Removal of Zearalenone from Degummed Corn Oil by Hydrolase on a Batch-Refining Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Degradation Experiment
2.3. Detection of ZEN Content
2.4. Statistical Analyses
3. Results and Discussion
3.1. Effects of Reaction Temperature on Enzymatic Degradation of ZEN in DCO
3.2. Effects of pH Value on Enzymatic Degradation of ZEN in DCO
3.3. Effects of Reaction Time on the Enzymatic Degradation of ZEN in DCO
3.4. Effects of Enzyme Dosage on the Enzymatic Degradation of ZEN in DCO
3.5. Optimization of the Enzymatic Degradation of ZEN in DCO Using Response Surface Methodology
3.6. Effects of the Optimum Technological Conditions on the Degradation of ZEN in DCO with Different Initial ZEN Contents
4. Conclusions
- (1)
- According to the single-factor and response surface experiments, the optimum technological conditions for reaching the maximum degradation rate are a temperature of 39.01 °C, a pH of 8.08, a time of 3.9 h, and an enzyme dosage of 44.7 mg/kg, where the ZEN degradation rate can reach 94.66%.
- (2)
- Through the enzymatic hydrolysis of DCO with different initial ZEN contents under the optimal technological conditions, different trends were observed for different ZEN contents. At high ZEN content, ZEN is rapidly hydrolyzed, whereas the ZEN content decreases slowly the initial content is low.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stob, M.; Baldwin, R.S.; Tuite, J.; Andrews, F.N.; Gillette, K.G. Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae. Nature 1962, 196, 1318. [Google Scholar] [CrossRef] [PubMed]
- Obremski, K.; Gajecki, M.; Zwierzchowski, W.; Zielonka, L.; Otrocka-Domagala, I.; Rotkiewicz, T.; Mikolajczyk, A.; Gajecka, M.; Polak, M. Influence of zearalenone on reproductive system cell proliferation in gilts. Pol. J. Vet. Sci. 2003, 6, 239–245. [Google Scholar] [PubMed]
- Vlata, Z.; Porichis, F.; Tzanakakis, G.; Tsatsakis, A.; Krambovitis, E. A study of zearalenone cytotoxicity on human peripheral blood mononuclear cells. Toxicol. Lett. 2006, 165, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Mirocha, C.J.; Robison, T.S.; Pawlosky, R.J.; Allen, N.K. Distribution and residue determination of 3H zearalenone in broilers. Toxicol. Appl. Pharmacol. 1982, 66, 77–87. [Google Scholar] [CrossRef]
- Liang, Z.; Ren, Z.; Gao, S.; Chen, Y.; Yang, Y.; Yang, D.; Deng, J.; Zuo, Z.; Wang, Y.; Shen, L. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ. Toxicol. Phar. 2015, 40, 686–691. [Google Scholar] [CrossRef]
- Fleck, S.C.; Hildebrand, A.A.; Muller, E.; Pfeiffer, E.; Metzler, M. Genotoxicity and inactivation of catechol metabolites of the mycotoxin zearalenone. Mycotoxin Res. 2012, 28, 267–273. [Google Scholar] [CrossRef]
- Fruhauf, S.; Novak, B.; Nagl, V.; Hackl, M.; Hartinger, D.; Rainer, V.; Labudova, S.; Adam, G.; Aleschko, M.; Moll, W.-D.; et al. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Yazar, S.; Omurtag, G.Z. Fumonisins, Trichothecenes and Zearalenone in Cereals. Int. J. Mol. Sci. 2008, 9, 2062–2090. [Google Scholar] [CrossRef]
- Pei, Y.; Liu, Y.; Xu, L.; Ma, Y.; An, J.; Hao, K. Removal of zearalenone from maize oil by alkali refining. China Oils Fats 2016, 41, 56–60. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1126/2007 of 28 September 2007 Amending Regulation (EC) No 1881/2006 Setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union 2005, 255, 14–17. [Google Scholar]
