Risk Prediction of International Stock Markets with Complex Spatio-Temporal Correlations: A Spatio-Temporal Graph Convolutional Regression Model Integrating Uncertainty Quantification
Abstract
1. Introduction
2. Literature Review
2.1. Research Status of Spatio-Temporal Correlation Analysis Methods
2.2. Research Progress in Artificial Intelligence-Based Spatio-Temporal Modeling
2.3. Literature Review and Innovation Points
3. Research Design
3.1. Research Hypotheses
3.2. Spatio-Temporal Graph Convolutional Neural Network
3.3. Least Squares Method
4. STGCN-PDR Model Specification, Parameter Estimation, and Testing
4.1. Model Specification
4.2. Parameter Estimation of the Model
Algorithm 1: STGCN-PDR |
1: Standardize the different sample data. 2: Construct the graph structure. 3: Input: Feature matrix 4: Use spatio-temporal convolutional layers to perform spatial and temporal convolu-tions on the feature matrix to extract spatio-temporal features. 5: Use a regression layer to apply a linear transformation to the output of the spa-tio-temporal graph convolutional layer. 6: Output: Regression coefficient 7: Compute the loss value based on the loss function. 8: Update the model parameters using the optimization algorithm. 9: Repeat steps 4–8 until the maximum number of iterations is reached or convergence criteria are satisfied. |
4.3. Testing of Parameter Estimation Results
4.4. Risk Prediction of the Model
5. Empirical Analysis
5.1. Data Sources and Feature Description
5.2. Comparative Analysis of Model Parameter Estimation Results
5.3. Analysis of the Model’s Prediction Results
5.4. Application Analysis of the STGCN-PDR Model
5.5. Discussion
5.5.1. Testing of the Research Hypotheses
5.5.2. Economic Interpretation and Practical Implications
5.5.3. Robustness and Sensitivity Analyses
5.5.4. Limitations and Directions for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbari Asanjan, A., Yang, T., Hsu, K., Sorooshian, S., Lin, J., & Peng, Q. (2018). Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks. Journal of Geophysical Research: Atmospheres, 123(22), 12543–12563. [Google Scholar] [CrossRef]
- Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, H., Hess, W., & Liu, L. (2013). A spatial analysis of international stock market linkages. Journal of Banking & Finance, 37(12), 4738–4754. [Google Scholar] [CrossRef]
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31(3), 307–327. [Google Scholar] [CrossRef]
- Box, G. E. P. (2013). Box and Jenkins: Time series analysis, forecasting and control. In A very British affair (pp. 123–156). Palgrave Advanced Texts in Econometrics. Palgrave Macmillan. [Google Scholar] [CrossRef]
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. [Google Scholar] [CrossRef]
- Candelon, B., Colletaz, G., Hurlin, C., & Tokpavi, S. (2011). Backtesting value-at-risk: A GMM duration-based test. Journal of Financial Econometrics, 9(2), 314–343. [Google Scholar] [CrossRef]
- Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232–6251. [Google Scholar] [CrossRef]
- Chen, Y., Li, F., Deng, Z., Chen, X., & He, J. (2017). PM2.5 forecasting with hybrid LSE model-based approach. Software Practice and Experience, 47(3), 379–390. [Google Scholar] [CrossRef]
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. [Google Scholar] [CrossRef]
- Cui, F. L., Chai, Y. D., Jiang, Y. C., Qian, Y., Sun, J., & Liu, Y. (2025). Online doctor recommendation method considering uncertainty of deep learning models. Chinese Journal of Management Science. Advance online publication. [Google Scholar] [CrossRef]
- D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., … Sculley, D. (2022). Underspecification presents challenges for credibility in modern machine learning. Journal of Machine Learning Research, 23(226), 1–61. Available online: https://jmlr.org/papers/v23/20-1335.html (accessed on 25 August 2025).
