0.018 | 0.041 | 1.000 | |||||
Sales | −0.085 | 0.589 | 0.201 | 0.140 | 0.016 | 0.116 | 0.378 | 0.091 | 0.013 | 1.000 | ||||
Capx | −0.021 | −0.037 | −0.046 | −0.010 | −0.006 | −0.016 | −0.124 | 0.030 | −0.008 | −0.108 | 1.000 | |||
ROA | 0.397 | 0.046 | −0.004 | −0.020 | 0.009 | 0.019 | 0.089 | −0.012 | 0.003 | 0.118 | 0.017 | 1.000 | ||
Fage | −0.103 | 0.407 | 0.241 | 0.231 | 0.005 | 0.148 | 0.222 | 0.066 | 0.016 | 0.446 | −0.049 | 0.024 | 1.000 | |
Segment | −0.134 | 0.184 | 0.088 | 0.103 | 0.009 | 0.075 | 0.051 | −0.004 | 0.016 | 0.202 | −0.092 | −0.060 | 0.240 | 1.000 |
OLS | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 3.741 *** | 0.749 *** | 0.843 *** | 1.030 *** | 1.228 *** | 1.377 *** | 1.558 *** | 1.783 *** | 2.039 *** | 2.244 *** | 2.424 *** | 2.688 *** | 3.053 *** | 3.385 *** | 3.908 *** | 4.480 *** | 5.268 *** | 6.210 *** | 8.625 *** | 10.390 *** |
(0.157) | (0.056) | (0.059) | (0.061) | (0.055) | (0.062) | (0.066) | (0.087) | (0.086) | (0.074) | (0.099) | (0.125) | (0.143) | (0.144) | (0.177) | (0.156) | (0.246) | (0.331) | (0.471) | (0.739) | |
v_bsize | −0.021 *** | 0.003 | 0.000 | −0.001 | −0.003 * | −0.005 ** | −0.007 *** | −0.008 *** | −0.010 *** | −0.011 *** | −0.012 *** | −0.019 *** | −0.023 *** | −0.025 *** | −0.027 *** | −0.035 *** | −0.042 *** | −0.052 *** | −0.068 *** | −0.073 *** |
(0.005) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.003) | (0.003) | (0.003) | (0.003) | (0.004) | (0.004) | (0.005) | (0.005) | (0.007) | (0.009) | (0.012) | (0.021) | |
v_outsiderpct | −0.279 *** | 0.144 *** | 0.134 *** | 0.098 *** | 0.098 *** | 0.105 *** | 0.098 *** | 0.081 ** | 0.040 | −0.038 | −0.053 | −0.082 * | −0.133 ** | −0.199 *** | −0.313 *** | −0.404 *** | −0.572 *** | −0.848 *** | −1.472 *** | −2.246 *** |
(0.068) | (0.024) | (0.025) | (0.026) | (0.024) | (0.028) | (0.026) | (0.040) | (0.040) | (0.040) | (0.042) | (0.050) | (0.064) | (0.061) | (0.080) | (0.087) | (0.112) | (0.152) | (0.226) | (0.307) | |
v_age | −0.023 *** | −0.003 *** | −0.002 ** | −0.003 *** | −0.005 *** | −0.006 *** | −0.007 *** | −0.009 *** | −0.011 *** | −0.012 *** | −0.013 *** | −0.015 *** | −0.018 *** | −0.020 *** | −0.024 *** | −0.028 *** | −0.034 *** | −0.039 *** | −0.059 *** | −0.059 *** |
(0.003) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | (0.002) | (0.002) | (0.002) | (0.003) | (0.002) | (0.004) | (0.005) | (0.007) | (0.012) | |
v_relativeflag | −0.113 *** | 0.024 ** | 0.010 | −0.001 | −0.004 | −0.004 | −0.002 | −0.018 | −0.027 * | −0.052 *** | −0.056 *** | −0.066 *** | −0.072 *** | −0.108 *** | −0.111 *** | −0.134 *** | −0.117 ** | −0.118 ** | −0.123 | −0.374 *** |