- Wang, Y.; Sun, D.; Wen, J.; Fang, T.; Wang, P.; Cheng, F. Influences of corn oil production process on corn gibberellic ketene and vomiting toxins. Cereal Food Ind. 2015, 4, 19–22. [Google Scholar]
- Liu, Y.L.; Pei, X.Y.; Xu, L.L.; Wang, Y.H. Removal of zearalenone from maize oil by absorption. Cereal and fat. 2016, 9, 6–10. [Google Scholar]
- Pei, X.Y. Research on Control and Removal Effects of Zearalenone in Maize Oil. Master’s Thesis, Henan University of Technology, Henan, China, 2016. (In Chinese). [Google Scholar]
- Popiel, D.; Koczyk, G.; Dawidziuk, A.; Gromadzka, K.; Blaszczyk, L.; Chelkowski, J. Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epoxide hydrolase subset of a/b-hydrolases. BMC Microbiol. 2014, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Edlayne, G.; Simone, A.; Felicio, J.D. Chemical and biological approaches for mycotoxin control: A review. Recent Pat. Food Nutr. Agric. 2009, 1, 155–161. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Park, M.A.; Ha, J.K. Mycotoxins and Their Biotransformation in the Rumen: A Review. Asian Australas. J. Anim. Sci. 2010, 23, 1250–1260. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yang, F.; Yang, L.; Liu, J.; Lv, Z.H. Microbial reduction of zearalenone by a new isolated Lysinibacillus sp. ZJ-2016-1. World Mycotoxin J. 2018, 11, 571–578. [Google Scholar] [CrossRef]
- Ping-Jung, Y.; Cheng-Kang, P.; Je-Ruei, L. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J. Microbiol. Biotechnol. 2011, 27, 1035–1043. [Google Scholar]
- Bakutis, B.; Baliukoniene, V.; Paškevičius, A. Use of biological method for detoxification of mycotoxins. Bot. Lith. 2005, 7, 123–129. [Google Scholar]
- Vekiru, E.; Hametner, C.; Mitterbauer, R.; Rechthaler, J.; Adam, G.; Schatzmayr, G.; Krska, R.; Schuhmacher, R. Cleavage of Zearalenone by Trichosporon mycotoxinivorans to a Novel Nonestrogenic Metabolite. Appl. Environ. Microbiol. 2010, 76, 2353–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi-Ando, N.; Kimura, M.; Kakeya, H.; Osada, H.; Yamaguchi, I. A novel lactonohydrolase responsible for the detoxification of zearalenone: Enzyme purification and gene cloning. Biochem. J. 2002, 365, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Takahashi-Ando, N.; Ohsato, S.; Shibata, T.; Hamamoto, H.; Yamaguchi, I.; Kimura, M. Metabolism of zearalenone by genet-ically modified organisms expressing the detoxification gene from Clonostachys rosea. Appl. Environ. Microbiol. 2004, 70, 3239–3245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi-Ando, N.; Tokai, T.; Hamamoto, H.; Yamaguchi, I.; Kimura, M. Efficient decontamination of zearalenone, the my-cotoxin of cereal pathogen, by transgenic yeasts through the expression of a synthetic lactonohydrolase gene. Appl. Microbiol. Biotechnol. 2005, 67, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Liu, H.; Sun, J.; Wang, J.; Zhao, C.; Zhang, W.; Zhang, J.; Sun, C. Zearalenone Removal from Corn Oil by an Enzy-matic Strategy. Toxins 2020, 12, 117. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yin, L.; Hu, H.; Selvaraj, J.N.; Zhou, Y.; Zhang, G. Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme. Int. J. Biol. Macromol. 2018, 118, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-M.; Masunaga, H.; Chuah, J.-A.; Sudesh, K.; Numata, K. Enzyme-mimic peptide assembly to achieve amidolytic activity. Biomacromolecules 2016, 17, 3375–3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, J.C.J.; Wickersheim, M.L.; Jalihal, A.P.; Adeshina, Y.O.; Cooper, T.F.; Balázsi, G. Cellular growth arrest and persistence from enzyme saturation. PLoS Comput. Biol. 2016, 12, e1004825. [Google Scholar] [CrossRef] [PubMed]
