Sovereign Default Forecasting in the Era of the COVID-19 Crisis
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Considerations
- Binary classification modeling, which estimates the probability that a debtor cannot meet its contractual obligations and goes into default. This is enacted through the application of multivariate statistical/machine learning methods.
- Rating-based modeling, which in multiple forms estimates the probability that the credit rating of a debtor changes in the future. This may include possible transition into the defaulted rating category.
- Market-based structural modeling, which deduces the PD from the extrapolation of market data. However, it is only applicable for debtors possessing instruments traded in capital markets.
- Delinquent sovereign debt service payment
- Sovereign debt restructuring
- Bankruptcy filing or legal receivership
- Sovereign default rating
- Exceeding IMF funding limits
- Insolvency priced through CDS spreads
- Macroeconomic–financial indicators
- classic macroeconomic variables
- debt service and liquidity ratios
- monetary policy indicators
- public finance ratios
- external economic and financial indicators
- Political factors
- institutional environments
- political systems and political stability
- security policy
- Market indicators
- yield curves
- exchange rate volatility
- Systemic risks
- contagion effect of externally related crises
- risks affecting the financial system
- association with a risky country group
- Default history
- previous restructuring and non-payment experience
2.2. Earlier Empirical Sovereign Default Models
- Multivariate classification methods
- Structural approaches
- Rating-based approaches
2.2.1. Multivariate Classification Methods
- Decision Trees (CART and C4.5 trees)
- Neural Networks (NN)
- Support Vector Machine (SVM)
- Random Forest (RF)
- Least Absolute Shrinkage and Selection Operator (LASSO)
- Multivariate Adaptive Regression Splines (MARS)
- Extremely Randomized Trees (ERT)
- Extreme Gradient Boosting (XGBoost)
- Deep Neural Decision Trees (DNDT)
2.2.2. Structural Approaches
2.2.3. Rating-Based Approaches
3. Methodology and Data
3.1. Markov Chain Modeling
3.2. Data Collection and Data Preparation
4. Model Development and Results
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
Appendix A
Study | Applied Method | Period | Target Variable | Explanatory Variables |
---|---|---|---|---|
Frank and Cline (1971) | DA | 1960–1968 | sovereign debt restructuring | macroeconomic-financial indicators |
Grinols (1976) | DA | 1961–1974 | sovereign debt payment difficulties | macroeconomic-financial indicators |
Sargen (1977) | DA | 1960–1975 | sovereign debt restructuring | macroeconomic-financial indicators |
Feder and Just (1977) | Logit | 1965–1972 | sovereign debt restructuring | macroeconomic-financial indicators |
Saini and Bates (1978) | DA, Logit | 1960–1977 | sovereign debt restructuring | macroeconomic-financial indicators |
Mayo and Barett (1978) | Logit | 1960–1975 | sovereign debt payment difficulties | macroeconomic-financial indicators |
Feder et al. (1981) | Logit | 1965–1976 | sovereign debt payment difficulties | macroeconomic-financial indicators |
Taffler and Abassi (1984) | DA | 1967–1978 | sovereign debt restructuring | macroeconomic-financial indicators |
Kharas (1984) | Probit | 1965–1976 | sovereign debt restructuring | macroeconomic-financial indicators |
Burton and Inoue (1987) | DA | 1968–1977 | expropriation of foreign assets | macroeconomic-financial indicators, political factors |
Citron and Nickelsburg (1987) | Logit | 1960–1983 | sovereign debt restructuring | macroeconomic-financial indicators, political factors |
Cosset and Roy (1988) | CART | 1983–1985 | sovereign rating | macroeconomic-financial indicators |
Lloyd-Ellis et al. (1990) | Tobit | 1977–1985 | sovereign debt restructuring | macroeconomic-financial indicators |
Balkan (1992) | Probit | 1971–1984 | sovereign debt restructuring | macroeconomic-financial indicators |
Oral et al. (1992) | G-Logit | 1982–1987 | sovereign rating | macroeconomic-financial indicators, political factors |
Cosset and Roy (1994) | NN, Logit | 1983–1985 | sovereign rating | macroeconomic-financial indicators, political factors |
Sommerville and Taffler (1995) | Logit, banker judgment | 1979–1989 | delinquent sovereign debt payment | macroeconomic-financial indicators |
de Bondt and Winder (1996) | Probit | 1983–1993 | delinquent sovereign debt payment | macroeconomic-financial indicators, political factors |
