Predicting Vaccination Intention against COVID-19 Using Theory of Planned Behavior: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Previous Systematic Reviews and Meta-Analyses
3. Methodology
3.1. Inclusion and Exclusion Criteria
3.2. Search Strategy
3.3. Data Extraction and Analysis
4. Results
4.1. Study Characteristics
4.2. Vaccination Intention Rate
4.3. TPB Constructs Associated with Vaccine Intention
Author(s) | Year of Publication | Country | Vaccine Intention % | Population | Sample Size | Survey Year | TPB Construct—Vaccination Intention Association | ||
---|---|---|---|---|---|---|---|---|---|
ATT | SN | PBC | |||||||
Almoayad et al. [69] | 2022 | Saudi Arabia | 47.43 | adult general population | 487 | 2021 | YES | YES | NS |
An et al. [70] | 2021 | Vietnam | 77.10 | student | 854 | 2021 | YES | NS | YES |
An et al. [71] | 2021 | Vietnam | 80.50 | patient | 462 | 2021 | YES | YES | YES |
Asmare et al. [72] | 2021 | Ethiopia | 64.90 | adult general population | 1080 | 2021 | YES | YES | YES |
Barattucci et al. [67] | 2022 | Italy | 83.71 | adult general population | 1095 | 2021 | YES | YES | RNR |
Berg and Lin [73] | 2021 | USA | 70.60 | adult general population | 350 | 2020 | YES | YES | NS |
Breslin et al. [74] | 2021 | Ireland | 66.70 | adult general population | 439 | 2021 | YES | NS | YES |
Callow and Callow [31] | 2021 | USA | 88.86 | adult general population | 583 | 2020 | YES | YES | NS |
Chu and Liu [75] | 2021 | USA | 82.10 | adult general population | 934 | 2020 | YES | YES | NS |
Dou et al. [63] | 2022 | China | 73.00 | adult general population | 405 | 2021 | NS | YES | YES |
Drążkowski and Trepanowski [76] | 2021 | Poland | 61.14 | adult general population | 551 | 2020 | YES | YES | YES |
Ekinci et al. [68] | 2022 | USA | 69.90 | adult general population | 1008 | - | YES | YES | RNR |
Fan et al. [77] | 2021 | China | 75.86 | Student | 3145 | 2021 | YES | NS | NS |
Goffe et al. [78] | 2021 | England | 62.20 | adult general population | 1660 | 2020 | YES | YES | NS |
Guidry et al. [79] | 2021 | USA | 59.90 | adult general population | 788 | 2020 | YES | YES | NS |
Hagger and Hamilton [80] | 2022 | USA | - | adult general population | 479 | 2021 | YES | YES | YES |
Hayashi et al. [81] | 2022 | USA | - | adult general population | 172 | 2021 | YES | NS | YES |
Husain et al. [82] | 2021 | India | 71.50 | adult general population | 400 | 2021 | YES | YES | YES |
Irfan et al. [66] | 2021 | Pakistan | - | adult general population | 754 | 2020 | YES | RNR | RNR |
Kaida et al. [61] | 2022 | Canada | 79.70 | patient | 69 | 2021 | YES | YES | RNR |
Khayyam et al. [83] | 2022 | Pakistan | - | healthcare worker | 680 | 2021 | YES | YES | YES |
Li et al. [62] | 2022 | Hong Kong | 31.00 | parent | 11141 | 2022 | YES | YES | NS |
Mir et al. [84] | 2021 | India | - | adult general population | 254 | - | YES | YES | RNR |
Ogilvie et al. [85] | 2021 | Canada | 79.80 | adult general population | 4948 | 2020 | YES | YES | NS |
Okai and Abekah-Nkrumah [86] | 2022 | Ghana | 62.70 | adult general population | 362 | 2021 | YES | NS | RNR |
Patwary et al. [64] | 2021 | Bangladesh | 85.00 | adult general population | 639 | 2021 | NS | NS | NS |
Prakash et al. [87] | 2022 | India | 83.54 | adult general population | 228 | 2021 | YES | YES | NS |
Qi et al. [88] | 2021 | China | 80.00 | patient | 350 | 2021 | RNR | YES | NS |
Rosental and Shmueli [89] | 2021 | Israel | 82.15 | student | 628 | 2020 | YES | NS | NS |
Rountree and Prentice [90] | 2021 | Ireland | 70.04 | adult general population | 1995 | 2020 | YES | YES | RNR |
Seddig et al. [91] | 2022 | Germany | - | adult general population | 5044 | 2021 | YES | YES | NS |
Servidio et al. [92] | 2022 | Italy | 81.40 | patient | 276 | 2021 | YES | YES | YES |
Shmueli [65] | 2021 | Israel | 80.00 | adult general population | 398 | 2020 | NS | YES | NS |
Sieverding et al. [93] | 2022 | Germany | 76.70 | adult general population | 1428 | 2020 | YES | YES | YES |
Thaker and Ganchoudhuri [94] | 2021 | New Zealand | 82.40 | adult general population | 650 | 2021 | YES | NS | NS |
Twum et al. [95] | 2021 | Ghana | 83.00 | adult general population | 478 | 2021 | YES | YES | YES |
Ullah et al. [96] | 2021 | Pakistan | 59.80 | adult general population | 1034 | 2020 | YES | YES | YES |
Wolff [97] | 2021 | Norway | 76.71 | adult general population | 1003 | 2020 | YES | YES | YES |
Yahaghi et al. [98] | 2021 | Iran | 76.80 | adult general population | 10843 | 2021 | YES | YES | YES |
Zhang et al. [99] | 2021 | China | 66.60 | factory worker | 2053 | 2020 | YES | YES | YES |
Zhang et al. [100] | 2020 | China | 72.60 | factory worker | 2053 | 2020 | YES | YES | YES |
Zhong et al. [101] | 2022 | China | 75.33 | nurse | 547 | 2021 | YES | YES | YES |
Zhou et al. [8] | 2022 | China | 87.30 | parent | 1602 | 2021 | YES | NS | YES |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 30 December 2021).