(0.035) | (0.010) | (0.013) | (0.014) | (0.012) | (0.013) | (0.016) | (0.017) | (0.016) | (0.017) | (0.016) | (0.022) | (0.025) | (0.027) | (0.033) | (0.039) | (0.055) | (0.058) | (0.077) | (0.144) | |
v_ceodirector | 0.341 *** | −0.115 *** | −0.052 | −0.053 * | −0.055 * | −0.053 | −0.043 | −0.059 | 0.005 | 0.004 | 0.028 | 0.043 | 0.009 | 0.084 | 0.196 * | 0.330 *** | 0.430 *** | 0.669 *** | 1.077 *** | 2.154 *** |
(0.086) | (0.027) | (0.037) | (0.031) | (0.033) | (0.038) | (0.041) | (0.047) | (0.049) | (0.038) | (0.057) | (0.061) | (0.073) | (0.081) | (0.104) | (0.099) | (0.133) | (0.200) | (0.260) | (0.396) | |
v_femalepct | 0.218 | 0.026 | 0.128 *** | 0.143 *** | 0.127 *** | 0.110 ** | 0.086 * | 0.060 | 0.054 | 0.047 | −0.002 | −0.004 | −0.017 | −0.020 | −0.048 | −0.013 | 0.082 | 0.405 * | 0.695 *** | 0.626 |
(0.111) | (0.036) | (0.045) | (0.041) | (0.042) | (0.049) | (0.052) | (0.055) | (0.060) | (0.058) | (0.071) | (0.068) | (0.084) | (0.094) | (0.116) | (0.115) | (0.160) | (0.212) | (0.232) | (0.481) | |
v_foreignpct | 0.560 ** | −0.155 *** | −0.097 | −0.064 | −0.025 | 0.084 | 0.177 * | 0.201 * | 0.292 *** | 0.345 *** | 0.465 *** | 0.611 *** | 0.726 *** | 0.815 *** | 1.008 *** | 0.896 *** | 0.859 *** | 1.592 *** | 1.588 *** | 1.885 *** |
(0.179) | (0.047) | (0.069) | (0.072) | (0.089) | (0.076) | (0.096) | (0.109) | (0.098) | (0.116) | (0.155) | (0.141) | (0.159) | (0.207) | (0.188) | (0.078) | (0.308) | (0.449) | (0.314) | (0.549) | |
v_financialoutpct | 3.268 | 1.277 * | 0.573 | 1.177 | 1.288 * | 1.100 | 0.715 | 3.053 | 3.149 *** | 2.986 *** | 2.363 *** | 2.071 | 2.888 *** | 2.189 | 2.544 | 1.829 *** | 3.002 | 1.645 | 7.543 | 6.717 |
(2.076) | (0.674) | (1.216) | (1.543) | (0.744) | (0.847) | (0.590) | (4.955) | (1.098) | (0.334) | (0.779) | (2.253) | (0.480) | (1.495) | (1.827) | (0.555) | (3.760) | (16.667) | (13.134) | (29.937) | |
c_lnsale | −0.067 *** | 0.016 *** | 0.008 *** | 0.001 | −0.001 | −0.006 ** | −0.011 *** | −0.017 *** | −0.023 *** | −0.027 *** | −0.030 *** | −0.030 *** | −0.032 *** | −0.041 *** | −0.048 *** | −0.060 *** | −0.080 *** | −0.105 *** | −0.140 *** | −0.178 *** |
(0.008) | (0.002) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.004) | (0.004) | (0.003) | (0.004) | (0.005) | (0.006) | (0.006) | (0.008) | (0.007) | (0.010) | (0.014) | (0.019) | (0.033) | |
c_capx_sale | −0.475 *** | −0.087 *** | −0.142 *** | −0.217 *** | −0.297 *** | −0.362 *** | −0.450 *** | −0.501 *** | −0.542 *** | −0.596 *** | −0.624 *** | −0.635 *** | −0.639 *** | −0.655 *** | −0.661 *** | −0.637 *** | −0.540 *** | −0.221 | 0.287 | 0.986 |