Lanoie and Lemarbre (1996) | Tobit | 1989–1990 | sovereign debt restructuring | macroeconomic-financial indicators |
Cooper (1999) | NN, Probit, Logit, DA | 1960–1982 | sovereign debt restructuring | macroeconomic-financial indicators |
Gür (2001) | Tobit | 1986–1998 | sovereign debt restructuring | macroeconomic-financial indicators |
Reinhart (2002) | Probit | 1970–1999 | currency crisis, sovereign default | macroeconomic-financial indicators |
Manasse et al. (2003) | CART, Logit | 1970–2002 | sovereign default, IMF limit excess | macroeconomic-financial indicators |
Wei (2003) | Markov chain | 1981–1998 | sovereign default | sovereign rating, macroeconomic-financial indicators |
Ciarlone and Trebeschi (2005) | Multinominal logit | 1980–2002 | delinquent sovereign debt payment, restructuring, IMF limit excess | macroeconomic-financial indicators |
Yim and Mitchell (2005) | Ward-clustering, SOM, NN, Probit, Logit, DA | 2002 | sovereign debt restructuring | macroeconomic-financial indicators, political factors |
Fuertes and Kalotychou (2006) | Logit | 1983–2002 | delinquent sovereign debt payment, restructuring | macroeconomic-financial indicators, global factors |
Fuertes and Kalotychou (2007a) | Markov chain, Logit | 1981–2004 | sovereign default | sovereign rating |
Fuertes and Kalotychou (2007b) | K-means clustering, Logit | 1984–1995 | delinquent sovereign debt payment, restructuring | macroeconomic-financial indicators |
Fioramanti (2008) | NN | 1980–2004 | sovereign default, IMF limit excess | macroeconomic-financial indicators |
Manasse and Roubini (2009) | CART | 1970–2002 | sovereign default, IMF limit excess | macroeconomic-financial indicators, political factors |
Frascaroli et al. (2009) | RBPRO-NN | 1975–2005 | sovereign rating | macroeconomic-financial indicators |
Duyvesteyn and Martens (2012) | modified Merton-model | 2002–2010 | sovereign CDS spread | macroeconomic-financial indicators, market indicators |
Bhaumik and Landon-Lane (2013) | Markov chain | 1996–2005 | sovereign default | sovereign rating |
Savona and Vezzoli (2015) | CART, Logit, NTS | 1975–2010 | sovereign default, IMF limit excess | macroeconomic-financial indicators, default history |
Szetela et al. (2016) | Probit, Logit, DA | 1980–2012 | sovereign default, sovereign debt restructuring | macroeconomic-financial indicators |
Kaminsky and Vega-Garcia (2016) | Logit, Cox hazard | 1800–1960 | sovereign default | macroeconomic-financial indicators |
Dawood et al. (2017) | NTS, Logit | 1980–2012 | sovereign debt crisis | macroeconomic-financial indicators |
Pisula (2017) | Stacking-NN, SVM, G-Logit, MARS; Bagging-RF; Boosting-CART | 1980–2014 | sovereign debt payment difficulties | macroeconomic-financial indicators |
Huang and Sethi (2017) | NN, SVM, RF, Logit | 30 years (exact period unknown) | sovereign default | macroeconomic-financial indicators |
Augustin (2018) | RPF | 2001–2012 | sovereign CDS spread | market indicators |
Nyman and Ormerod (2018) | RF | 1970–2010 | economic recession | macroeconomic-financial indicators, market indicators |
Alaminos et al. (2019) | Fuzzy C4.5 | 1970–2017 | delinquent sovereign debt payment, restructuring, IMF limit excess | macroeconomic-financial indicators, political factors, rating indicators |
Zhou and Wang (2019) | DL-NN | 1970–2015 | sovereign default, IMF limit excess, severe internal debt, losing market confidence | macroeconomic-financial indicators |
da Silva et al. (2019) | RF | 1958–2017 | sovereign rating | macroeconomic-financial indicators |
Szetela et al. (2019) | Copula, Markov chain | 1994–2013 | sovereign default | sovereign rating |
Oh et al. (2019) | Markov chain | 1994–2018 | sovereign default | sovereign rating |
Lucia et al. (2019) | LASSO | 2009–2013 | sovereign CDS spread | macroeconomic-financial indicators |
Wijayanti and Rachmanira (2020) | NTS, Logit | 1960–2017 | sovereign default, IMF limit excess | macroeconomic-financial indicators |
Bluwstein et al. (2020) | ERT, RF, SVM, NN, CART, Logit | 1870–2016 | financial crisis in the banking sector | macroeconomic-financial indicators, market indicators |
Alaminos et al. (2021) | NN, SVM, Fuzzy-DT, AdaBoost, XGBoost, RF, DL-NN, DNDT | 1970–2017 | sovereign debt crisis, currency crisis | macroeconomic-financial indicators, political factors |
References