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 25 September 2022).
- Li, Y.; Tenchov, R.; Smoot, J.; Liu, C.; Watkins, S.; Zhou, Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent. Sci. 2021, 7, 512–533. [Google Scholar] [CrossRef] [PubMed]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef]
- World Health Organization. DRAFT Landscape of COVID-19 Candidate Vaccine. 22 January. 2021. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 22 January 2021).
- Hadj Hassine, I. Covid-19 vaccines and variants of concern: A review. Rev. Med. Virol. 2022, 32, e2313. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines (accessed on 25 September 2022).
- Zhou, M.; Liu, L.; Gu, S.Y.; Peng, X.Q.; Zhang, C.; Wu, Q.F.; Xu, X.P.; You, H. Behavioral Intention and Its Predictors toward COVID-19 Booster Vaccination among Chinese Parents: Applying Two Behavioral Theories. Int. J. Environ. Res. Public Health 2022, 19, 7520. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.E. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Kanyike, A.M.; Olum, R.; Kajjimu, J.; Ojilong, D.; Akech, G.M.; Nassozi, D.R.; Agira, D.; Wamala, N.K.; Asiimwe, A.; Matovu, D.; et al. Acceptance of the coronavirus disease-2019 vaccine among medical students in Uganda. Trop. Med. Health 2021, 49, 37. [Google Scholar] [CrossRef]
- Saied, S.M.; Saied, E.M.; Kabbash, I.A.; Abdo, S.A.E. Vaccine hesitancy: Beliefs and barriers associated with COVID-19 vaccination among Egyptian medical students. J. Med. Virol. 2021, 25, 19. [Google Scholar] [CrossRef]
- Lucia, V.C.; Kelekar, A.; Afonso, N.M. COVID-19 vaccine hesitancy among medical students. J. Public Health 2021, 43, 445–449. [Google Scholar] [CrossRef]
- Limbu, Y.B.; Gautam, R.K.; Pham, L. The Health Belief Model Applied to COVID-19 Vaccine Hesitancy: A Systematic Review. Vaccines 2022, 10, 973. [Google Scholar] [CrossRef]
- Khiri, N.M. Vaccine hesitancy among communities in ten countries in Asia, Africa, and South America during the COVID-19 pandemic. Pathog. Glob. Health 2022, 116, 236–243. [Google Scholar] [CrossRef]
- Alam, M.M.; Melhim, L.K.; Ahmad, M.T.; Jemmali, M. Public Attitude towards COVID-19 Vaccination: Validation of COVID-Vaccination Attitude Scale (C-VAS). J. Multidiscip. Healthc. 2022, 15, 941. [Google Scholar] [CrossRef] [PubMed]
- Gates, A.; Gates, M.; Rahman, S.; Guitard, S.; MacGregor, T.; Pillay, J.; Ismail, S.J.; Tunis, M.C.; Young, K.; Hardy, K.; et al. A systematic review of factors that influence the acceptability of vaccines among Canadians. Vaccine 2021, 39, 222–236. [Google Scholar] [CrossRef]
- Sharun, K.; Rahman, C.F.; Haritha, C.V.; Jose, B.; Tiwari, R.; Dhama, K. Covid-19 vaccine acceptance: Beliefs and barriers associated with vaccination among the general population in India. J. Exp. Biol. Agric. Sci. 2020, 8, 210–218. [Google Scholar] [CrossRef]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Taylor, S.; Landry, C.A.; Paluszek, M.M.; Groenewoud, R.; Rachor, G.S.; Asmundson, G.J. A proactive approach for managing COVID-19: The importance of understanding the motivational roots of vaccination hesitancy for SARS-CoV2. Front. Psychol. 2020, 11, 575950. [Google Scholar] [CrossRef]
- Harapan, H.; Wagner, A.L.; Yufika, A.; Winardi, W.; Sofyan, H.; Mudatsir, M. Acceptance of a COVID-19 vaccine in Southeast Asia: A cross-sectional study in Indonesia. Front. Public Health 2020, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Al-mohaithef, M.; Padhi, B.K. Determinants of COVID-19 vaccine acceptance in Saudi Arabia: A web-based National Survey. J. Multidiscip. Healthc. 2020, 13, 1657–1663. [Google Scholar] [CrossRef]
- Wang, J.; Jing, R.; Lai, X.; Zhang, H.; Lyu, Y.; Knoll, M.D.; Fang, H. Acceptance of COVID-19 vaccination during the COVID-19 pandemic in China. Vaccines 2020, 8, 482. [Google Scholar] [CrossRef]
- Chadwick, A.; Kaiser, J.; Vaccari, C.; Freeman, D.; Lambe, S.; Loe, B.S.; Vanderslott, S.; Lewandowsky, S.; Conroy, M.; Ross, A.R.; et al. Online social endorsement and Covid-19 vaccine hesitancy in the United Kingdom. Soc. Media+ Soc. 2021, 7, 20563051211008817. [Google Scholar] [CrossRef]