(0.077) | (0.019) | (0.019) | (0.017) | (0.016) | (0.017) | (0.018) | (0.025) | (0.023) | (0.042) | (0.025) | (0.060) | (0.059) | (0.053) | (0.051) | (0.075) | (0.157) | (0.278) | (0.341) | (0.854) | |
c_fichroa | 4.951 *** | 1.195 *** | 1.621 *** | 2.034 *** | 2.309 *** | 2.591 *** | 2.956 *** | 3.220 *** | 3.485 *** | 3.847 *** | 4.158 *** | 4.380 *** | 4.665 *** | 4.988 *** | 5.365 *** | 5.764 *** | 6.213 *** | 6.573 *** | 7.161 *** | 7.571 *** |
(0.095) | (0.030) | (0.036) | (0.033) | (0.034) | (0.037) | (0.038) | (0.041) | (0.044) | (0.042) | (0.047) | (0.054) | (0.066) | (0.066) | (0.085) | (0.075) | (0.126) | (0.190) | (0.243) | (0.414) | |
c_firmage | −0.002 ** | 0.000 * | 0.000 | 0.000 | 0.000 | 0.000 * | −0.001 *** | −0.001 *** | −0.001 ** | −0.001 *** | −0.001 ** | −0.001 ** | −0.001 ** | −0.001 *** | −0.001 *** | −0.001 ** | −0.001 | −0.001 * | −0.002 ** | −0.005 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.001) | (0.000) | (0.001) | (0.001) | (0.001) | (0.002) | |
c_segment_bus | −0.053 *** | −0.003 | −0.002 | −0.003 * | −0.006 *** | −0.009 *** | −0.011 *** | −0.012 *** | −0.016 *** | −0.019 *** | −0.024 *** | −0.029 *** | −0.033 *** | −0.038 *** | −0.043 *** | −0.049 *** | −0.053 *** | −0.065 *** | −0.082 *** | −0.147 *** |
(0.006) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.003) | (0.002) | (0.003) | (0.003) | (0.004) | (0.004) | (0.005) | (0.005) | (0.006) | (0.007) | (0.011) | (0.018) |
Q05 | Q10 | Q15 | Q20 | Q25 | Q30 | Q35 | Q40 | Q45 | Q50 | Q55 | Q60 | Q65 | Q70 | Q75 | Q80 | Q85 | Q90 | Q95 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.981 | 1.089 | 1.180 | 1.258 | 1.334 | 1.412 | 1.486 | 1.567 | 1.654 | 1.742 | 1.829 | 1.932 | 2.054 | 2.198 | 2.356 | 2.563 | 2.847 | 3.319 | 4.142 |
Standard Error | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.003 | 0.003 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
Median | 0.983 | 1.089 | 1.177 | 1.253 | 1.326 | 1.402 | 1.473 | 1.553 | 1.636 | 1.721 | 1.805 | 1.903 | 2.024 | 2.163 | 2.321 | 2.519 | 2.800 | 3.262 | 4.083 |
Standard Deviation | 0.133 | 0.172 | 0.212 | 0.241 | 0.271 | 0.309 | 0.338 | 0.368 | 0.407 | 0.441 | 0.468 | 0.503 | 0.542 | 0.592 | 0.645 | 0.708 | 0.783 | 0.944 | 1.143 |
Sample Variance | 0.018 | 0.030 | 0.045 | 0.058 | 0.073 | 0.096 | 0.114 | 0.135 | 0.166 | 0.195 | 0.219 | 0.253 | 0.294 | 0.350 | 0.416 | 0.501 | 0.612 | 0.891 | 1.306 |
Kurtosis | 1.317 | 1.487 | 1.556 | 1.585 | 1.563 | 1.576 | 1.545 | 1.485 | 1.450 | 1.403 | 1.336 | 1.262 | 1.194 | 1.098 | 0.995 | 0.885 | 0.676 | 0.414 | 0.191 |