- Alaminos, David, Sergio M. Fernández, Paulo Magalhães Neves, and José António C Santos. 2019. Predicting sovereign debt crises with fuzzy decision trees. Journal of Scientific & Industrial Research 78: 733–37. [Google Scholar]
- Alaminos, David, José Ignacio Peláez, M. Belén Salas, and Manuel A. Fernández-Gámez. 2021. Sovereign debt and currency crises prediction models using machine learning techniques. Symmetry 13: 652. [Google Scholar] [CrossRef]
- Altman, Edward I., and Herbert A. Rijken. 2004. How rating agencies achieve rating stability. Journal of Banking & Finance 28: 2679–14. [Google Scholar] [CrossRef] [Green Version]
- Augustin, Patrick. 2018. The term structure of CDS spreads and sovereign credit risk. Journal of Monetary Economics 96: 53–76. [Google Scholar] [CrossRef]
- Avramovic, Dragoslav, and Ravi Gulhati. 1960. Debt Servicing Problems of Low Income Countries, 1956–1958. Baltimore: Johns Hopkins Press. [Google Scholar]
- Balkan, Erol M. 1992. Political instability, country risk and probability of default. Applied Economics 24: 999–1008. [Google Scholar] [CrossRef]
- Bhaumik, Sumon K., and John S. Landon-Lane. 2013. Directional mobility of debt ratings. Borsa Istanbul Review 13: 67–78. [Google Scholar] [CrossRef] [Green Version]
- Bladt, Mogens, and Michael SØrensen. 2009. Efficient estimation of transition rates between credit ratings from observations at discrete time points. Quantitative Finance 9: 147–60. [Google Scholar] [CrossRef]
- Bluhm, Christian, and Ludger Overbeck. 2007. Calibration of PD term structures: To be Markov or not to be. Risk 20: 98–103. [Google Scholar]
- Bluwstein, Kristina, Marcus Buckmann, Andreas Joseph, Miao Kang, Sujit Kapadia, and Özgur Simsek. 2020. Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach. In Bank of England Working Paper No. 848. London: Bank of England. [Google Scholar] [CrossRef] [Green Version]
- Bouchet, Michel H., Epharim Clark, and Bertrand Groslambert. 2003. Country Risk Assessment. A Guide to Global Investment Strategy. Chichester: John Wiley & Sons. [Google Scholar]
- Brewer, Thomas, and Pietra Rivoli. 1990. Politics and perceived country creditworthiness in international banking. Journal of Money, Credit, and Banking 22: 357–69. [Google Scholar] [CrossRef]
- Burton, Fred N., and Hisashi Inoue. 1987. A country risk appraisal model of foreign asset expropriation in developing countries. Applied Economics 19: 1009–48. [Google Scholar] [CrossRef]
- Candelon, Bertrand, Elena-Ivona Dumitrescu, and Christophe Hurlin. 2014. Currency crisis early warning systems: Why they should be dynamic. International Journal of Forecasting 30: 1016–29. [Google Scholar] [CrossRef]
- Cantor, Richard, and Frank Packer. 1996. Sovereign risk assessment and agency credit ratings. European Financial Management 2: 247–56. [Google Scholar] [CrossRef]
- Chattopadhyay, Surajit. 1997. Neural network approach for assessing country risk for foreign investment. International Journal of Management 14: 159–67. [Google Scholar]
- Chen, Sheng-Syan, Hsien-Yi Chen, Chong-Chuo Chang, and Shu-Ling Yang. 2016. The relation between sovereign credit rating revisions and economic growth. Journal of Banking & Finance 64: 90–100. [Google Scholar] [CrossRef]
- Ciarlone, Alessio, and Giorgio Trebeschi. 2005. Designing an early warning system for debt crises. Emerging Markets Review 6: 376–95. [Google Scholar] [CrossRef]
- Citron, Joel-Tomas, and Jerry Nickelsburg. 1987. Country risk and political instability. Journal of Development Economics 25: 385–92. [Google Scholar] [CrossRef]
- Cooper, John C. B. 1999. Artificial neural networks versus multivariate statistics: An application from economics. Journal of Applied Statistics 26: 909–21. [Google Scholar] [CrossRef]
- Cosset, Jean-Claude, and Jean Roy. 1988. Expert Judgments of Political Riskiness: An Alternative Approach. Document de Travail 88-12. Quebec: Universite Laval. [Google Scholar]
- Cosset, Jean-Claude, and Jean Roy. 1991. The determinants of country risk ratings. Journal of International Business Studies 22: 135–42. [Google Scholar] [CrossRef]
- Cosset, Jean-Claude, Mohamed Daouas, Ossama Kettani, and Muhittin Oral. 1993. Replicating country risk rating. Journal of Multinational Financial Management 3: 1–29. [Google Scholar]
- Cosset, Jean-Claude, and Jean Roy. 1994. Predicting country risk ratings using artificial neural networks. In Advances in Artificial Intelligence in Economics, Finance, and Management. Edited by John D. Johnson and Andrew B. Whinston. Oxford: JAI Press, pp. 141–57. [Google Scholar]