- Dimitrakopoulos, R., & Luo, X. (1994). Spatiotemporal modelling: Covariances and ordinary Kriging systems. In Geostatistics for the next century (pp. 88–93). Springer. [Google Scholar]
- Dror, A. B., Zehngut, N., Raviv, A., Artyomov, E., Vitek, R., & Jevnisek, R. J. (2021). Layer folding: Neural network depth reduction using activation linearization. In Proceedings of the British machine vision conference (pp. 1–12). BMVA Press. [Google Scholar]
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007. [Google Scholar] [CrossRef]
- Fan, G. F., Zhang, R. T., Cao, C. C., Peng, L. L., Yeh, Y. H., & Hong, W. C. (2024). The volatility mechanism and intelligent fusion forecast of new energy stock prices. Financial Innovation, 10(1), 84. [Google Scholar] [CrossRef]
- Farrell, M. H., Liang, T., & Misra, S. (2021). Deep neural networks for estimation and inference. Econometrica, 89(1), 181–213. [Google Scholar] [CrossRef]
- Fischer, T., Sterling, M., & Lessmann, S. (2024). FX-spot predictions with state-of-the-art transformer and time embeddings. Expert Systems with Applications, 249, 123538. [Google Scholar] [CrossRef]
- Foroutan, P., & Lahmiri, S. (2024). Deep learning-based spatial-temporal graph neural networks for price movement classification in crude oil and precious metal markets. Machine Learning with Applications, 16, 100552. [Google Scholar] [CrossRef]
- Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the 33rd international conference on machine learning (pp. 1050–1059). JMLR.org. [Google Scholar]
- Glorot, X., Bordes, A., & Bengio, Y. (2011, April 11–13). Deep sparse rectifier neural networks (Proceedings of Machine Learning Research). Fourteenth International Conference on Artificial Intelligence and Statistics (Vol. 15, pp. 315–323), Fort Lauderdale, FL, USA. Available online: https://proceedings.mlr.press/v15/glorot11a.html (accessed on 25 August 2025).
- Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273. [Google Scholar] [CrossRef]
- Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT Press. [Google Scholar]
- Kingma, D. P., & Ba, J. L. (2014). Adam: A method for stochastic optimization. arXiv. arXiv:1412.6980. [Google Scholar]
- Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3(2), 73–84. [Google Scholar] [CrossRef]
- Liao, H. C., & Xu, Z. S. (2015). Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Systems with Applications, 42(12), 5328–5336. [Google Scholar] [CrossRef]
- Lu, J., Zhang, Q., Yang, Z., Tu, M., Lu, J., & Peng, H. (2019). Short-term load forecasting method based on CNN-LSTM hybrid neural network model. Automation of Electric Power Systems, 43(8), 131–137. [Google Scholar] [CrossRef]
- Martin, R. L., & Oeppen, J. (1975). The identification of regional forecasting models using space-time correlation functions. Transactions of the Institute of British Geographers, 66, 95–118. [Google Scholar] [CrossRef]