Skewness | −0.222 | −0.122 | −0.027 | 0.002 | 0.048 | 0.066 | 0.103 | 0.138 | 0.154 | 0.170 | 0.190 | 0.215 | 0.235 | 0.260 | 0.283 | 0.309 | 0.327 | 0.341 | 0.292 |
Range | 1.063 | 1.312 | 1.622 | 1.893 | 2.120 | 2.491 | 2.979 | 3.237 | 3.534 | 3.699 | 3.903 | 4.211 | 4.520 | 4.948 | 5.320 | 5.758 | 6.213 | 7.467 | 8.671 |
Minimum | 0.395 | 0.362 | 0.290 | 0.207 | 0.138 | 0.007 | −0.067 | −0.131 | −0.232 | −0.282 | −0.290 | −0.313 | −0.340 | −0.371 | −0.370 | −0.321 | −0.133 | −0.221 | −0.018 |
Maximum | 1.458 | 1.674 | 1.911 | 2.100 | 2.258 | 2.498 | 2.911 | 3.107 | 3.302 | 3.417 | 3.613 | 3.898 | 4.180 | 4.577 | 4.949 | 5.436 | 6.080 | 7.247 | 8.653 |
Q05 | Q10 | Q15 | Q20 | Q25 | Q30 | Q35 | Q40 | Q45 | Q50 | Q55 | Q60 | Q65 | Q70 | Q75 | Q80 | Q85 | Q90 | Q95 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.999 | 1.121 | 1.220 | 1.308 | 1.392 | 1.473 | 1.555 | 1.638 | 1.724 | 1.814 | 1.912 | 2.018 | 2.137 | 2.273 | 2.435 | 2.633 | 2.889 | 3.252 | 3.883 |
Standard Error | 0.001 | 0.002 | 0.002 | 0.003 | 0.003 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.011 | 0.012 | 0.014 |
Median | 0.956 | 1.053 | 1.129 | 1.196 | 1.258 | 1.319 | 1.380 | 1.441 | 1.506 | 1.576 | 1.651 | 1.734 | 1.827 | 1.934 | 2.057 | 2.212 | 2.419 | 2.710 | 3.239 |
Standard Deviation | 0.146 | 0.207 | 0.263 | 0.316 | 0.367 | 0.417 | 0.467 | 0.517 | 0.570 | 0.626 | 0.687 | 0.754 | 0.829 | 0.916 | 1.019 | 1.142 | 1.287 | 1.456 | 1.651 |
Sample Variance | 0.021 | 0.043 | 0.069 | 0.100 | 0.134 | 0.174 | 0.218 | 0.268 | 0.325 | 0.392 | 0.471 | 0.568 | 0.688 | 0.840 | 1.038 | 1.304 | 1.655 | 2.120 | 2.724 |
Kurtosis | 3.037 | 3.918 | 4.216 | 4.228 | 4.121 | 3.998 | 3.908 | 3.873 | 3.888 | 3.953 | 4.088 | 4.296 | 4.514 | 4.592 | 4.520 | 4.167 | 3.365 | 2.144 | 0.435 |
Skewness | 1.633 | 1.864 | 1.956 | 1.985 | 1.983 | 1.970 | 1.956 | 1.948 | 1.944 | 1.948 | 1.960 | 1.982 | 2.007 | 2.023 | 2.025 | 1.990 | 1.879 | 1.662 | 1.246 |
Range | 1.152 | 1.552 | 1.910 | 2.225 | 2.531 | 2.822 | 3.174 | 3.548 | 3.946 | 4.400 | 5.079 | 5.876 | 6.461 | 6.506 | 6.487 | 6.440 | 6.363 | 6.238 | 5.987 |
Minimum | 0.679 | 0.777 | 0.835 | 0.890 | 0.942 | 0.992 | 1.041 | 1.088 | 1.136 | 1.180 | 1.219 | 1.260 | 1.306 | 1.358 | 1.419 | 1.493 | 1.590 | 1.733 | 2.003 |
Maximum | 1.831 | 2.329 | 2.745 | 3.114 | 3.473 | 3.814 | 4.214 | 4.636 | 5.082 | 5.581 | 6.298 | 7.136 | 7.767 | 7.864 | 7.905 | 7.932 | 7.953 | 7.971 | 7.990 |