- Allington, D.; McAndrew, S.; Moxham-Hall, V.; Duffy, B. Coronavirus conspiracy suspicions, general vaccine attitudes, trust and coronavirus information source as predictors of vaccine hesitancy among UK residents during the COVID-19 pandemic. Psychol. Med. 2021, 12, 1–2. [Google Scholar] [CrossRef]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Barello, S.; Palamenghi, L.; Graffigna, G. Looking inside the “black box” of vaccine hesitancy: Unlocking the effect of psychological attitudes and beliefs on COVID-19 vaccine acceptance and implications for public health communication. Psychol. Med. 2021, 1–2. [Google Scholar] [CrossRef]
- Mannan, D.K.; Farhana, K.M. Knowledge, attitude and acceptance of a COVID-19 vaccine: A global cross-sectional study. Int. Res. J. Bus. Soc. Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Fisher, K.A.; Bloomstone, S.J.; Walder, J.; Crawford, S.; Fouayzi, H.; Mazor, K.M. Attitudes toward a potential SARS-CoV-2 vaccine: A survey of US adults. Ann. Intern. Med. 2020, 173, 964–973. [Google Scholar] [CrossRef]
- Corace, K.M.; Srigley, J.A.; Hargadon, D.P.; Yu, D.; MacDonald, T.K.; Fabrigar, L.R.; Garber, G.E. Using behavior change frameworks to improve healthcare worker influenza vaccination rates: A systematic review. Vaccine 2016, 34, 3235–3242. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, S.L.; Weiss, T.W.; Zimet, G.D.; Ma, L.; Good, M.B.; Vichnin, M.D. Predictors of HPV vaccine uptake among women aged 19–26: Importance of a physician’s recommendation. Vaccine 2011, 29, 890–895. [Google Scholar] [CrossRef]
- Callow, M.A.; Callow, D.D. Older adults’ behavior intentions once a COVID-19 vaccine becomes available. J. Appl. Gerontol. 2021, 40, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I.; Fishbein, M. Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychol. Bull. 1977, 84, 888–918. [Google Scholar] [CrossRef]
- Lutz, S. The theory of planned behaviour and the impact of past behavior. Int. Bus. Econ. Res. J. 2011, 10, 91–110. [Google Scholar]
- Lu, W.; Yuan, L.; Xu, J.; Xue, F.; Zhao, B.; Webster, C. The psychological effects of quarantine during COVID-19 outbreak: Sentiment analysis of social media data. medRxiv 2020. [Google Scholar] [CrossRef]
- Adiyoso, W.; Wilopo, W. Social distancing intentions to reduce the spread of COVID-19: The extended theory of planned behavior. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Rosenstock, I.M.; Strecher, V.J.; Becker, M.H. Social learning theory and the health belief model. Health Educ. Q. 1988, 15, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ko, N.Y.; Feng, M.C.; Chiu, D.Y.; Wu, M.H.; Feng, J.Y.; Pan, S.M. Applying theory of planned behavior to predict nurses’ intention and volunteering to care for SARS patients in southern Taiwan. Kaohsiung J. Med. Sci. 2004, 20, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zintel, S.; Flock, C.; Arbogast, A.L.; Forster, A.; von Wagner, C.; Sieverding, M. Gender differences in the intention to get vaccinated against COVID-19: A systematic review and meta-analysis. Z. Gesundh. Wiss. 2022, 7, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Galanis, P.A.; Vraka, I.; Fragkou, D.; Bilali, A.; Kaitelidou, D. Intention of health care workers to accept COVID-19 vaccination and related factors: A systematic review and meta-analysis. medRxiv 2020. [Google Scholar] [CrossRef]
- Al-Amer, R.; Maneze, D.; Everett, B.; Montayre, J.; Villarosa, A.R.; Dwekat, E.; Salamonson, Y. COVID-19 vaccination intention in the first year of the pandemic: A systematic review. J. Clin. Nurs. 2022, 31, 62–86. [Google Scholar] [CrossRef]
- Lin, C.; Tu, P.; Beitsch, L.M. Confidence and receptivity for COVID-19 vaccines: A rapid systematic review. Vaccines 2021, 9, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y. Multilevel determinants of COVID-19 vaccination hesitancy in the United States: A rapid systematic review. Prev. Med. Rep. 2021, 16, 101673. [Google Scholar] [CrossRef]