- Cruces, Juan J., and Christoph Trebesch. 2013. Sovereign defaults: The price of haircuts. American Economic Journal: Macroeconomics 5: 85–117. [Google Scholar] [CrossRef] [Green Version]
- Cyert, Richard M., H. Justin Davidson, and Gerald L. Thompson. 1962. Estimation of the allowance for doubtful accounts by Markov Chains. Management Science 8: 287–303. [Google Scholar] [CrossRef]
- da Silva, Diego Ramon B., Thaís Gaudêncio do Rêgo, and Bruno Ferreira Frascaroli. 2019. Sovereign Risk Ratings’ Country Classification Using Machine Learning. Paraíba: Federal University of Paraíba. [Google Scholar]
- Dawood, Mary, Nicholas Horsewood, and Frank Strobel. 2017. Predicting sovereign debt crisis: An early warning system approach. Journal of Financial Stability 28: 16–28. [Google Scholar] [CrossRef]
- de Bondt, Gabe, and Carlo C. A. Winder. 1996. Countries’ creditworthiness: An indicator from a probit analysis. De Economist 144: 617–33. [Google Scholar] [CrossRef]
- de Oliveira, Campino Jonas, Federico Galizia, Daniela Serrano, and Frank Sperling. 2021. Predicting sovereign credit ratings for portfolio stress testing. Journal of Risk Management in Financial Institutions 14: 229–41. [Google Scholar]
- Desta, Asayehgn. 1985. Assessing political risk in less developed countries. Journal of Business Strategy 5: 40–53. [Google Scholar] [CrossRef]
- dos Reis, Goncalo, and Greig Smith. 2018. Robust and consistent estimation of generators in credit risk. Quantitative Finance 18: 983–1001. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, Goncalo, Marius Pfeuffer, and Greig Smith. 2020. Capturing model risk and rating momentum in the estimation of probabilities of default and credit rating migrations. Quantitative Finance 20: 1069–83. [Google Scholar] [CrossRef] [Green Version]
- Duffuaa, Salih O, Abdelrahman Shuaib, and Mansoor Alam. 1993. Evaluation of optimization methods for machining economics models. Computers and Operations Research 20: 227–37. [Google Scholar] [CrossRef]
- Duyvesteyn, Johan, and Martin Martens. 2012. Forecasting sovereign default risk with Merton’s model. The Journal of Fixed Income 25: 58–71. [Google Scholar] [CrossRef] [Green Version]
- Feder, Gershon, and Richard Just. 1977. A study of debt servicing capacity applying logit analysis. Journal of Development Economics 4: 25–38. [Google Scholar] [CrossRef] [Green Version]
- Feder, Gershon, Richard Just, and Knud Ross. 1981. Projecting debt servicing capacity of developing countries. Journal of Financial and Quantitative Analysis 16: 651–69. [Google Scholar] [CrossRef]
- Ferretti, Camilla, Giampaolo Gabbi, Piero Ganugi, Federica Sist, and Pietro Vozzella. 2019. Credit risk migration and economic cycles. Risks 7: 109. [Google Scholar] [CrossRef] [Green Version]
- Fioramanti, Marco. 2008. Predicting sovereign debt crises using artificial neural networks: A comparative approach. Journal of Financial Stability 4: 149–64. [Google Scholar] [CrossRef]
- Fitch. 2020. Rating Definitions. New York: FitchRatings. [Google Scholar]
- Frank, Charles, and William Cline. 1971. Measurement of debt servicing capacity: An application of discriminant analysis. Journal of International Economics 1: 327–44. [Google Scholar] [CrossRef]
- Frascaroli, Bruno F., Luciano da Costa Silva, and Osvaldo C. da Silva Filho. 2009. Os ratings de risco soberano e os fundamentos macroeconômicos dos países: Um estudo utilizando redes neurais artificiais. Revista Brasileira de Finanças 7: 73–106. [Google Scholar] [CrossRef]
- Fuertes, Ana-Maria, and Elena Kalotychou. 2006. Early warning systems for sovereign debt crises: The role of heterogeneity. Computational Statistics & Data Analysis 51: 1420–41. [Google Scholar] [CrossRef]
- Fuertes, Ana-Maria, and Elena Kalotychou. 2007a. On sovereign credit migration: A study of alternative estimators and rating dynamics. Computational Statistics & Data Analysis 51: 3448–69. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, Ana-Maria, and Elena Kalotychou. 2007b. Optimal design of early warning systems for sovereign debt crises. International Journal of Forecasting 23: 85–100. [Google Scholar] [CrossRef]
- Georgiou, Kyriakos, Georgios Domazakis, Dimitros Pappas, and Athanasios N. Yannacopoulos. 2021. Markov chain lumpability and applications to credit risk modelling in compliance with the International Financial Reporting Standard 9 framework. European Journal of Operational Research 292: 1146–64. [Google Scholar] [CrossRef]
