Forecasting Volatility and Tail Risk in Electricity Markets
Abstract
:1. Introduction
2. Model Specifications
3. Estimation and Inference
4. The Data
5. In-Sample Analysis
6. Out-of-Sample Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold. 2007. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics 89: 701–20. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2001. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96: 42–55. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2003. Modeling and forecasting realized volatility. Econometrica 71: 579–625. [Google Scholar] [CrossRef] [Green Version]
- Andersen, Torben G., Dobrislav Dobrev, and Ernst Schaumburg. 2012. Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics 169: 75–93. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, Ole E., Peter Reinhard Hansen, Asger Lunde, and Neil Shephard. 2008. Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica 76: 1481–536. [Google Scholar]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2002. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 253–80. [Google Scholar] [CrossRef]
- Bierbrauer, Michael, Christian Menn, Svetlozar T. Rachev, and Stefan Trück. 2007. Spot and derivative pricing in the EEX power market. Journal of Banking & Finance 31: 3462–85. [Google Scholar]
- Bowden, Nicholas, and James E. Payne. 2008. Short term forecasting of electricity prices for miso hubs: Evidence from arima-egarch models. Energy Economics 30: 3186–97. [Google Scholar] [CrossRef]
- Byström, Hans N. 2005. Extreme value theory and extremely large electricity price changes. International Review of Economics & Finance 14: 41–55. [Google Scholar]
- Chan, Kam Fong, and Philip Gray. 2006. Using extreme value theory to measure value-at-risk for daily electricity spot prices. International Journal of forecasting 22: 283–300. [Google Scholar] [CrossRef]
- Chan, Kam Fong, Philip Gray, and Bart van Campen. 2008. A new approach to characterizing and forecasting electricity price volatility. International Journal of Forecasting 24: 728–43. [Google Scholar] [CrossRef]
- Corsi, Fulvio. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7: 174–96. [Google Scholar] [CrossRef]
- Escribano, Alvaro, J. Ignacio Peña, and Pablo Villaplana. 2011. Modelling electricity prices: International evidence. Oxford Bulletin of Economics and Statistics 73: 622–50. [Google Scholar] [CrossRef] [Green Version]
- Fanone, Enzo, Andrea Gamba, and Marcel Prokopczuk. 2013. The case of negative day-ahead electricity prices. Energy Economics 35: 22–34. [Google Scholar] [CrossRef]
- Fissler, Tobias, and Johanna F. Ziegel. 2016. Higher order elicitability and osband’s principle. Annals of Statistics 44: 1680–707. [Google Scholar] [CrossRef]