- Nayak, S. C., Dehuri, S., & Cho, S. B. (2024). Elitist-opposition-based artificial electric field algorithm for higher-order neural network optimization and financial time series forecasting. Financial Innovation, 10(1), 5. [Google Scholar] [CrossRef]
- Peng, B. Y., & Li, X. J. (2010). International research progress and implications of finance and regional development. Economic Geography, 30(1), 75–79+92. [Google Scholar] [CrossRef]
- Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., & Carvalhais, N. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204. [Google Scholar] [CrossRef]
- Sergio, I., & Wedemeier, J. (2025). Global surge: Exploring cryptocurrency adoption with evidence from spatial models. Financial Innovation, 11(1), 96. [Google Scholar] [CrossRef]
- Shalabi, L. A., Shaaban, Z., & Kasasbeh, B. (2006). Data mining: A preprocessing engine. Journal of Computer Science, 2(10), 735–739. [Google Scholar] [CrossRef]
- Shechtman, O. (2001). The coefficient of variation as a measure of sincerity of effort of grip strength, part I: The statistical principle. Journal of Hand Therapy, 14(3), 180–187. [Google Scholar] [CrossRef]
- Sheela, K. G., & Deepa, S. N. (2013). Review on methods to fix number of hidden neurons in neural networks. Mathematical Problems in Engineering, 2013, 425740. [Google Scholar] [CrossRef]
- Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., & Woo, W.-C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, 28, 802–810. [Google Scholar]
- Skilling, J. (2013). Maximum entropy and Bayesian methods: Cambridge, England, 1988 (Vol. 36). Springer Science & Business Media. [Google Scholar]
- Tamakoshi, G., & Hamori, S. (2014). Co-movements among major European exchange rates: A multivariate time-varying asymmetric approach. International Review of Economics and Finance, 31, 105–113. [Google Scholar] [CrossRef]
- Tran, K. M., Bisazza, A., & Monz, C. (2018). The importance of being recurrent for modeling hierarchical structure. In Proceedings of the conference on empirical methods in natural language processing (pp. 123–135). Association for Computational Linguistics. [Google Scholar]
- Van Houdt, G., Mosquera, C., & Napoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(6), 5929–5955. [Google Scholar] [CrossRef]
- Wang, J., Wang, S., Lv, M., & Jiang, H. (2024). Forecasting VaR and ES by using deep quantile regression, GANs-based scenario generation, and heterogeneous market hypothesis. Financial Innovation, 10(1), 36. [Google Scholar] [CrossRef]
- Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020). Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753–763). ACM Press. [Google Scholar] [CrossRef]
- Xu, L., Chen, N., Chen, Z., Zhang, C., & Yu, H. (2021). Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions. Earth-Science Reviews, 222, 103828. [Google Scholar] [CrossRef]
- Yang, L. F., Liu, J. H., & Yang, W. X. (2023). Impacts of the sustainable development of Cross-Border E-Commerce Pilot Zones on regional economic growth. Sustainability, 15(18), 13876. [Google Scholar] [CrossRef]