- Gray, Dale F., Robert C. Merton, and Zvi Bodie. 2007. Contingent claims approach to measuring and managing sovereign credit risk. Journal of Investment Management 5: 5–28. [Google Scholar] [CrossRef]
- Grinols, Earl. 1976. International Debt Rescheduling and Discrimination Using Financial Variables. Washington, DC: U.S. Treasury Department. [Google Scholar]
- Groba, Jonatan, Juan A. Lafuente, and Pedro Serrano. 2013. The impact of distressed economies on the EU sovereign market. Journal of Banking & Finance 37: 2520–32. [Google Scholar] [CrossRef]
- Gür, Timur H. 2001. A country risk assessment model and the Asian crisis. Central Bank Review 1: 49–68. [Google Scholar]
- Hayes, Nicholas L. 1998. Country risk revisited. Journal of Lending and Credit Risk Management 80: 61–75. [Google Scholar]
- Hu, Yen-Ting, Rudiger Kiesel, and William Perraudin. 2002. The estimation of transition matrices for sovereign credit ratings. Journal of Banking & Finance 26: 1383–406. [Google Scholar] [CrossRef] [Green Version]
- Huang, Andrew, and Taresh Sethi. 2017. Predicting sovereign default. In Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR 70. [Google Scholar]
- Hughes, Maximilian, and Ralf Werner. 2016. Choosing Markovian credit migration matrices by nonlinear optimization. Risks 4: 31. [Google Scholar] [CrossRef] [Green Version]
- Israel, Robert B., Jeffrey S. Rosenthal, and Jason Z. Wei. 2001. Finding generators for Markov-chains via empirical transition matrices, with applications to credit ratings. Mathematical Finance 11: 245–65. [Google Scholar] [CrossRef]
- Jarrow, Robert A., David Lando, and Stuart M. Turnbull. 1997. A Markov model for the term structure of credit risk spreads. Review of Financial Studies 10: 481–523. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, Graciela, Saul Lizondo, and Carmen M. Reinhart. 1998. Leading indicators of currency crisis. IMF Staff Papers 45: 1–48. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, Graciela, and Pablo Vega-Garcia. 2016. Systemic and idiosyncratic sovereign debt crises. Journal of the European Economic Association 14: 80–114. [Google Scholar] [CrossRef] [Green Version]
- Kharas, Homi. 1984. The long-run creditworthiness of developing countries: Theory and practice. Quarterly Journal of Economics 99: 415–39. [Google Scholar] [CrossRef]
- Kiefer, Nicholas M., and C. Erik Larson. 2004. Testing simple Markov structures for credit rating transitions. In OCC Economics Working Paper 2004-3. Washington, DC: Office of the Comptroller of the Currency. [Google Scholar]
- Kleszcz, Klaudia, and Natalia Nehrebecka. 2020. Financial liability stress tests: An approach based on the use of a rating migration matrix. Central European Economic Journal 7: 12–32. [Google Scholar] [CrossRef]
- Krayenbuehl, Thomas E. 1985. Country Risk: Assessment and Monitoring. Cambridge: Woodhead-Faulkner. [Google Scholar] [CrossRef]
- Kreinin, Alexander, and Marina Sidelnikova. 2001. Regularization algorithms for transition matrices. Algo Research Quarterly 4: 23–40. [Google Scholar]
- Kristóf, Tamás, and Miklós Virág. 2017. Lifetime probability of default modeling for Hungarian corporate debt instruments. In ECMS 2017: 31st European Conference on Modelling and Simulation. Edited by Zoltayné Paprika, Zita Péter Horák, Kata Váradi, Tamás Péter Zwierczyk, Ágnes Vidovics Dancs and János Péter Rádics. Nottingham: European Council for Modelling and Simulation, pp. 41–46. [Google Scholar] [CrossRef]
- Kristóf, Tamás, and Miklós Virág. 2020. A comprehensive review of corporate bankruptcy prediction in Hungary. Journal of Risk and Financial Management 13: 35. [Google Scholar] [CrossRef] [Green Version]
- Lando, David. 2004. Credit Risk Modeling: Theory and Applications. Princeton and Oxford: Princeton University Press. [Google Scholar]
- Lando, David, and Torben M. Skodeberg. 2002. Analyzing rating transactions and rating drift with continuous observations. Journal of Banking & Finance 26: 423–44. [Google Scholar] [CrossRef] [Green Version]
- Lanoie, Paul, and Sylvain Lemarbre. 1996. Three approaches to predict the timing and quantity of LDC debt rescheduling. Applied Economics 28: 241–46. [Google Scholar] [CrossRef]
- Lee, Hong-Tau, Sheu-Hua Chen, and He-Yau Kang. 2004. A study of generalized reduced gradient method with different search directions. Journal of Quantitative Management 1: 25–28. [Google Scholar]
- Liu, Feng, Egon Kalotay, and Stefan Trück. 2018. Assessing sovereign default risk: A bottom-up approach. Economic Modelling 70: 525–42. [Google Scholar] [CrossRef]