- Fissler, Tobias, Johanna F. Ziegel, and Tilmann Gneiting. 2016. Expected shortfall is jointly elicitable with value at risk-implications for backtesting. arXiv arXiv:1507.00244. [Google Scholar]
- Frömmel, Michael, Xing Han, and Stepan Kratochvil. 2014. Modeling the daily electricity price volatility with realized measures. Energy Economics 44: 492–502. [Google Scholar] [CrossRef]
- Garcia, Reinaldo C., Javier Contreras, Marco Van Akkeren, and João Batista C. Garcia. 2005. A garch forecasting model to predict day-ahead electricity prices. IEEE Transactions on Power Systems 20: 867–74. [Google Scholar] [CrossRef]
- Gneiting, Tilmann. 2011. Making and evaluating point forecasts. Journal of the American Statistical Association 106: 746–62. [Google Scholar] [CrossRef] [Green Version]
- González-Rivera, Gloria, Tae-Hwy Lee, and Santosh Mishra. 2004. Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting 20: 629–45. [Google Scholar] [CrossRef]
- Hansen, Peter Reinhard, and Zhuo Huang. 2016. Exponential garch modeling with realized measures of volatility. Journal of Business & Economic Statistics 34: 269–87. [Google Scholar]
- Hansen, Peter Reinhard, Zhuo Huang, and Howard Howan Shek. 2012. Realized garch: A joint model for returns and realized measures of volatility. Journal of Applied Econometrics 27: 877–906. [Google Scholar] [CrossRef]
- Hansen, Peter R., Asger Lunde, and James M. Nason. 2011. The model confidence set. Econometrica 79: 453–97. [Google Scholar] [CrossRef] [Green Version]
- Haugom, Erik, and Carl J. Ullrich. 2012. Forecasting spot price volatility using the short-term forward curve. Energy Economics 34: 1826–33. [Google Scholar] [CrossRef]
- Haugom, Erik, Sjur Westgaard, Per Bjarte Solibakke, and Gudbrand Lien. 2011. Realized volatility and the influence of market measures on predictability: Analysis of nord pool forward electricity data. Energy Economics 33: 1206–15. [Google Scholar] [CrossRef]
- Hickey, Emily, David G. Loomis, and Hassan Mohammadi. 2012. Forecasting hourly electricity prices using armax–garch models: An application to miso hubs. Energy Economics 34: 307–15. [Google Scholar] [CrossRef]
- Higgs, Helen, and Andrew Worthington. 2008. Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The australian wholesale spot electricity market. Energy Economics 30: 3172–85. [Google Scholar] [CrossRef]
- Knittel, Christopher R., and Michael R. Roberts. 2005. An empirical examination of restructured electricity prices. Energy Economics 27: 791–817. [Google Scholar] [CrossRef]
- Koenker, Roger. 2005. Quantile Regression. In Econometric Society Monographs. Cambridge: Cambridge University Press. [Google Scholar]