Q05 | Q10 | Q15 | Q20 | Q25 | Q30 | Q35 | Q40 | Q45 | Q50 | Q55 | Q60 | Q65 | Q70 | Q75 | Q80 | Q85 | Q90 | Q95 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 1.017 | 1.139 | 1.237 | 1.326 | 1.410 | 1.491 | 1.572 | 1.654 | 1.739 | 1.829 | 1.926 | 2.031 | 2.150 | 2.286 | 2.448 | 2.646 | 2.904 | 3.270 | 3.901 |
Standard Error | 0.001 | 0.002 | 0.002 | 0.003 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.008 | 0.009 | 0.010 | 0.011 | 0.012 | 0.014 |
Median | 0.976 | 1.076 | 1.152 | 1.219 | 1.282 | 1.344 | 1.408 | 1.472 | 1.538 | 1.608 | 1.682 | 1.764 | 1.856 | 1.963 | 2.096 | 2.262 | 2.489 | 2.809 | 3.376 |
Standard Deviation | 0.161 | 0.215 | 0.273 | 0.332 | 0.390 | 0.446 | 0.502 | 0.558 | 0.615 | 0.676 | 0.741 | 0.810 | 0.886 | 0.971 | 1.065 | 1.173 | 1.302 | 1.459 | 1.671 |
Sample Variance | 0.026 | 0.046 | 0.074 | 0.110 | 0.152 | 0.199 | 0.252 | 0.311 | 0.379 | 0.457 | 0.549 | 0.656 | 0.786 | 0.943 | 1.134 | 1.376 | 1.695 | 2.127 | 2.791 |
Kurtosis | 1.035 | 2.122 | 4.046 | 5.696 | 6.682 | 7.281 | 7.665 | 7.954 | 8.213 | 8.419 | 8.522 | 8.306 | 7.817 | 7.063 | 6.050 | 4.890 | 3.592 | 2.057 | 0.228 |
Skewness | 1.078 | 1.379 | 1.726 | 1.994 | 2.155 | 2.254 | 2.316 | 2.359 | 2.394 | 2.422 | 2.441 | 2.431 | 2.394 | 2.324 | 2.213 | 2.064 | 1.864 | 1.567 | 1.085 |
Range | 1.076 | 1.918 | 2.806 | 3.517 | 4.119 | 4.640 | 5.198 | 5.764 | 6.246 | 6.648 | 6.727 | 6.745 | 6.748 | 6.742 | 6.731 | 6.712 | 6.683 | 6.639 | 6.557 |
Minimum | 0.713 | 0.773 | 0.822 | 0.863 | 0.898 | 0.932 | 0.959 | 0.984 | 1.011 | 1.039 | 1.071 | 1.100 | 1.126 | 1.153 | 1.186 | 1.224 | 1.276 | 1.340 | 1.440 |
Maximum | 1.789 | 2.690 | 3.628 | 4.380 | 5.017 | 5.572 | 6.157 | 6.748 | 7.257 | 7.687 | 7.798 | 7.845 | 7.874 | 7.895 | 7.916 | 7.936 | 7.959 | 7.978 | 7.997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-M.; Cho, C.; Jun, C.; Kim, W.Y. The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach. J. Risk Financial Manag. 2020, 13, 254. https://doi.org/10.3390/jrfm13110254
Kim J-M, Cho C, Jun C, Kim WY. The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach. Journal of Risk and Financial Management. 2020; 13(11):254. https://doi.org/10.3390/jrfm13110254
Chicago/Turabian StyleKim, Jong-Min, Chanho Cho, Chulhee Jun, and Won Yong Kim. 2020. "The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach" Journal of Risk and Financial Management 13, no. 11: 254. https://doi.org/10.3390/jrfm13110254
APA StyleKim, J. -M., Cho, C., Jun, C., & Kim, W. Y. (2020). The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach. Journal of Risk and Financial Management, 13(11), 254. https://doi.org/10.3390/jrfm13110254