- AlShurman, B.A.; Khan, A.F.; Mac, C.; Majeed, M.; Butt, Z.A. What demographic, social, and contextual factors influence the intention to use COVID-19 vaccines: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 9342. [Google Scholar] [CrossRef]
- Patwary, M.M.; Alam, M.A.; Bardhan, M.; Disha, A.S.; Haque, M.Z.; Billah, S.M.; Kabir, M.P.; Browning, M.H.; Rahman, M.M.; Parsa, A.D.; et al. COVID-19 Vaccine Acceptance among Low-and Lower-Middle-Income Countries: A Rapid Systematic Review and Meta-Analysis. Vaccines 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Willems, L.D.; Dyzel, V.; Sterkenburg, P.S. COVID-19 Vaccination Intentions amongst Healthcare Workers: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 10192. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, L.; Jin, H.; Lin, L. Vaccination against COVID-19: A systematic review and meta-analysis of acceptability and its predictors. Prev. Med. 2021, 150, 106694. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; He, Y.; Shi, Y. Parents’ and guardians’ willingness to vaccinate their children against COVID-19: A systematic review and meta-analysis. Vaccines 2022, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, C.S.; Mujeeb, A.A.; Mirza, M.S.; Chaudhry, B.; Khan, S.J. Global COVID-19 vaccine acceptance: A systematic review of associated social and behavioral factors. Vaccines 2022, 10, 110. [Google Scholar] [CrossRef]
- Sallam, M.; Al-Sanafi, M.; Sallam, M. A global map of COVID-19 vaccine acceptance rates per country: An updated concise narrative review. J. Multidiscip. Healthc. 2022, 15, 21. [Google Scholar] [CrossRef]
- Roy, D.N.; Biswas, M.; Islam, E.; Azam, M.S. Potential factors influencing COVID-19 vaccine acceptance and hesitancy: A systematic review. PLoS ONE 2022, 17, e0265496. [Google Scholar] [CrossRef]
- Renzi, E.; Baccolini, V.; Migliara, G.; Bellotta, C.; Ceparano, M.; Donia, P.; Marzuillo, C.; De Vito, C.; Villari, P.; Massimi, A. Mapping the Prevalence of COVID-19 Vaccine Acceptance at the Global and Regional Level: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1488. [Google Scholar] [CrossRef]
- Terry, E.; Cartledge, S.; Damery, S.; Greenfield, S. Factors associated with COVID-19 vaccine intentions during the COVID-19 pandemic; a systematic review and meta-analysis of cross-sectional studies. BMC Public Health 2022, 22, 1667. [Google Scholar] [CrossRef]
- Alarcón-Braga, E.A.; Hernandez-Bustamante, E.A.; Salazar-Valdivia, F.E.; Valdez-Cornejo, V.A.; Mosquera-Rojas, M.D.; Ulloque-Badaracco, J.R.; Rondon-Saldaña, J.C.; Zafra-Tanaka, J.H. Acceptance towards Covid-19 vaccination in Latin America and the Caribbean: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2022, 49, 102369. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 1, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; Wiley: Chichester, UK, 2009. [Google Scholar]
- Peterson, R.A.; Brown, S.P. On the use of beta coefficients in meta-analysis. J. Appl. Psychol. 2005, 90, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Field, A.P.; Gillett, R. How to do a meta-analysis. Br. J. Math. Stat. Psychol. 2010, 63, 665–694. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Kaida, A.; Brotto, L.A.; Murray, M.; Côté, H.C.; Albert, A.Y.; Nicholson, V.; Gormley, R.; Gordon, S.; Booth, A.; Smith, L.W.; et al. Intention to receive a COVID-19 vaccine by HIV status among a population-based sample of women and gender diverse individuals in British Columbia, Canada. AIDS Behav. 2022, 26, 2242–2255. [Google Scholar] [CrossRef] [PubMed]
- Li, J.B.; Lau, E.Y.H.; Chan, D.K.C. Why do Hong Kong parents have low intention to vaccinate their children against COVID-19? Testing health belief model and theory of planned behavior in a large-scale survey. Vaccine 2022, 40, 2772–2780. [Google Scholar] [CrossRef] [PubMed]
- Dou, K.; Yang, J.; Wang, L.X.; Li, J.B. Theory of planned behavior explains males’ and females’ intention to receive COVID-19 vaccines differently. Hum. Vaccines Immunother. 2022, 18, 2086393. [Google Scholar] [CrossRef]