- Li, Yu-Ning, Yi Zhang, and Caiya Zhang. 2019. Statistical inference for measurement equation selection in the log-realgarch model. Econometric Theory 35: 943–77. [Google Scholar] [CrossRef]
- Liu, Heping, and Jing Shi. 2013. Applying arma–garch approaches to forecasting short-term electricity prices. Energy Economics 37: 152–66. [Google Scholar] [CrossRef]
- Liu, Lily Y., Andrew J. Patton, and Kevin Sheppard. 2015. Does anything beat 5-min rv? a comparison of realized measures across multiple asset classes. Journal of Econometrics 187: 293–311. [Google Scholar] [CrossRef] [Green Version]
- Patton, Andrew, Dimitris N. Politis, and Halbert White. 2009. Correction to “Automatic block-length selection for the dependent bootstrap” by D. Politis and H. White. Econometric Reviews 28: 372–75. [Google Scholar] [CrossRef]
- Patton, Andrew J. 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160: 246–56. [Google Scholar] [CrossRef] [Green Version]
- Patton, Andrew J., Johanna F. Ziegel, and Rui Chen. 2019. Dynamic semiparametric models for expected shortfall (and value-at-risk). Journal of Econometrics 211: 388–413. [Google Scholar] [CrossRef] [Green Version]
- Qu, Hui, Qingling Duan, and Mengyi Niu. 2018. Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets. Energy Economics 74: 767–76. [Google Scholar] [CrossRef]
- Weber, Stefan. 2006. Distribution-invariant risk measures, information, and dynamic consistency. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 16: 419–41. [Google Scholar] [CrossRef]
NSW | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | mean | sd | min | Q | median | Q | max | skew | kurt | |
Raw 30-min intradaily prices | 140,256 | 62.557 | 107.055 | −89.210 | 39.368 | 52.870 | 72.850 | 14,000 | 88.971 | 10,006.338 |
Positive 30-min intradaily prices | 139,824 | 62.559 | 107.099 | 1.530 | 39.390 | 52.870 | 72.850 | 14,000 | 89.107 | 10,020.409 |
Daily close-to-close log-returns | 2913 | 0.000 | 0.216 | −1.695 | −0.074 | 0.000 | 0.073 | 1.251 | −0.181 | 8.363 |
30-min Realized Volatility | 2913 | 1.187 | 2.688 | 0.017 | 0.156 | 0.440 | 1.276 | 53.502 | 9.544 | 133.944 |
QLD | ||||||||||
n | mean | sd | min | Q | median | Q | max | skew | kurt | |
Raw 30-min intradaily prices | 140,256 | 66.314 | 190.754 | −859.850 | 37.950 | 53.010 | 69.140 | 13,882.77 | 39.978 | 2179.302 |
Positive 30-min intradaily prices | 135,024 | 66.698 | 192.134 | 0.170 | 38.310 | 53.030 | 69.020 | 13,882.77 | 40.298 | 2192.214 |
Daily close-to-close log-returns | 2813 | 0.000 | 0.258 | −2.000 | −0.081 | −0.002 | 0.089 | 2.002 | -0.227 | 12.238 |