- Yang, W., Yang, Y., Chen, Z., & Gu, Y. (2025). Systemic impacts of national civilized cities on sustainable development: A quasi-experimental analysis of economic and environmental outcomes in China. Systems, 13(1), 23. [Google Scholar] [CrossRef]
- Yang, W. X., Zheng, X., & Yang, Y. P. (2024). Impact of environmental regulation on export technological complexity of high-tech industries in Chinese manufacturing. Economies, 12(2), 50. [Google Scholar] [CrossRef]
- Yu, B., Yin, H., & Zhu, Z. X. (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In Proceedings of the 27th international joint conference on artificial intelligence (pp. 3634–3640). AAAI Press. [Google Scholar]
- Zaheer, S., Anjum, N., Hussain, S., Algarni, A. D., Iqbal, J., Bourouis, S., & Ullah, S. S. (2023). A multi parameter forecasting for stock time series data using LSTM and deep learning model. Mathematics, 11(3), 590. [Google Scholar] [CrossRef]
- Zhang, D. B. (2017). A coefficient of determination for generalized linear models. The American Statistician, 71(4), 310–316. [Google Scholar] [CrossRef]
- Zhang, X., Yu, L., Yin, H., & Lai, K. K. (2022). Integrating data augmentation and hybrid feature selection for small sample credit risk assessment with high dimensionality. Computers & Operations Research, 146, 105937. [Google Scholar] [CrossRef]
- Zhang, X. G., & Mahadevan, S. (2020). Bayesian neural networks for flight trajectory prediction and safety assessment. Decision Support Systems, 131, 113246. [Google Scholar] [CrossRef]
- Zhou, D., Uddin, A., Tao, X., Shang, Z., & Yu, D. (2022). Temporal bipartite graph neural networks for bond prediction. In Proceedings of the ACM international conference on AI in finance (pp. 308–316). ACM. [Google Scholar] [CrossRef]
- Zhou, Y. G., Lin, S. S., & Hong, Y. M. (2020). The safe-haven hedging effect and its pricing mechanism between China’s stock and bond markets. Economic Research Journal, 55(9), 42–57. (In Chinese). [Google Scholar]
Country | USA | CN | UK | FR |
---|---|---|---|---|
time | 17/5/2021 | 17/5/2021 | 17/5/2021 | 17/5/2021 |
logreturn | 0.012554 | 0.052207 | −0.02314 | 0.000222 |
Rt−1 | 0.021291 | 0.055918 | −0.01272 | 0.007824 |
Wn × Rn,t | −0.01168 | 0.015207 | 0.00272 | 0.001605 |
Wn × Rt−1 | −0.00358 | 0.025732 | 0.01218 | 0.011851 |
exchange | 1.0000 | 0.168275 | 1.448191 | 1.587828 |
bonds | −0.37485 | 2.442153 | −0.37223 | −0.13123 |
high | −1.6802 | 0.199821 | −1.14306 | −1.33622 |
low | −1.46734 | 0.205015 | −1.12246 | −1.15121 |
close | −1.53564 | 0.232673 | −1.11394 | −1.28296 |
open | −1.51546 | 0.080604 | −1.05211 | −1.17411 |
CPI | −1.75803 | −0.72715 | −1.51123 | −1.21188 |
GDP | 1.247781 | 2.843329 | 3.847131 | 4.321256 |
Number of Training Rounds | Indicator | LSTM-PDR | CNN-PDR | STGCN-PDR |
---|---|---|---|---|
500 rounds | 0.4944 | 0.5300 | 0.5170 | |
0.0330 | 0.0311 | 0.0357 | ||