- Patwary, M.M.; Bardhan, M.; Disha, A.S.; Hasan, M.; Haque, M.Z.; Sultana, R.; Hossain, M.R.; Browning, M.H.; Alam, M.A.; Sallam, M. Determinants of COVID-19 vaccine acceptance among the adult population of Bangladesh using the health belief model and the theory of planned behavior model. Vaccines 2021, 9, 1393. [Google Scholar] [CrossRef]
- Shmueli, L. Predicting intention to receive COVID-19 vaccine among the general population using the health belief model and the theory of planned behavior model. BMC Public Health 2021, 21, 804. [Google Scholar] [CrossRef]
- Irfan, M.; Shahid, A.L.; Ahmad, M.; Iqbal, W.; Elavarasan, R.M.; Ren, S.; Hussain, A. Assessment of public intention to get vaccination against COVID-19: Evidence from a developing country. J. Eval. Clin. Pract. 2022, 28, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Barattucci, M.; Pagliaro, S.; Ballone, C.; Teresi, M.; Consoli, C.; Garofalo, A.; De Giorgio, A.; Ramaci, T. Trust in Science as a Possible Mediator between Different Antecedents and COVID-19 Booster Vaccination Intention: An Integration of Health Belief Model (HBM) and Theory of Planned Behavior (TPB). Vaccines 2022, 10, 1099. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, Y.; Gursoy, D.; Can, A.S.; Williams, N.L. Does travel desire influence COVID-19 vaccination intentions? J. Hosp. Mark. Manag. 2022, 31, 413–430. [Google Scholar] [CrossRef]
- Almoayad, F.; Bin-Amer, L.A.; Althubyani, N.T.; Alajmi, S.M.; Alshammari, A.A.; Alsuwayal, R.A. The general public’s intent to receive a COVID-19 vaccine in Saudi Arabia. Int. J. Health Promot. Educ. 2022, 1–16. [Google Scholar] [CrossRef]
- An, P.L.; Nguyen, H.; Nguyen, D.D.; Vo, L.Y.; Huynh, G. The intention to get a COVID-19 vaccine among the students of health science in Vietnam. Hum. Vaccines Immunother. 2021, 17, 4823–4828. [Google Scholar] [CrossRef]
- An, P.L.; Nguyen, H.T.N.; Dang, H.T.B.; Huynh, Q.N.H.; Pham, B.D.U.; Huynh, G. Integrating Health Behavior Theories to Predict Intention to Get a COVID-19 Vaccine. Health Serv. Insights 2021, 14, 11786329211060130. [Google Scholar] [CrossRef]
- Asmare, G.; Abebe, K.; Atnafu, N.; Asnake, G.; Yeshambel, A.; Alem, E.; Chekol, E.; Asmamaw, T. Behavioral intention and its predictors toward COVID-19 vaccination among people most at risk of exposure in Ethiopia: Applying the theory of planned behavior model. Hum. Vaccines Immunother. 2021, 17, 4838–4845. [Google Scholar] [CrossRef]
- Berg, M.B.; Lin, L. Predictors of COVID-19 vaccine intentions in the United States: The role of psychosocial health constructs and demographic factors. Transl. Behav. Med. 2021, 11, 1782–1788. [Google Scholar] [CrossRef]
- Breslin, G.; Dempster, M.; Berry, E.; Cavanagh, M.; Armstrong, N.C. COVID-19 vaccine uptake and hesitancy survey in Northern Ireland and Republic of Ireland: Applying the theory of planned behaviour. PLoS ONE 2021, 16, e0259381. [Google Scholar] [CrossRef]
- Chu, H.; Liu, S. Integrating health behavior theories to predict American’s intention to receive a COVID-19 vaccine. Patient Educ. Couns. 2021, 104, 1878–1886. [Google Scholar] [CrossRef]
- Drążkowski, D.; Trepanowski, R. Reactance and perceived disease severity as determinants of COVID-19 vaccination intention: An application of the theory of planned behavior. Psychol. Health Med. 2022, 27, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.W.; Chen, I.H.; Ko, N.Y.; Yen, C.F.; Lin, C.Y.; Griffiths, M.D.; Pakpour, A.H. Extended theory of planned behavior in explaining the intention to COVID-19 vaccination uptake among mainland Chinese university students: An online survey study. Hum. Vaccines Immunother. 2021, 17, 3413–3420. [Google Scholar] [CrossRef]
- Goffe, L.; Antonopoulou, V.; Meyer, C.J.; Graham, F.; Tang, M.Y.; Lecouturier, J.; Grimani, A.; Bambra, C.; Kelly, M.P.; Sniehotta, F.F. Factors associated with vaccine intention in adults living in England who either did not want or had not yet decided to be vaccinated against COVID-19. Hum. Vaccines Immunother. 2021, 17, 5242–5254. [Google Scholar] [CrossRef] [PubMed]