30-min Realized Volatility | 2813 | 3.558 | 10.313 | 0.021 | 0.245 | 0.718 | 2.102 | 151.031 | 6.389 | 55.106 |
VIC | ||||||||||
n | mean | sd | min | Q | median | Q | max | skew | kurt | |
Raw 30-min intradaily prices | 140,256 | 64.012 | 175.75 | −554.62 | 34.860 | 49.830 | 79.730 | 14,500 | 63.019 | 4603.573 |
Positive 30-min intradaily prices | 133,824 | 65.056 | 179.333 | 0.150 | 35.760 | 50.310 | 80.610 | 14,500 | 62.123 | 4448.796 |
Daily close-to-close log-returns | 2788 | 0.000 | 0.314 | −2.118 | −0.130 | 0.001 | 0.127 | 1.837 | −0.140 | 4.774 |
30-min Realized Volatility | 2788 | 1.858 | 3.921 | 0.022 | 0.248 | 0.746 | 1.865 | 62.105 | 6.632 | 60.529 |
GARCH(1,1) | RG(RV) | RG(RK) | RG(MRV) | REG(RV) | REG(RK) | REG(MRV) | REG(RV,RK) | REG(RV,MRV) | REG(RK,MRV) | REG(RV,RK,MRV) | |
---|---|---|---|---|---|---|---|---|---|---|---|
0.000 | −0.069 | −0.069 | −0.058 | −0.061 | −0.061 | −0.054 | −0.060 | −0.063 | −0.063 | −0.062 | |
0.863 | 0.981 | 0.981 | 0.984 | 0.987 | 0.986 | 0.988 | 0.987 | 0.986 | 0.986 | 0.986 | |
0.137 | 0.320 | 0.321 | 0.283 | 0.234 | 0.235 | 0.205 | 0.688 | 0.220 | 0.198 | 0.669 | |
– | – | – | – | – | – | – | −0.457 | 0.018 | 0.039 | −0.449 | |
– | – | – | – | – | – | – | – | – | – | 0.014 | |
– | 0.142 | 0.144 | 0.148 | 0.200 | 0.202 | 0.205 | 0.202 | 0.197 | 0.199 | 0.199 | |
– | 0.057 | 0.058 | 0.058 | 0.049 | 0.049 | 0.046 | 0.047 | 0.050 | 0.050 | 0.048 | |
– | 2.362 | 2.355 | 2.277 | 2.476 | 2.471 | 2.403 | 2.477 | 2.486 | 2.480 | 2.486 | |
– | 0.864 | 0.864 | 0.862 | 0.873 | 0.874 | 0.873 | 0.872 | 0.876 | 0.876 | 0.875 | |
– | – | – | – | 0.210 | 0.213 | 0.218 | 0.211 | 0.209 | 0.212 | 0.210 | |
– | – | – | – | 0.026 | 0.025 | 0.024 | 0.025 | 0.026 | 0.025 | 0.025 | |
– | – | – | – | – | – | – | 2.472 | 2.426 | 2.424 | 2.482 | |
– | – | – | – | – | – | – | 0.872 | 0.877 | 0.878 | 0.874 | |
– | – | – | – | – | – | – | 0.213 | 0.217 | 0.218 | 0.212 | |
– | – | – | – | – | – | – | 0.024 | 0.023 | 0.023 | 0.024 | |
– | – | – | – | – | – | – | – | – | – | 2.427 | |
– | – | – | – | – | – | – | – | – | – | 0.876 | |
– | – | – | – | – | – | – | – | – | – | 0.218 | |
– | – | – | – | – | – | – | – | – | – | 0.022 | |
– | 0.740 | 0.740 | 0.812 | 0.724 | 0.723 | 0.794 | 0.724 | 0.724 | 0.723 | 0.723 | |
– | – | – | – | – | – | – | 0.722 | 0.792 | 0.793 | 0.722 | |
– | – | – | – | – | – | – | – | – | – | 0.792 | |
– | – | – | – | – | – | – | 0.998 | 0.963 | 0.962 | 0.998 | |
– | – | – | – | – | – | – | – | – | – | 0.963 | |
– | – | – | – | – | – | – | – | – | – | 0.962 | |
5.370 | 3.766 | 3.731 | 3.686 | 4.289 | 4.258 | 4.225 | 4.330 | 4.302 | 4.269 | 4.341 | |
1643.532 | 1591.066 | 1588.091 | 1584.072 | 1657.235 | 1655.619 | 1655.049 | 1659.573 | 1656.897 | 1655.252 | 1659.227 |