0.0667 | 0.0587 | 0.0691 | ||
Average time (seconds) | 67.0893 | 15.9427 | 16.7859 | |
1000 rounds | 0.6177 | 0.6579 | 0.6477 | |
0.0346 | 0.0276 | 0.0329 | ||
0.0560 | 0.0420 | 0.0508 | ||
Average time (seconds) | 127.4218 | 31.6822 | 33.5321 | |
1500 rounds | 0.6750 | 0.6936 | 0.6898 | |
0.0225 | 0.0106 | 0.0153 | ||
0.0333 | 0.0153 | 0.0222 | ||
Average time (seconds) | 186.0772 | 47.5887 | 49.4458 | |
2000 rounds | 0.6936 | 0.6980 | 0.6981 | |
0.0104 | 0.0128 | 0.0071 | ||
0.0150 | 0.0183 | 0.0102 | ||
Average time (seconds) | 248.7778 | 63.2492 | 67.0974 | |
2500 rounds | 0.6988 | 0.6958 | 0.6977 | |
0.0033 | 0.0188 | 0.0138 | ||
0.0047 | 0.0270 | 0.0198 | ||
Average time (seconds) | 318.5619 | 79.1533 | 83.3414 |
Number of Training Rounds | Indicator | LSTM-PDR | CNN-PDR | STGCN-PDR |
---|---|---|---|---|
500 rounds | 0.2491 | 0.3392 | 0.2893 | |
0.0547 | 0.0488 | 0.0664 | ||
0.2196 | 0.1439 | 0.2295 | ||
Average time (seconds) | 19.0181 | 5.3883 | 6.2288 | |
1000 rounds | 0.4539 | 0.5158 | 0.4993 | |
0.0571 | 0.0340 | 0.0550 | ||
0.1258 | 0.0659 | 0.1102 | ||
Average time (seconds) | 35.8873 | 10.8075 | 12.6239 | |
1500 rounds | 0.5389 | 0.5655 | 0.5666 | |
0.0354 | 0.0204 | 0.0235 | ||
0.0657 | 0.0361 | 0.0415 | ||
Average time (seconds) | 51.3811 | 16.0108 | 18.9008 | |
2000 rounds | 0.5722 | 0.5765 | 0.5801 | |
0.0168 | 0.0178 | 0.0106 | ||
0.0294 | 0.0309 | 0.0183 | ||
Average time (seconds) | 69.5425 | 21.9327 | 26.6116 | |
2500 rounds | 0.5817 | 0.5773 | 0.5832 | |
0.0069 | 0.0297 | 0.0111 | ||
0.0119 | 0.0514 | 0.0190 | ||
Average time (seconds) | 88.4740 | 27.4520 | 31.3530 |
Number of Training Rounds | Indicator | LSTM-PDR | CNN-PDR | STGCN-PDR |
---|---|---|---|---|
500 rounds | 0.4339 | 0.5045 | 0.4488 | |
0.0448 | 0.0437 | 0.0854 | ||
0.1032 | 0.0866 | 0.1903 | ||
Average time (seconds) | 36.2822 | 9.7760 | 10.7112 | |
1000 rounds | 0.5910 | 0.6568 | 0.6238 | |
0.0488 | 0.0332 | 0.0696 | ||
0.0826 | 0.0505 | 0.1116 | ||
Average time (seconds) | 70.0123 | 20.2967 | 21.2757 | |
1500 rounds | 0.6706 | 0.6901 | 0.6925 | |
0.0337 | 0.0625 | 0.0253 | ||
0.0503 | 0.0906 | 0.0365 | ||
Average time (seconds) | 109.0251 | 30.8630 | 31.7571 | |
2000 rounds | 0.7007 | 0.6843 | 0.7073 | |
0.0173 | 0.1290 | 0.0313 | ||
0.0247 | 0.1885 | 0.0443 | ||
Average time (seconds) | 145.5194 | 40.4468 | 42.7568 | |
2500 rounds | 0.7061 | 0.6642 | 0.7042 | |
0.1590 | 0.1808 | 0.0415 | ||
0.2252 | 0.2722 | 0.0589 | ||
Average time (seconds) | 172.9782 | 55.3929 | 53.7250 |
Number of Training Rounds | Indicator | LSTM-PDR | CNN-PDR | STGCN-PDR |
---|---|---|---|---|
500 rounds | 0.3102 | 0.2650 | 0.3256 | |
0.0365 | 0.7458 | 0.0238 | ||
0.1177 | 2.8143 | 0.0731 | ||
Average time (seconds) | 10.0578 | 3.3499 | 3.7126 | |
1000 rounds | 0.3494 | 0.2995 | 0.3484 | |
0.0048 | 0.3044 | 0.0186 | ||
0.0137 | 1.0164 | 0.0534 | ||
Average time (seconds) | 20.5186 | 6.7812 | 7.3704 | |
1500 rounds | 0.3469 | 0.2385 | 0.3325 | |