- Lloyd-Ellis, Huw, George W. McKenzie, and Steve H. Thomas. 1990. Predicting the quantity of LDC debt rescheduling. Economics Letters 32: 67–73. [Google Scholar] [CrossRef]
- Lucia, Alessi, Pierluigi Balduzzi, and Roberto Savona. 2019. Anatomy of a sovereign debt crisis: Machine learning, real-time macro fundamentals, and CDS spreads. In Working Papers 2019-03. Brussels: Joint Research Centre, European Commission. [Google Scholar] [CrossRef]
- Manasse, Paolo, Nouriel Roubini, and Axel Schimmelpfennig. 2003. Predicting sovereign debt crises. In IMF Working Paper 03/221. Washington, DC: International Monetary Fund. [Google Scholar] [CrossRef]
- Manasse, Paolo, and Nouriel Roubini. 2009. “Rules of thumb” for sovereign debt crises. Journal of International Economics 78: 192–205. [Google Scholar] [CrossRef]
- Mayo, Alice L., and Anthony G. Barett. 1978. An early warning model for assessing country risk. In Financing and Risk in Developing Countries: Proceedings of a Symphosium on Developing Countries’ Debt. Edited by Stephen H. Goodman. Washington: U.S. Eximbank, pp. 81–87. [Google Scholar]
- McNeil, Alexander J., Rüdiger Frey, and Paul Embrecht. 2015. Quantitative Risk Management. Concepts, Techniques, and Tools. Princeton and Oxford: Princeton University Press. [Google Scholar] [CrossRef]
- Merton, Robert C. 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29: 449–70. [Google Scholar] [CrossRef]
- Monari, Fred Nyamitago, Joseph Kyalo Mungatu, George Otieno Orwa, and Romanus Odhiambo Otieno. 2020. Comparison between weighted adjustment, diagonal adjustment, quasi optimization and Gibbs sampler methods in deriving the generator matrix of an $8\times 8$ credit transition matrix. International Journal of Statistics and Applied Mathematics 5: 1–6. [Google Scholar]
- Moody’s. 2020. Rating Symbols and Definitions. New York: Moody’s Investors Service. [Google Scholar]
- Nyman, Rickard, and Paul Ormerod. 2018. Understanding the Great Recession using machine learning algorithms. In Bank of England/Federal Reserve conference on “Modelling with Big Data and Machine Learning”. London: Bank of England. [Google Scholar]
- Oh, Sung Joul, Jae Wook Song, Woojin Chang, and Minhyuk Lee. 2019. Estimation and forecasting of sovereign credit rating migration based on regime switching Markov-chain. IEEE Access 7: 115317–330. [Google Scholar] [CrossRef]
- Oral, Muhittin, Ossama Kettani, Jean-Claude Cosset, and Mohamed Daouas. 1992. An estimation and model for country risk rating. International Journal of Forecasting 8: 583–93. [Google Scholar] [CrossRef]
- Pan, Jun, and Kenneth J. Singleton. 2008. Default and recovery implicit in the term structure of sovereign CDS spreads. Journal of Finance 63: 2345–84. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, Puneet, Dharmaraja Selvamuthu, and Viswanathan Arunachalam. 2017. Markov regenerative credit rating model. Journal of Risk Finance 18: 311–25. [Google Scholar] [CrossRef]
- Perilioglu, Ahmet, and Sukriye Tuysuz. 2015. Conditional sovereign transition probability matrices. Procedia Economics and Finance 30: 643–55. [Google Scholar] [CrossRef] [Green Version]
- Pescatori, Andrea, and Amadou N. R. Sy. 2007. Are debt crises adequately defined? IMF Staff Papers 54: 306–37. [Google Scholar] [CrossRef]
- Pisula, Tomasz. 2017. Measuring sovereign credit risk in EU countries using an ensemble of classifiers approach. Paper presented at the Modern Science, Finance, Economics & Tourism Conference Proceedings Vol III, 4th International Multidisciplinary Scientific Conference on Social Sciences & Arts SGEM 2017, SWS International Scientific Conferences, Albena, Bulgaria, August 24–30. [Google Scholar]
- Ramcharran, Harri. 1999. Foreign direct investment and country risk: Further empirical evidence. Global Economic Review 28: 49–59. [Google Scholar] [CrossRef]
- Reinhart, Carmen M. 2002. Default, currency crises and sovereign credit ratings. The World Bank Economic Review 16: 151–70. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, Carmen M., Vincent Reinhart, and Christoph Trebesch. 2016. Global cycles: Capital flows, commodities, and sovereign defaults, 1815–2015. American Economic Review 106: 574–80. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, Carmen M., and Kenneth S. Rogoff. 2011. From financial crash to debt crisis. American Economic Review 101: 1676–706. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, Iván M., Krishnan Dandapani, and Edward R. Lawrence. 2019. Measuring sovereign risk: Are CDS spreads better than sovereign credit ratings? Financial Management 48: 229–56. [Google Scholar] [CrossRef]