GARCH(1,1) | RG(RV) | RG(RK) | RG(MRV) | REG(RV) | REG(RK) | REG(MRV) | REG(RV,RK) | REG(RV,MRV) | REG(RK,MRV) | REG(RV,RK,MRV) | |
---|---|---|---|---|---|---|---|---|---|---|---|
0.002 | −0.276 | −0.273 | −0.277 | −0.319 | −0.313 | −0.336 | −0.318 | −0.301 | −0.299 | −0.297 | |
0.669 | 0.910 | 0.911 | 0.906 | 0.904 | 0.906 | 0.897 | 0.904 | 0.910 | 0.910 | 0.912 | |
0.331 | 0.364 | 0.362 | 0.338 | 0.314 | 0.310 | 0.297 | 0.955 | 0.628 | 0.581 | 1.255 | |
– | – | – | – | – | – | – | −0.642 | −0.316 | −0.271 | −0.628 | |
– | – | – | – | – | – | – | – | – | – | −0.316 | |
– | 0.184 | 0.185 | 0.191 | 0.196 | 0.196 | 0.194 | 0.196 | 0.199 | 0.200 | 0.199 | |
– | 0.070 | 0.070 | 0.066 | 0.080 | 0.080 | 0.088 | 0.078 | 0.073 | 0.074 | 0.071 | |
– | 2.886 | 2.878 | 2.817 | 3.103 | 3.090 | 3.041 | 3.096 | 3.104 | 3.100 | 3.094 | |
– | 1.011 | 1.012 | 1.035 | 1.024 | 1.021 | 1.028 | 1.021 | 1.019 | 1.020 | 1.015 | |
– | – | – | – | 0.245 | 0.245 | 0.256 | 0.245 | 0.245 | 0.245 | 0.246 | |
– | – | – | – | 0.031 | 0.032 | 0.019 | 0.031 | 0.029 | 0.030 | 0.029 | |
– | – | – | – | – | – | – | 3.086 | 3.054 | 3.059 | 3.085 | |
– | – | – | – | – | – | – | 1.018 | 1.019 | 1.022 | 1.013 | |
– | – | – | – | – | – | – | 0.246 | 0.256 | 0.255 | 0.246 | |
– | – | – | – | – | – | – | 0.031 | 0.014 | 0.015 | 0.029 | |
– | – | – | – | – | – | – | – | – | – | 3.044 | |
– | – | – | – | – | – | – | – | – | – | 1.015 | |
– | – | – | – | – | – | – | – | – | – | 0.256 | |
– | – | – | – | – | – | – | – | – | – | 0.014 | |
– | 1.499 | 1.497 | 1.689 | 1.488 | 1.488 | 1.675 | 1.489 | 1.486 | 1.485 | 1.486 | |
– | – | – | – | – | – | – | 1.488 | 1.656 | 1.657 | 1.484 | |
– | – | – | – | – | – | – | – | – | – | 1.657 | |
– | – | – | – | – | – | – | 0.999 | 0.982 | 0.981 | 0.999 | |
– | – | – | – | – | – | – | – | – | – | 0.982 | |
– | – | – | – | – | – | – | – | – | – | 0.981 | |
4.041 | 3.015 | 3.001 | 2.850 | 3.497 | 3.487 | 3.405 | 3.509 | 3.555 | 3.533 | 3.567 | |
995.431 | 922.376 | 920.371 | 899.299 | 996.507 | 995.206 | 987.042 | 998.823 | 1004.208 | 1000.576 | 1006.403 |
GARCH(1,1) | RG(RV) | RG(RK) | RG(MRV) | REG(RV) | REG(RK) | REG(MRV) | REG(RV,RK) | REG(RV,MRV) | REG(RK,MRV) | REG(RV,RK,MRV) | |
---|---|---|---|---|---|---|---|---|---|---|---|
0.000 | −0.035 | −0.034 | −0.026 | −0.038 | −0.039 | −0.028 | −0.039 | −0.040 | −0.040 | −0.041 | |
0.874 | 0.987 | 0.987 | 0.990 | 0.987 | 0.987 | 0.990 | 0.987 | 0.986 | 0.986 | 0.986 | |
0.126 | 0.208 | 0.207 | 0.173 | 0.201 | 0.202 | 0.165 | 0.404 | 0.311 | 0.289 | 0.538 | |
– | – | – | – | – | – | – | −0.201 | −0.106 | −0.085 | −0.222 | |
– | – | – | – | – | – | – | – | – | – | −0.110 | |