Item | A | B | C | D | Content of ZEN (µg/kg) | Degradation Rate of ZEN (%) |
---|---|---|---|---|---|---|
Temperature (°C) | pH | Time/h | Hydrolase Dosage/mg/kg | |||
1 | 40 | 8.5 | 4 | 40 | 765.29 | 89.17 |
2 | 40 | 8.5 | 3 | 30 | 1964.31 | 72.20 |
3 | 35 | 8 | 4 | 40 | 864.36 | 87.77 |
4 | 35 | 7.5 | 3 | 40 | 1689.34 | 76.09 |
5 | 40 | 8 | 3 | 40 | 966.63 | 86.32 |
6 | 40 | 8.5 | 2 | 40 | 1451.33 | 79.46 |
7 | 40 | 8 | 3 | 40 | 903.74 | 87.21 |
8 | 40 | 8 | 2 | 30 | 2365.98 | 66.52 |
9 | 35 | 8.5 | 3 | 40 | 1689.78 | 76.09 |
10 | 45 | 8.5 | 3 | 40 | 1489.25 | 78.92 |
11 | 35 | 8 | 3 | 30 | 3085.02 | 56.34 |
12 | 40 | 8 | 2 | 50 | 531.26 | 92.48 |
13 | 40 | 7.5 | 4 | 40 | 730.91 | 89.65 |
14 | 40 | 7.5 | 2 | 40 | 1456.71 | 79.39 |
15 | 35 | 8 | 2 | 40 | 1978.65 | 72.00 |
16 | 40 | 8 | 3 | 40 | 1107.95 | 84.32 |
17 | 35 | 8 | 3 | 50 | 756.32 | 89.30 |
18 | 40 | 8 | 4 | 30 | 1826.32 | 74.15 |
19 | 40 | 7.5 | 3 | 30 | 2166.44 | 69.34 |
20 | 40 | 8.5 | 3 | 50 | 599.36 | 91.52 |
21 | 45 | 8 | 2 | 40 | 1246.82 | 82.35 |
22 | 45 | 8 | 4 | 40 | 1037.29 | 85.32 |
23 | 40 | 7.5 | 3 | 50 | 543.38 | 92.31 |
24 | 45 | 8 | 3 | 50 | 599.32 | 91.52 |
25 | 40 | 8 | 4 | 50 | 368.32 | 94.79 |
26 | 45 | 8 | 3 | 30 | 2026.53 | 71.32 |
27 | 40 | 8 | 3 | 40 | 806.96 | 88.58 |
28 | 40 | 8 | 3 | 40 | 825.31 | 88.32 |
29 | 45 | 7.5 | 3 | 40 | 2143.28 | 69.67 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 2422.08 | 14 | 173.01 | 16.43 | <0.0001 | ** |
A | 38.61 | 1 | 38.61 | 3.67 | 0.0762 | |
B | 9.89 | 1 | 9.89 | 0.9392 | 0.3489 | |
C | 197.26 | 1 | 197.26 | 18.73 | 0.0007 | ** |
D | 1681.31 | 1 | 1681.31 | 159.68 | <0.0001 | ** |
AB | 21.45 | 1 | 21.45 | 2.04 | 0.1754 | |
AC | 40.99 | 1 | 40.99 | 3.89 | 0.0686 | |
AD | 40.69 | 1 | 40.69 | 3.86 | 0.0695 | |
BC | 0.0775 | 1 | 0.0775 | 0.0074 | 0.9329 | |
BD | 3.34 | 1 | 3.34 | 0.3168 | 0.5824 | |
CD | 7.11 | 1 | 7.11 | 0.6749 | 0.4251 | |
A² | 291.99 | 1 | 291.99 | 27.73 | 0.0001 | ** |
B² | 71.37 | 1 | 71.37 | 6.78 | 0.0208 | ** |
C² | 0.7412 | 1 | 0.7412 | 0.0704 | 0.7946 | |
D² | 82.77 | 1 | 82.77 | 7.86 | 0.0141 | ** |
residual | 147.41 | 14 | 10.53 | |||
Lack of fit | 135.50 | 10 | 13.55 | 4.55 | 0.0787 | |
Pure error | 11.91 | 4 | 2.98 | |||
Cor total | 2569.49 | 28 | ||||
R-Squared = 0.9426, Adj R-Squared = 0.8853, Pred R-Squared = 0.6890, Adeq Precisior = 16.4656 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Xie, P.; Jin, J.; Jin, Q.; Wang, X. Removal of Zearalenone from Degummed Corn Oil by Hydrolase on a Batch-Refining Unit. Foods 2022, 11, 3795. https://doi.org/10.3390/foods11233795
Zhao C, Xie P, Jin J, Jin Q, Wang X. Removal of Zearalenone from Degummed Corn Oil by Hydrolase on a Batch-Refining Unit. Foods. 2022; 11(23):3795. https://doi.org/10.3390/foods11233795
Chicago/Turabian StyleZhao, Chenwei, Pengkai Xie, Jun Jin, Qingzhe Jin, and Xingguo Wang. 2022. "Removal of Zearalenone from Degummed Corn Oil by Hydrolase on a Batch-Refining Unit" Foods 11, no. 23: 3795. https://doi.org/10.3390/foods11233795
APA StyleZhao, C., Xie, P., Jin, J., Jin, Q., & Wang, X. (2022). Removal of Zearalenone from Degummed Corn Oil by Hydrolase on a Batch-Refining Unit. Foods, 11(23), 3795. https://doi.org/10.3390/foods11233795