- S&P. 2020. Default, Transition, and Recovery. 2019 Annual Sovereign Default and Rating Transition Study. New York: S&P Global Ratings. [Google Scholar]
- Saini, Krishan G., and Philip S. Bates. 1978. Statistical techniques for determining debt-servicing capacity for developing countries: Analytical review of the literature and further empirical results. In Federal Reserve Bank of New York Research Paper No. 7818. New York: Federal Reserve Bank of New York. [Google Scholar]
- Sargen, Nicholas. 1977. Economic indicators and country risk appraisal. In FRBSF Economic Letter/Issue March. San Francisco: Federal Reserve Bank of San Francisco, pp. 19–35. [Google Scholar]
- Savona, Roberto, and Marika Vezzoli. 2015. Fitting and forecasting sovereign defaults using multiple risk signals. Oxford Bulletin of Economics and Statistics 77: 66–92. [Google Scholar] [CrossRef] [Green Version]
- Seetharaman, Arumugam, Vikas Kumar Sahu, A. S. Saravanan, John Rudolph Raj, and Indu Niranjan. 2017. The impact of risk management in credit rating agencies. Risks 5: 52. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, Alan C. 1999. Multinational Financial Management. London: Prentice Hall. [Google Scholar]
- Siekelova, Anna, Mária Kováčová, George Lăzăroiu, and Katarína Valášková. 2019. Prediction of payment discipline using the Markov-chain–Case studies of Visegrad Four. Journal of International Studies 12: 270–84. [Google Scholar] [CrossRef] [PubMed]
- Sommerville, R. Andrew, and R. J. Taffler. 1995. Banker judgement versus formal forecasting models: The case of country risk assessment. Journal of Banking & Finance 19: 281–97. [Google Scholar] [CrossRef]
- Spahn, Peter. 2017. Central Bank support for government debt in a currency union. Journal of Self-Governance and Management Economics 5: 7–34. [Google Scholar] [CrossRef]
- Sturzenegger, Federico, and Jeromin Zettelmeyer. 2006. Debt Defaults and Lessons from a Decade of Crises. Cambridge and London: MIT Press. [Google Scholar] [CrossRef]
- Szetela, Beata, Grzegorz Mentel, and Jacek Brożyna. 2016. In search of insolvency among European countries. Economic Research-Ekonomska Istraživanja 29: 839–56. [Google Scholar] [CrossRef]
- Szetela, Beata, Grzegorz Mentel, and Jacek Brożyna. 2019. Modelling European sovereign default probabilities with copulas. Economic Research-Ekonomska Istraživanja 32: 1716–26. [Google Scholar] [CrossRef] [Green Version]
- Taffler, Richard, and Boualem Abassi. 1984. Country risk: A model for predicting debt servicing problems in developing countries. Journal of the Royal Statistical Society 147: 541–68. [Google Scholar] [CrossRef]
- Timurlenk, Özden, and Kubilay Kaptan. 2012. Country risk. Procedia–Social and Behavioral Sciences 62: 1089–94. [Google Scholar] [CrossRef] [Green Version]
- Usher, Dan. 1965. Political risk. Economic Development and Cultural Change 13: 453–62. [Google Scholar] [CrossRef]
- van Ravenzwaaij, Don, Pete Cassey, and Scott D. Brown. 2018. A simple introduction to Markov Chain Monte-Carlo sampling. Psychonomic Bulletin & Review 25: 143–54. [Google Scholar] [CrossRef] [Green Version]
- van Rijckeghem, Caroline, and Beatrice Weder di Mauro. 2009. Political institutions and debt crises. Public Choice 138: 387–408. [Google Scholar] [CrossRef] [Green Version]
- Wei, Jason Z. 2003. A multi-factor, credit migration model for sovereign and corporate debts. Journal of International Money and Finance 22: 709–35. [Google Scholar] [CrossRef]
- Weissova, Ivana, Boris Kollar, and Anna Siekelova. 2015. Rating as a useful tool for credit risk measurement. Procedia-Economics and Finance 26: 278–85. [Google Scholar] [CrossRef] [Green Version]
- Wijayanti, Rani, and Sagita Rachmanira. 2020. Early warning system for government debt crisis in developing countries. Journal of Central Banking Theory and Practice, 103–24. [Google Scholar] [CrossRef]
- Wozabal, David, and Ronald Hochreiter. 2012. A coupled Markov chain approach to credit risk modeling. Journal of Economic Dynamics and Control 36: 403–15. [Google Scholar] [CrossRef] [Green Version]
- Xing, Haipeng, Ke Wang, Zhi Li, and Ying Chen. 2020. Statistical surveillance of structural breaks in credit rating dynamics. Entropy 22: 1072. [Google Scholar] [CrossRef]