– | 0.095 | 0.097 | 0.097 | 0.106 | 0.105 | 0.107 | 0.106 | 0.107 | 0.106 | 0.107 | |
– | 0.082 | 0.082 | 0.079 | 0.029 | 0.031 | 0.024 | 0.030 | 0.030 | 0.031 | 0.030 | |
– | 2.325 | 2.319 | 2.203 | 2.359 | 2.356 | 2.239 | 2.355 | 2.358 | 2.357 | 2.353 | |
– | 1.011 | 1.009 | 1.008 | 1.011 | 1.010 | 1.008 | 1.009 | 1.009 | 1.009 | 1.006 | |
– | – | – | – | 0.126 | 0.128 | 0.129 | 0.126 | 0.127 | 0.129 | 0.127 | |
– | – | – | – | 0.076 | 0.076 | 0.073 | 0.075 | 0.075 | 0.075 | 0.075 | |
– | – | – | – | – | – | – | 2.349 | 2.224 | 2.229 | 2.347 | |
– | – | – | – | – | – | – | 1.006 | 0.994 | 0.996 | 1.004 | |
– | – | – | – | – | – | – | 0.128 | 0.131 | 0.131 | 0.129 | |
– | – | – | – | – | – | – | 0.075 | 0.072 | 0.072 | 0.074 | |
– | – | – | – | – | – | – | – | – | – | 2.220 | |
– | – | – | – | – | – | – | – | – | – | 0.991 | |
– | – | – | – | – | – | – | – | – | – | 0.131 | |
– | – | – | – | – | – | – | – | – | – | 0.071 | |
– | 0.885 | 0.887 | 0.976 | 0.885 | 0.887 | 0.976 | 0.885 | 0.886 | 0.888 | 0.886 | |
– | – | – | – | – | – | – | 0.887 | 0.979 | 0.980 | 0.887 | |
– | – | – | – | – | – | – | – | – | – | 0.979 | |
– | – | – | – | – | – | – | 0.998 | 0.965 | 0.964 | 0.998 | |
– | – | – | – | – | – | – | – | – | – | 0.965 | |
– | – | – | – | – | – | – | – | – | – | 0.964 | |
5.098 | 4.176 | 4.157 | 4.058 | 4.448 | 4.441 | 4.312 | 4.473 | 4.464 | 4.448 | 4.488 | |
23.397 | 36.249 | 34.943 | 21.483 | 54.123 | 53.602 | 40.085 | 55.446 | 57.727 | 56.104 | 59.150 |
NSW | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RV 30 min | RV 2 h | RV 6 h | |||||||||
QLIKE | MSE | MAE | QLIKE | MSE | MAE | QLIKE | MSE | MAE | |||
GARCH(1,1) | 37.436 | 9.780 | 1.349 | 28.219 | 2.153 | 0.936 | 18.741 | 1.902 | 0.673 | ||
RG(RV) | 21.209 | 9.706 | 1.338 | 15.163 | 2.113 | 0.926 | 9.718 | 1.880 | 0.665 | ||
RG(RK) | 21.089 | 9.704 | 1.337 | 15.039 | 2.112 | 0.925 | 9.627 | 1.879 | 0.665 | ||
RG(MRV) | 19.637 | 9.675 | 1.333 | 14.087 | 2.103 | 0.921 | 8.936 | 1.872 | 0.661 | ||
REG(RV) | 24.369 | 9.747 | 1.345 | 17.995 | 2.134 | 0.933 | 11.668 | 1.893 | 0.670 | ||
REG(RK) | 24.319 | 9.746 | 1.345 | 17.936 | 2.134 | 0.933 | 11.623 | 1.892 | 0.670 | ||
REG(MRV) | 23.237 | 9.731 | 1.343 | 17.219 | 2.130 | 0.931 | 11.098 | 1.889 | 0.668 | ||
REG(RV,RK) | 24.445 | 9.749 | 1.345 | 18.112 | 2.136 | 0.933 | 11.761 | 1.894 | 0.671 | ||
REG(RV,MRV) | 24.573 | 9.749 | 1.346 | 18.129 | 2.135 | 0.933 | 11.768 | 1.894 | 0.671 | ||
REG(RK,MRV) | 24.417 | 9.747 | 1.345 | 17.996 | 2.134 | 0.933 | 11.665 | 1.893 | 0.670 | ||
REG(RV,RK,MRV) | 24.661 | 9.751 | 1.346 | 18.243 | 2.136 | 0.934 | 11.854 | 1.894 | 0.671 | ||
QLD | |||||||||||
RV 30 min | RV 2 h | RV 6 h | |||||||||