- Guidry, J.P.; Laestadius, L.I.; Vraga, E.K.; Miller, C.A.; Perrin, P.B.; Burton, C.W.; Ryan, M.; Fuemmeler, B.F.; Carlyle, K.E. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am. J. Infect. Control 2021, 49, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Hagger, M.S.; Hamilton, K. Predicting COVID-19 booster vaccine intentions. Appl. Psychol. Health Well-Being 2022, 14, 819–841. [Google Scholar] [CrossRef]
- Hayashi, Y.; Romanowich, P.; Hantula, D.A. Predicting Intention to Take a COVID-19 Vaccine in the United States: Application and Extension of Theory of Planned Behavior. Am. J. Health Promot. 2022, 36, 710–713. [Google Scholar] [CrossRef]
- Husain, F.; Shahnawaz, M.G.; Khan, N.H.; Parveen, H.; Savani, K. Intention to get COVID-19 vaccines: Exploring the role of attitudes, subjective norms, perceived behavioral control, belief in COVID-19 misinformation, and vaccine confidence in Northern India. Hum. Vaccines Immunother. 2021, 17, 3941–3953. [Google Scholar] [CrossRef]
- Khayyam, M.; Chuanmin, S.; Salim, M.A.; Nizami, A.; Ali, J.; Ali, H.; Khan, N.; Ihtisham, M.; Anjum, R. COVID-19 Vaccination Behavior Among Frontline Healthcare Workers in Pakistan: The Theory of Planned Behavior, Perceived Susceptibility, and Anticipated Regret. Front. Psychol. 2022, 13, 808338. [Google Scholar] [CrossRef]
- Mir, H.H.; Parveen, S.; Mullick, N.H.; Nabi, S. Using structural equation modeling to predict Indian people’s attitudes and intentions towards COVID-19 vaccination. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 1017–1022. [Google Scholar] [CrossRef]
- Ogilvie, G.S.; Gordon, S.; Smith, L.W.; Albert, A.; Racey, C.S.; Booth, A.; Gottschlich, A.; Goldfarb, D.; Murray, M.; Galea, L.A.; et al. Intention to receive a COVID-19 vaccine: Results from a population-based survey in Canada. BMC Public Health 2021, 21, 1017. [Google Scholar] [CrossRef]
- Okai, G.A.; Abekah-Nkrumah, G. The level and determinants of COVID-19 vaccine acceptance in Ghana. PLoS ONE 2022, 17, e0270768. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Jeyakumar Nathan, R.; Kini, S.; Victor, V. Message framing and COVID-19 vaccine acceptance among millennials in South India. PLoS ONE 2022, 17, e0269487. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Yang, L.; Ge, J.; Yu, L.; Li, X. COVID-19 Vaccination Behavior of People Living with HIV: The Mediating Role of Perceived Risk and Vaccination Intention. Vaccines 2021, 9, 1288. [Google Scholar] [CrossRef]
- Rosental, H.; Shmueli, L. Integrating health behavior theories to predict COVID-19 vaccine acceptance: Differences between medical students and nursing students. Vaccines 2021, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Rountree, C.; Prentice, G. Segmentation of intentions towards COVID-19 vaccine acceptance through political and health behaviour explanatory models. Ir. J. Med. Sci. 2022, 191, 2369–2383. [Google Scholar] [CrossRef]
- Seddig, D.; Maskileyson, D.; Davidov, E.; Ajzen, I.; Schmidt, P. Correlates of COVID-19 vaccination intentions: Attitudes, institutional trust, fear, conspiracy beliefs, and vaccine skepticism. Soc. Sci. Med. 2022, 302, 114981. [Google Scholar] [CrossRef]
- Servidio, R.; Malvaso, A.; Vizza, D.; Valente, M.; Campagna, M.R.; Iacono, M.L.; Martin, L.R.; Bruno, F. The intention to get COVID-19 vaccine and vaccine uptake among cancer patients: An extension of the theory of planned behaviour (TPB). Support. Care Cancer 2022, 30, 7973–7982. [Google Scholar] [CrossRef]
- Sieverding, M.; Zintel, S.; Schmidt, L.; Arbogast, A.L.; von Wagner, C. Explaining the intention to get vaccinated against COVID-19: General attitudes towards vaccination and predictors from health behavior theories. Psychol. Health Med. 2022, 1–10. [Google Scholar] [CrossRef]
- Thaker, J.; Ganchoudhuri, S. The role of attitudes, norms, and efficacy on shifting COVID-19 vaccine Intentions: A longitudinal study of COVID-19 vaccination intentions in New Zealand. Vaccines 2021, 9, 1132. [Google Scholar] [CrossRef]