0.0033 | 0.3640 | 0.0997 | ||
0.0095 | 1.5262 | 0.2998 | ||
Average time (seconds) | 29.6938 | 9.4780 | 11.2316 | |
2000 rounds | 0.3417 | 0.2092 | 0.3128 | |
0.0655 | 0.4338 | 0.1716 | ||
0.1917 | 2.0736 | 0.5486 | ||
Average time (seconds) | 39.5007 | 13.7399 | 14.9100 | |
2500 rounds | 0.3014 | 0.2536 | 0.2994 | |
0.3894 | 0.2860 | 0.2063 | ||
1.2920 | 1.1278 | 0.6890 | ||
Average time (seconds) | 49.2420 | 16.4296 | 18.6893 |
Number of Training Rounds | Indicator | LSTM-PDR | CNN-PDR | STGCN-PDR |
---|---|---|---|---|
500 rounds | 0.2604 | 0.2670 | 0.2472 | |
0.0391 | 0.0774 | 0.2052 | ||
0.1502 | 0.2899 | 0.8301 | ||
Average time (seconds) | 6.9568 | 2.4243 | 3.1367 | |
1000 rounds | 0.3218 | 0.3170 | 0.3304 | |
0.0356 | 0.1339 | 0.2629 | ||
0.1106 | 0.4224 | 0.7957 | ||
Average time (seconds) | 13.2050 | 4.8558 | 6.0777 | |
1500 rounds | 0.3816 | 0.3132 | 0.3983 | |
0.0396 | 0.2550 | 0.1195 | ||
0.1038 | 0.8142 | 0.3000 | ||
Average time (seconds) | 21.7860 | 7.4967 | 9.5438 | |
2000 rounds | 0.4307 | 0.3035 | 0.4393 | |
0.0406 | 0.3919 | 0.1213 | ||
0.0943 | 1.2913 | 0.2761 | ||
Average time (seconds) | 28.6889 | 11.1018 | 12.8929 | |
2500 rounds | 0.4576 | 0.3556 | 0.4431 | |
0.1606 | 0.3056 | 0.3609 | ||
0.3510 | 0.8594 | 0.8145 | ||
Average time (seconds) | 33.5225 | 13.1983 | 15.0630 |
Backtesting Verification | Confidence Level | Linear Regression | CNN-PDR | LSTM-PDR | STGCN-PDR |
---|---|---|---|---|---|
UC | 0.99 | 3.54008 | 3.41069 | 3.28106 | 2.52633 |
(0.70363) | (0.70994) | (0.71569) | (0.77619) | ||
0.95 | 0.06019 | 0.05647 | 0.03625 | 0.03134 | |
(0.96938) | (0.97085) | (0.97500) | (0.97831) | ||
0.90 | 0.00003 | 0.00004 | 0.00003 | 0.00002 | |
(0.99920) | (0.99922) | (0.99931) | (0.99950) | ||
IND | 0.99 | 0.19481 | 0.1922 | 0.19486 | 0.23729 |
(0.87853) | (0.88044) | (0.88141) | (0.89320) | ||
0.95 | 0.03683 | 0.03646 | 0.03555 | 0.03514 | |
(0.97543) | (0.97597) | (0.97744) | (0.97877) | ||
0.90 | 0.00003 | 0.00003 | 0.00002 | 0.00002 | |
(0.99928) | (0.99931) | (0.99939) | (0.99954) | ||
CC | 0.99 | 3.74508 | 3.61287 | 3.48575 | 2.77161 |
(0.74399) | (0.75116) | (0.75653) | (0.80885) | ||
0.95 | 0.10287 | 0.09871 | 0.07739 | 0.06903 | |
(0.97504) | (0.97639) | (0.98032) | (0.98207) | ||
0.90 | 0.00007 | 0.00007 | 0.00006 | 0.00004 | |
(0.99996) | (0.99996) | (0.99996) | (0.99997) |
Backtesting Verification | Confidence Level | Linear Regression | CNN-PDR | LSTM-PDR | STGCN-PDR |
---|---|---|---|---|---|
UC | 0.99 | 23.91158 * | 23.53218 ** | 25.11128 ** | 23.14544 ** |
(0.09238) | (0.0114) | (0.03477) | (0.00454) | ||
0.95 | 13.82721 | 13.55941 | 15.51906 | 12.67273 | |
(0.18934) | (0.12485) | (0.13595) | (0.14278) | ||
0.90 | 6.17309 | 6.64973 | 6.71889 | 5.16301 | |
(0.35817) | (0.28117) | (0.32488) | (0.32167) | ||
IND | 0.99 | 0.89317 | 0.60999 | 0.73586 | 0.55143 |
(0.56634) | (0.56865) | (0.55149) | (0.57006) | ||
0.95 | 1.1912 | 0.68662 | 0.85397 | 0.48216 | |