QLIKE | MSE | MAE | QLIKE | MSE | MAE | QLIKE | MSE | MAE | |||
GARCH(1,1) | 49.133 | 11.313 | 1.556 | 32.334 | 4.062 | 0.998 | 24.867 | 4.524 | 0.834 | ||
RG(RV) | 22.080 | 11.168 | 1.532 | 13.859 | 3.978 | 0.974 | 9.934 | 4.442 | 0.813 | ||
RG(RK) | 21.985 | 11.167 | 1.532 | 13.767 | 3.977 | 0.973 | 9.881 | 4.441 | 0.813 | ||
RG(MRV) | 19.534 | 11.135 | 1.523 | 11.887 | 3.958 | 0.965 | 8.586 | 4.427 | 0.807 | ||
REG(RV) | 28.145 | 11.238 | 1.546 | 18.101 | 4.020 | 0.987 | 13.192 | 4.481 | 0.825 | ||
REG(RK) | 28.155 | 11.238 | 1.545 | 18.093 | 4.020 | 0.987 | 13.179 | 4.481 | 0.825 | ||
REG(MRV) | 27.310 | 11.233 | 1.543 | 17.183 | 4.015 | 0.985 | 12.670 | 4.479 | 0.823 | ||
REG(RV,RK) | 28.059 | 11.238 | 1.545 | 18.095 | 4.020 | 0.987 | 13.153 | 4.481 | 0.824 | ||
REG(RV,MRV) | 29.172 | 11.243 | 1.547 | 19.262 | 4.024 | 0.989 | 13.653 | 4.483 | 0.825 | ||
REG(RK,MRV) | 28.966 | 11.241 | 1.547 | 19.033 | 4.023 | 0.988 | 13.584 | 4.482 | 0.825 | ||
REG(RV,RK,MRV) | 29.160 | 11.243 | 1.547 | 19.304 | 4.024 | 0.989 | 13.628 | 4.483 | 0.825 | ||
VIC | |||||||||||
RV 30 min | RV 2 h | RV 6 h | |||||||||
QLIKE | MSE | MAE | QLIKE | MSE | MAE | QLIKE | MSE | MAE | |||
GARCH(1,1) | 28.051 | 28.570 | 2.532 | 20.956 | 13.423 | 1.789 | 11.038 | 6.806 | 0.951 | ||
RG(RV) | 15.714 | 28.238 | 2.481 | 11.087 | 13.176 | 1.739 | 5.457 | 6.686 | 0.911 | ||
RG(RK) | 15.818 | 28.236 | 2.481 | 11.129 | 13.173 | 1.739 | 5.506 | 6.684 | 0.911 | ||
RG(MRV) | 14.946 | 28.206 | 2.471 | 10.404 | 13.164 | 1.730 | 5.066 | 6.675 | 0.904 | ||
REG(RV) | 16.962 | 28.300 | 2.491 | 12.103 | 13.220 | 1.749 | 6.086 | 6.711 | 0.918 | ||
REG(RK) | 17.074 | 28.301 | 2.491 | 12.162 | 13.219 | 1.749 | 6.139 | 6.710 | 0.918 | ||
REG(MRV) | 16.099 | 28.276 | 2.483 | 11.359 | 13.214 | 1.741 | 5.620 | 6.703 | 0.913 | ||
REG(RV,RK) | 16.930 | 28.301 | 2.491 | 12.097 | 13.222 | 1.749 | 6.076 | 6.713 | 0.918 | ||
REG(RV,MRV) | 17.454 | 28.308 | 2.494 | 12.520 | 13.218 | 1.752 | 6.385 | 6.714 | 0.921 | ||
REG(RK,MRV) | 17.550 | 28.307 | 2.493 | 12.550 | 13.215 | 1.752 | 6.418 | 6.712 | 0.921 | ||
REG(RV,RK,MRV) | 17.424 | 28.311 | 2.494 | 12.528 | 13.222 | 1.752 | 6.372 | 6.716 | 0.921 |
NSW | ||||||||
---|---|---|---|---|---|---|---|---|
QL | FZ | QL | FZ | QL | FZ | |||
GARCH(1,1) | 20.366 | −0.912 | 11.260 | −0.797 | 5.286 | −0.630 | ||
RG(RV) | 22.130 | −0.786 | 12.954 | −0.605 | 6.380 | −0.362 | ||
RG(RK) | 22.185 | −0.781 | 13.037 | −0.597 | 6.454 | −0.350 | ||
RG(MRV) | 22.338 | −0.777 | 13.206 | −0.588 | 6.727 | −0.329 | ||
REG(RV) | 18.725 | −0.965 | 10.871 | −0.783 | 5.596 | −0.522 | ||
REG(RK) | 18.735 | −0.964 | 10.911 | −0.780 | 5.613 | −0.519 | ||