- Twum, K.K.; Ofori, D.; Agyapong, G.K.Q.; Yalley, A.A. Intention to vaccinate against COVID-19: A social marketing perspective using the theory of planned behaviour and health belief model. J. Soc. Mark. 2021, 11, 549–574. [Google Scholar] [CrossRef]
- Ullah, I.; Lin, C.Y.; Malik, N.I.; Wu, T.Y.; Araban, M.; Griffiths, M.D.; Pakpour, A.H. Factors affecting Pakistani young adults’ intentions to uptake COVID-19 vaccination: An extension of the theory of planned behavior. Brain Behav. 2021, 11, e2370. [Google Scholar] [CrossRef] [PubMed]
- Wolff, K. COVID-19 vaccination intentions: The theory of planned behavior, optimistic bias, and anticipated regret. Front. Psychol. 2021, 2404. [Google Scholar] [CrossRef] [PubMed]
- Yahaghi, R.; Ahmadizade, S.; Fotuhi, R.; Taherkhani, E.; Ranjbaran, M.; Buchali, Z.; Jafari, R.; Zamani, N.; Shahbazkhania, A.; Simiari, H.; et al. Fear of COVID-19 and perceived COVID-19 infectability supplement theory of planned behavior to explain Iranians’ intention to get COVID-19 vaccinated. Vaccines 2021, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.C.; Fang, Y.; Cao, H.; Chen, H.; Hu, T.; Chen, Y.; Zhou, X.; Wang, Z. Behavioral intention to receive a COVID-19 vaccination among Chinese factory workers: Cross-sectional online survey. J. Med. Internet Res. 2021, 23, e24673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.C.; Fang, Y.; Cao, H.; Chen, H.; Hu, T.; Chen, Y.Q.; Zhou, X.; Wang, Z. Parental acceptability of COVID-19 vaccination for children under the age of 18 years: Cross-sectional online survey. JMIR Pediatr. Parent. 2020, 3, e24827. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, H.; Wang, X.; Ji, J. Using the theory of planned behaviour to explain junior nurses’ and final-year student nurses’ intention to care for COVID-19 patients in China: A multisite cross-sectional study. J. Nurs. Manag. 2022, 1–9. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Idris, I.O.; Ayeni, G.O.; Adebisi, Y.A. Why many African countries may not achieve the 2022 COVID-19 vaccination coverage target. Trop. Med. Health 2022, 50, 15. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). COVID Data Tracker; US Department of Health and Human Services: Atlanta, GA, USA, 2022. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 10 February 2022).
- Verger, P.; Dubé, E. Restoring confidence in vaccines in the COVID-19 era. Expert Rev. Vaccines 2020, 19, 991–993. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Wong, P.F.; Lee, H.Y.; AbuBakar, S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum. Vaccines Immunother. 2020, 16, 2204–2214. [Google Scholar] [CrossRef]
- CDC. COVID-19 hospitalization and death by race/ethnicity. In Centers for Disease Control and Prevention; CDC: Atlanta, GA, USA, 2020. [Google Scholar]
- Hawkins, R.B.; Charles, E.J.; Mehaffey, J.H. Socioeconomic Status and Coronavirus Disease 2019 (COVID-19) Related Cases and Fatalities. Public Health 2020, 189, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Wieber, F.; Thürmer, J.L.; Gollwitzer, P.M. Promoting the translation of intentions into action by implementation intentions: Behavioral effects and physiological correlates. Front. Hum. Neurosci. 2015, 9, 395. [Google Scholar] [CrossRef] [PubMed]
Search | Search Terms (Boolean Operators) |
---|---|
#1 | “theory of planned behav*” AND “vaccination intent*” OR vaccine accept*” AND “COVID-19” |
#2 | “theory of planned behav*” AND “vaccination intent*” OR vaccine accept*” AND “coronavirus” |
#3 | “theory of planned behav*” AND “vaccination intent*” OR vaccine accept*”AND “SARS-CoV-2” |
#4 | “theory of planned behav*” AND “vaccin* intent*” OR “vaccin* accept*” AND “COVID-19” OR “coronavirus” OR “SARS-CoV-2” |
Group | # of Studies | Effect Size (95% CI) | Z-Value | p-Value | Q-Value | p-Value | I2 |
---|---|---|---|---|---|---|---|
Continent | |||||||
Africa | 2 | 0.33 [0.28, 0,37] | 13.34 | 0.00 | 12.92 | 0.00 | 92.26 |
Asia | 18 | 0.65 [0.64, 0.66] | 148.90 | 0.00 | 6362.99 | 0.00 | 99.73 |