(0.43729) | (0.50718) | (0.46657) | (0.57666) | ||
0.90 | 1.37162 | 0.76813 | 0.80886 | 0.83211 | |
(0.42753) | (0.54624) | (0.51196) | (0.54897) | ||
CC | 0.99 | 25.66958 * | 24.53213 *** | 26.38266 ** | 23.97008 *** |
(0.0691) | (0.00772) | (0.02045) | (0.00729) | ||
0.95 | 16.06088 | 14.73153 | 17.12859 | 13.54024 | |
(0.15351) | (0.14109) | (0.12728) | (0.18346) | ||
0.90 | 8.39003 | 7.87342 | 8.32055 | 6.37775 | |
(0.31737) | (0.31908) | (0.33298) | (0.37307) |
Backtesting Verification | Confidence Level | Linear Regression | CNN-PDR | LSTM-PDR | STGCN-PDR |
---|---|---|---|---|---|
UC | 0.99 | 16.48653 | 9.58878 | 15.74936 | 10.36245 |
(0.22002) | (0.27858) | (0.18161) | (0.27775) | ||
0.95 | 3.87152 | 0.88413 | 2.41339 | 1.41137 | |
(0.61619) | (0.85647) | (0.71936) | (0.86891) | ||
0.90 | 0.03106 | 0.48549 | 0.1262 | 0.84279 | |
(0.95435) | (0.94687) | (0.94361) | (0.94629) | ||
IND | 0.99 | 0.15288 | 0.32745 | 0.17733 | 0.29715 |
(0.76054) | (0.66655) | (0.72991) | (0.6847) | ||
0.95 | 0.12156 | 0.06491 | 0.09994 | 0.03999 | |
(0.81973) | (0.90794) | (0.8527) | (0.93532) | ||
0.90 | 0.01336 | 0.03666 | 0.02558 | 0.14299 | |
(0.96332) | (0.96994) | (0.96139) | (0.9564) | ||
CC | 0.99 | 16.72846 | 10.08706 | 16.18729 | 10.86195 |
(0.23707) | (0.29518) | (0.20319) | (0.30758) | ||
0.95 | 4.08764 | 0.96559 | 2.60854 | 1.50081 | |
(0.64371) | (0.87467) | (0.74802) | (0.89367) | ||
0.90 | 0.04639 | 0.52643 | 0.16752 | 1.00227 | |
(0.98129) | (0.95018) | (0.9576) | (0.94935) |
Backtesting Verification | Confidence Level | Linear Regression | CNN-PDR | LSTM-PDR | STGCN-PDR |
---|---|---|---|---|---|
UC | 0.99 | 31.65858 *** | 40.90585 *** | 40.46335 *** | 38.71012 *** |
(0.00030) | (0.00000) | (0.00000) | (0.00000) | ||
0.95 | 21.57395 *** | 30.40472 *** | 29.39011 *** | 30.26532 *** | |
(0.00443) | (0.00002) | (0.00015) | (0.00000) | ||
0.90 | 17.63958 ** | 24.03348 *** | 23.2275 *** | 25.44227 *** | |
(0.01486) | (0.00007) | (0.00024) | (0.00001) | ||
IND | 0.99 | 0.75478 | 0.23372 | 0.262 | 0.22301 |
(0.63485) | (0.84383) | (0.82591) | (0.79760) | ||
0.95 | 1.82154 | 0.52284 | 0.71751 | 1.37282 | |
(0.41421) | (0.60456) | (0.58790) | (0.45945) | ||
0.90 | 2.09589 | 1.13266 | 1.62003 | 1.62975 | |
(0.39231) | (0.48479) | (0.41667) | (0.40694) | ||
CC | 0.99 | 32.67985 *** | 41.84286 *** | 40.8176 *** | 39.88400 *** |
(0.00052) | (0.00000) | (0.00000) | (0.00000) | ||
0.95 | 23.92253 *** | 31.88152 *** | 30.43355 *** | 33.11707 *** | |
(0.00925) | (0.00002) | (0.00027) | (0.00000) | ||
0.90 | 20.31826 ** | 26.27981 *** | 25.44903 *** | 28.52934 *** | |
(0.01813) | (0.00007) | (0.00025) | (0.00002) |
Backtesting Verification | Confidence Level | Linear Regression | CNN-PDR | LSTM-PDR | STGCN-PDR |
---|---|---|---|---|---|
UC | 0.99 | 36.40179 *** | 37.45618 *** | 42.04018 *** | 38.35801 *** |
(0.00000) | (0.00000) | (0.00000) | (0.00000) | ||
0.95 | 31.51601 *** | 31.61226 *** | 33.21159 *** | 31.71617 *** | |