- Yim, Juliana, and Heather Mitchell. 2005. Comparison of country risk models: Hybrid neural networks, logit models, discriminant analysis and cluster techniques. Expert Systems with Applications 28: 137–48. [Google Scholar] [CrossRef]
- Yu, Feng-Hui, Jiejun Lu, Jia-Wen Gu, and Wai-Ki Ching. 2019. Modeling credit risk with hidden Markov default intensity. Computational Economics 54: 1213–29. [Google Scholar] [CrossRef]
- Zhang, Liping. 2019. Convex quadratic optimization based on generator matrix in credit risk transfer process. International Journal of Mathematics Trends and Technology 65: 92–106. [Google Scholar] [CrossRef]
- Zhou, Ming Matt, and Man Cang Wang. 2019. Predictive analysis of fiscal crises with deep learning time series model. International Journal of Economics and Finance 11: 21–29. [Google Scholar] [CrossRef]
AAA | AA | A | BBB | BB | B | CCC/C | Not Rated | Default | |
---|---|---|---|---|---|---|---|---|---|
AAA | 96.65 | 3.26 | 0.01 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 |
AA | 2.42 | 93.59 | 2.86 | 0.32 | 0.28 | 0.04 | 0.00 | 0.48 | 0.00 |
A | 0.00 | 3.87 | 90.53 | 4.99 | 0.39 | 0.00 | 0.00 | 0.23 | 0.00 |
BBB | 0.00 | 0.00 | 5.22 | 89.70 | 4.46 | 0.45 | 0.15 | 0.02 | 0.00 |
BB | 0.00 | 0.00 | 0.00 | 6.38 | 86.40 | 6.03 | 0.57 | 0.14 | 0.47 |
B | 0.00 | 0.00 | 0.00 | 0.02 | 4.99 | 88.28 | 2.90 | 1.11 | 2.70 |
CCC/C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 31.01 | 29.66 | 0.00 | 39.33 |
AAA | AA | A | BBB | BB | B | CCC/C | Default | |
---|---|---|---|---|---|---|---|---|
AAA | 96.66 | 3.26 | 0.01 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 |
AA | 2.43 | 94.05 | 2.87 | 0.32 | 0.28 | 0.04 | 0.00 | 0.00 |
A | 0.00 | 3.88 | 90.73 | 5.00 | 0.39 | 0.00 | 0.00 | 0.00 |
BBB | 0.00 | 0.00 | 5.22 | 89.72 | 4.46 | 0.45 | 0.15 | 0.00 |
BB | 0.00 | 0.00 | 0.00 | 6.39 | 86.53 | 6.04 | 0.57 | 0.47 |
B | 0.00 | 0.00 | 0.00 | 0.02 | 5.05 | 89.27 | 2.93 | 2.73 |
CCC/C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 31.01 | 29.66 | 39.33 |
Default | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
AAA | AA | A | BBB | BB | B | CCC/C | Default | |
---|---|---|---|---|---|---|---|---|
AAA | −3.47 | 3.40 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 |
AA | 2.55 | −6.24 | 3.11 | 0.25 | 0.30 | 0.03 | 0.00 | 0.00 |
A | 0.00 | 4.19 | −10.00 | 5.51 | 0.29 | 0.00 | 0.00 | 0.00 |
BBB | 0.00 | 0.00 | 5.75 | −11.29 | 5.01 | 0.28 | 0.24 | 0.00 |
BB | 0.00 | 0.01 | 0.00 | 7.22 | −14.95 | 6.66 | 0.85 | 0.22 |
B | 0.00 | 0.00 | 0.01 | 0.00 | 5.76 | −12.76 | 5.41 | 1.58 |
CCC/C | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 57.59 | −124.88 | 67.19 |
Default | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
α | β | |
---|---|---|
AAA | 1.0000 | 1.0000 |
AA | 1.0000 | 1.0000 |
A | 0.6635 | 2.4633 |
BBB | 0.6043 | 2.0998 |
BB | 0.3058 | 0.4503 |
B | 5.9901 | 1.0152 |
CCC/C | 0.7299 | 1.6020 |
Sovereign PD Estimation | S&P Long-Term Empirical Default Rates | Stress Factor | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Year1 | Year2 | Year3 | Year4 | Year5 | Year1 | Year2 | Year3 | Year4 | Year5 | Year3 | |
AAA | 0.00% | 0.00% | 0.01% | 0.02% | 0.05% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | n.a. |
AA | 0.00% | 0.02% | 0.08% | 0.21% | 0.41% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | n.a. |
A | 0.00% | 0.15% | 0.84% | 1.90% | 3.00% | 0.00% | 0.00% | 0.26% | 0.81% | 1.38% | 3.23 |
BBB | 0.07% | 0.80% | 2.18% | 3.79% | 5.39% | 0.00% | 0.47% | 1.22% | 1.76% | 2.32% | 1.79 |
BB | 0.47% | 1.76% | 3.32% | 4.97% | 6.65% | 0.41% | 1.47% | 2.14% | 2.84% | 4.07% | 1.55 |
B | 2.70% | 7.37% | 11.43% | 15.04% | 18.33% | 2.26% | 5.62% | 8.63% | 11.45% | 14.03% | 1.32 |
CCC/C | 38.86% | 56.36% | 58.67% | 60.45% | 62.03% | 38.64% | 45.72% | 53.86% | 56.57% | 59.47% | 1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristóf, T. Sovereign Default Forecasting in the Era of the COVID-19 Crisis. J. Risk Financial Manag. 2021, 14, 494. https://doi.org/10.3390/jrfm14100494
Kristóf T. Sovereign Default Forecasting in the Era of the COVID-19 Crisis. Journal of Risk and Financial Management. 2021; 14(10):494. https://doi.org/10.3390/jrfm14100494
Chicago/Turabian StyleKristóf, Tamás. 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis" Journal of Risk and Financial Management 14, no. 10: 494. https://doi.org/10.3390/jrfm14100494
APA StyleKristóf, T. (2021). Sovereign Default Forecasting in the Era of the COVID-19 Crisis. Journal of Risk and Financial Management, 14(10), 494. https://doi.org/10.3390/jrfm14100494