Europe | 7 | 0.63 [0.62, 0.63] | 81.05 | 0.00 | 1903.42 | 0.00 | 99.68 |
North America | 9 | 0.34 [0.32, 0.35] | 33.65 | 0.00 | 1643.74 | 0.00 | 99.51 |
Oceania | 2 | 0.70 [0.67, 0.72] | 30.86 | 0.00 | 9.57 | 0.00 | 89.56 |
Total within | 9932.65 | 0.00 | |||||
Total between | 1632.95 | 0.00 | |||||
Population | |||||||
Adult general | 27 | 0.58 [0.57, 0.58] | 129.28 | 0.00 | 5941.28 | 0.00 | 99.56 |
Factory worker | 2 | 0.10 [0.07, 0.13] | 6.28 | 0.00 | 9.44 | 0.00 | 89.41 |
Healthcare worker | 2 | 0.30 [0.26, 0.36] | 11.18 | 0.00 | 6.31 | 0.01 | 84.15 |
Parent | 1 | 0.84 [0.83, 0.85] | 128.88 | 0.00 | 0.00 | 1.00 | 0.00 |
Patient | 3 | 0.53 [0.47, 0.57] | 16.54 | 0.00 | 290.81 | 0.00 | 99.31 |
Student | 3 | 0.39 [0.36, 0.41] | 27.72 | 0.00 | 156.97 | 0.00 | 98.73 |
Total within | 6404.81 | 0.00 | |||||
Total between | 5160.79 | 0.00 |
Group | # of Studies | Effect Size (95% CI) | Z-Value | p-Value | Q-Value | p-Value | I2 |
---|---|---|---|---|---|---|---|
Continent | |||||||
Africa | 2 | 0.25 [0.20, 0.29] | 10.00 | 0.00 | 141.79 | 0.00 | 99.29 |
Asia | 19 | 0.52 [0.51, 0.53] | 110.42 | 0.00 | 3731.04 | 0.00 | 99.52 |
Europe | 8 | 0.17 [0.16, 0.19] | 19.41 | 0.00 | 1318.08 | 0.00 | 99.47 |
North America | 7 | 0.27 [0.25, 0.29] | 24.25 | 0.00 | 1116.75 | 0.00 | 99.46 |
Oceania | 2 | 0.62 [0.59, 0.66] | 26.35 | 0.00 | 12.51 | 0.00 | 92.01 |
Total within | 6320.19 | 0.00 | |||||
Total between | 1948.53 | 0.00 | |||||
Population | |||||||
Adult general | 26 | 0.41 [0.40, 0.42] | 84.38 | 0.00 | 5710.76 | 0.00 | 99.56 |
Factory worker | 2 | 0.24 [0.21, 0.26] | 15.41 | 0.00 | 85.40 | 0.00 | 98.83 |
Healthcare worker | 2 | 0.35 [0.30, 0.40] | 12.93 | 0.00 | 94.64 | 0.00 | 98.94 |
Parent | 1 | 0.63 [0.62, 0.64] | 78.25 | 0.00 | 0.00 | 1.00 | 0.00 |
Patient | 4 | 0.59 [0.56, 0.63] | 23.37 | 0.00 | 183.86 | 0.00 | 98.37 |
Student | 3 | −0.01 [−0.04, 0.02] | −0.78 | 0.43 | 3.75 | 0.15 | 46.61 |
Total within | 6078.42 | 0.00 | |||||
Total between | 2190.30 | 0.00 |
Group | # of Studies | Effect Size (95% CI) | Z-Value | p-Value | Q-Value | p-Value | I2 |
---|---|---|---|---|---|---|---|
Continent | |||||||
Africa | 2 | 0.46 [0.42, 0.50] | 19.67 | 0.00 | 88.76 | 0.00 | 98.87 |
Asia | 15 | 0.38 [0.37, 0.39] | 74.76 | 0.00 | 1089.85 | 0.00 | 98.72 |
Europe | 7 | 0.09 [0.08, 0.11] | 10.06 | 0.00 | 663.56 | 0.00 | 99.10 |
North America | 6 | 0.04 [0.01, 0.06] | 3.09 | 0.00 | 12.08 | 0.03 | 58.60 |
Total within | 1854.25 | 0.00 | |||||
Total between | 1370.10 | 0.00 | |||||
Population | |||||||
Adult general | 20 | 0.27 [0.26, 0.28] | 51.13 | 0.00 | 2838.61 | 0.00 | 99.33 |
Factory worker | 2 | 0.13 [0.10, 0.16] | 8.12 | 0.00 | 6.78 | 0.01 | 85.25 |
Healthcare worker | 2 | 0.37 [0.32, 0.42] | 13.68 | 0.00 | 37.62 | 0.00 | 97.34 |
Parent | 1 | 0.36 [0.34, 0.38] | 39.78 | 0.00 | 0.00 | 1.00 | 0.00 |
Patient | 3 | 0.43 [0.37, 0.48] | 12.83 | 0.00 | 112.90 | 0.00 | 98.23 |
Student | 2 | 0.28 [0.25, 0.31] | 18.21 | 0.00 | 0.00 | 0.96 | 0.00 |
Total within | 2995.92 | 0.00 | |||||
Total between | 228.44 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limbu, Y.B.; Gautam, R.K.; Zhou, W. Predicting Vaccination Intention against COVID-19 Using Theory of Planned Behavior: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 2026. https://doi.org/10.3390/vaccines10122026
Limbu YB, Gautam RK, Zhou W. Predicting Vaccination Intention against COVID-19 Using Theory of Planned Behavior: A Systematic Review and Meta-Analysis. Vaccines. 2022; 10(12):2026. https://doi.org/10.3390/vaccines10122026
Chicago/Turabian StyleLimbu, Yam B., Rajesh K. Gautam, and Wencang Zhou. 2022. "Predicting Vaccination Intention against COVID-19 Using Theory of Planned Behavior: A Systematic Review and Meta-Analysis" Vaccines 10, no. 12: 2026. https://doi.org/10.3390/vaccines10122026
APA StyleLimbu, Y. B., Gautam, R. K., & Zhou, W. (2022). Predicting Vaccination Intention against COVID-19 Using Theory of Planned Behavior: A Systematic Review and Meta-Analysis. Vaccines, 10(12), 2026. https://doi.org/10.3390/vaccines10122026