REG(MRV) | 18.862 | −0.958 | 11.062 | −0.771 | 5.663 | −0.511 | ||
REG(RV,RK) | 18.627 | −0.971 | 10.774 | −0.790 | 5.575 | −0.525 | ||
REG(RV,MRV) | 18.706 | −0.966 | 10.853 | −0.785 | 5.586 | −0.524 | ||
REG(RK,MRV) | 18.733 | −0.964 | 10.910 | −0.781 | 5.607 | −0.521 | ||
REG(RV,RK,MRV) | 18.620 | −0.971 | 10.777 | −0.791 | 5.569 | −0.527 | ||
QLD | ||||||||
QL | FZ | QL | FZ | QL | FZ | |||
GARCH | 15.427 | −1.015 | 8.793 | −0.860 | 4.552 | −0.597 | ||
RG(RV) | 17.524 | −0.853 | 10.866 | −0.628 | 5.584 | −0.350 | ||
RG(RK) | 17.552 | −0.851 | 10.909 | −0.624 | 5.605 | −0.347 | ||
RG(MRV) | 17.670 | −0.836 | 11.146 | −0.595 | 5.918 | −0.298 | ||
REG(RV) | 15.400 | −0.987 | 9.410 | −0.763 | 5.011 | −0.461 | ||
REG(RK) | 15.408 | −0.987 | 9.424 | −0.762 | 5.009 | −0.462 | ||
REG(MRV) | 15.358 | −0.986 | 9.523 | −0.754 | 5.053 | −0.454 | ||
REG(RV,RK) | 15.388 | −0.987 | 9.410 | −0.762 | 5.027 | −0.457 | ||
REG(RV,MRV) | 15.415 | −0.986 | 9.301 | −0.769 | 4.993 | −0.461 | ||
REG(RK,MRV) | 15.424 | −0.985 | 9.301 | −0.767 | 4.991 | −0.463 | ||
REG(RV,RK,MRV) | 15.405 | −0.985 | 9.301 | −0.767 | 5.009 | −0.456 | ||
VIC | ||||||||
QL | FZ | QL | FZ | QL | FZ | |||
GARCH | 28.343 | −0.299 | 16.870 | −0.118 | 8.699 | 0.163 | ||
RG(RV) | 28.262 | −0.342 | 17.208 | −0.150 | 8.856 | 0.089 | ||
RG(RK) | 28.315 | −0.340 | 17.227 | −0.149 | 8.867 | 0.090 | ||
RG(MRV) | 28.477 | −0.324 | 17.523 | −0.123 | 9.287 | 0.144 | ||
REG(RV) | 27.462 | −0.380 | 16.643 | −0.192 | 8.651 | 0.057 | ||
REG(RK) | 27.506 | −0.378 | 16.650 | −0.192 | 8.661 | 0.058 | ||
REG(MRV) | 27.653 | −0.363 | 16.890 | −0.168 | 8.964 | 0.102 | ||
REG(RV,RK) | 27.436 | −0.380 | 16.637 | −0.193 | 8.641 | 0.056 | ||
REG(RV,MRV) | 27.322 | −0.389 | 16.409 | −0.208 | 8.375 | 0.030 | ||
REG(RK,MRV) | 27.438 | −0.385 | 16.460 | −0.205 | 8.437 | 0.035 | ||
REG(RV,RK,MRV) | 27.280 | −0.391 | 16.391 | −0.209 | 8.347 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naimoli, A.; Storti, G. Forecasting Volatility and Tail Risk in Electricity Markets. J. Risk Financial Manag. 2021, 14, 294. https://doi.org/10.3390/jrfm14070294
Naimoli A, Storti G. Forecasting Volatility and Tail Risk in Electricity Markets. Journal of Risk and Financial Management. 2021; 14(7):294. https://doi.org/10.3390/jrfm14070294
Chicago/Turabian StyleNaimoli, Antonio, and Giuseppe Storti. 2021. "Forecasting Volatility and Tail Risk in Electricity Markets" Journal of Risk and Financial Management 14, no. 7: 294. https://doi.org/10.3390/jrfm14070294
APA StyleNaimoli, A., & Storti, G. (2021). Forecasting Volatility and Tail Risk in Electricity Markets. Journal of Risk and Financial Management, 14(7), 294. https://doi.org/10.3390/jrfm14070294