(0.00000) | (0.00000) | (0.00000) | (0.00000) | ||
0.90 | 27.39538 *** | 27.77531 *** | 29.12567 *** | 29.08074 *** | |
(0.00536) | (0.00000) | (0.00000) | (0.00000) | ||
IND | 0.99 | 2.24666 | 0.64003 | 0.37831 | 0.35397 |
(0.58741) | (0.64785) | (0.82323) | (0.71161) | ||
0.95 | 3.29591 | 1.09167 | 1.00669 | 1.03091 | |
(0.40721) | (0.43215) | (0.47542) | (0.43192) | ||
0.90 | 3.67769 | 1.46095 | 1.70266 | 1.28359 | |
(0.30389) | (0.38849) | (0.31016) | (0.36885) | ||
CC | 0.99 | 39.26883 *** | 38.61258 *** | 42.5342 *** | 38.86996 *** |
(0.00000) | (0.00000) | (0.00000) | (0.00000) | ||
0.95 | 35.77384 *** | 33.61572 *** | 34.62523 *** | 33.07327 *** | |
(0.00000) | (0.00000) | (0.00000) | (0.00000) | ||
0.90 | 31.99616 *** | 30.36904 *** | 31.41186 *** | 30.85637 *** | |
(0.00442) | (0.00000) | (0.00000) | (0.00000) |
USA | SWE | NL | MX | JPN | |
---|---|---|---|---|---|
CPI | −0.00251 | −0.00217 | −0.0026 | −0.00201 | −0.00216 |
GDP | 0.000974 | 0.001886 | 0.001061 | 0.002129 | 0.00114 |
Rt−1 | −0.07803 | −0.07814 | −0.07795 | −0.07809 | −0.07805 |
WRt | 0.270817 | 0.270963 | 0.270852 | 0.270948 | 0.270791 |
WRt−1 | 0.062824 | 0.062409 | 0.062718 | 0.062395 | 0.063096 |
bonds | −0.00316 | −0.00337 | −0.0028 | −0.00358 | −0.00356 |
close | 2.729281 | 2.72931 | 2.72916 | 2.729409 | 2.729201 |
exchange | −0.00026 | −0.00019 | −0.0004 | −8.4 × 10−5 | 7.03 × 10−6 |
high | 0.003194 | 0.003001 | 0.002814 | 0.003008 | 0.00289 |
low | 0.309136 | 0.308859 | 0.30928 | 0.308843 | 0.309108 |
open | −3.02856 | −3.02815 | −3.0287 | −3.02853 | −3.02873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, G.; Jia, W.; Tan, C.; Zhang, W.; Rong, J. Risk Prediction of International Stock Markets with Complex Spatio-Temporal Correlations: A Spatio-Temporal Graph Convolutional Regression Model Integrating Uncertainty Quantification. J. Risk Financial Manag. 2025, 18, 488. https://doi.org/10.3390/jrfm18090488
Mo G, Jia W, Tan C, Zhang W, Rong J. Risk Prediction of International Stock Markets with Complex Spatio-Temporal Correlations: A Spatio-Temporal Graph Convolutional Regression Model Integrating Uncertainty Quantification. Journal of Risk and Financial Management. 2025; 18(9):488. https://doi.org/10.3390/jrfm18090488
Chicago/Turabian StyleMo, Guoli, Wei Jia, Chunzhi Tan, Weiguo Zhang, and Jinyu Rong. 2025. "Risk Prediction of International Stock Markets with Complex Spatio-Temporal Correlations: A Spatio-Temporal Graph Convolutional Regression Model Integrating Uncertainty Quantification" Journal of Risk and Financial Management 18, no. 9: 488. https://doi.org/10.3390/jrfm18090488
APA StyleMo, G., Jia, W., Tan, C., Zhang, W., & Rong, J. (2025). Risk Prediction of International Stock Markets with Complex Spatio-Temporal Correlations: A Spatio-Temporal Graph Convolutional Regression Model Integrating Uncertainty Quantification. Journal of Risk and Financial Management, 18(9), 488. https://doi.org/10.3390/jrfm18090488