Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials
Abstract
:1. Introduction
2. Aims
3. Methods
3.1. Protocol
3.2. Eligibility Criteria
3.3. Information Sources
3.4. Search
3.5. Selection of Sources of Evidence
3.6. Data Extraction
3.7. Synthesis of Results
4. Results
4.1. Selection of Sources of Evidence
4.2. Characteristics of Sources of Evidence
4.2.1. Remifentanil Trials
4.2.2. Fentanyl Trials
4.2.3. Morphine Trials
4.3. Results of Individual Sources of Evidence
Author and Year | Intervention | Study Groups | Dose and Administration | Injury |
---|---|---|---|---|
Cui et al. (2009) [33] | Lidocaine | (1) Propofol, (2) propofol and remifentanil, (3) propofol and lidocaine, (4) propofol and remifentanil and lidocaine | 7.25 mg i.v. infusion for 120 min | PI |
Gu et al. (2009) [59] | Ketamine | (1) Saline, (2) remifentanil, (3) remifentanil and ketamine | 10 mg/kg s.c. | PI |
Zheng et al. (2012) [60] | Dexmedetomidine | (1) Saline, (2) remifentanil, (3) dexmedetomidine 12.5 μg/kg and remifentanil, (4) dexmedetomidine 25 μg/kg and remifentanil, (5) dexmedetomidine 50 μg/kg and remifentanil | 12.5 μg/kg, 25 μg/kg, 50 μg/kg s.c. | PI |
Aguado et al. (2013) [28] | Naloxone | (1) Saline, (2) remifentanil, (3) remifentanil and naloxone | 10 ng/kg i.v. bolus and 0.17 ng/kg/min i.v. infusion | N/A |
Jiang et al. (2013) [61] | Ro 25-6981 | (1) Saline, (2) remifentanil, (3) Ro 25-6981 200 μg and remifentanil, (4) Ro 25-6981 400 μg and remifentanil, (5) Ro 25-6981 800 μg and remifentanil | 200 μg, 400 μg, 800 μg i.t. | PI |
Li et al. (2013) [62] | TDZD-8 | (1) Saline, (2) remifentanil, (3) remifentanil and TDZD-8 | 1.0 μg/kg/min i.v. infusion for 1 h | N/A |
Yuan et al. (2013) [63] | TDZD-8 | (1) Saline, (2) remifentanil, (3) TDZD-8 and remifentanil | 1 mg/kg i.v. infusion | PI |
Li et al. (2014) [36] | LiCl or TDZD-8 | (1) Saline, (2) remifentanil, (3) LiCl and remifentanil, (4) TDZD-8 and remifentanil | LiCl: 100 mg/kg i.v. infusion. TDZD-8: 1 μg/kg i.v. infusion. | PI |
Sun et al. (2014) [64] | JWH015 | (1) Vehicle, (2) remifentanil, (3) JWH015 and remifentanil | 10 μg i.v. | PI |
Liu et al. (2014) [65] | Roscovitine | (1) Saline, (2) remifentanil, (3) roscovitine 25 μg and remifentanil, (4) roscovitine 50 μg and remifentanil, (5) roscovitine 100 μg and remifentanil | 25 μg, 50 μg, 100 μg i.t. | PI |
Zhang et al. (2014) [66] | Hydrogen-rich saline and/or Ro 25-6981 | (1) Saline, (2) remifentanil, (3) HRS 10 mL/kg and remifentanil #, (4) HRS 2.5 mL/kg and remifentanil, (5) remifentanil and Ro 25-6981 5 μg #, (6) remifentanil and Ro 25-6981 10 μg, (7) remifentanil and Ro 25-6981 50 μg, (8) HRS 2.5 mL/kg and remifentanil and Ro 25-6981 5 μg | HRS: 10 mL/kg, 2.5 mL/kg i.p. Ro 25-6981: 5 μg, 10 μg, 50 μg i.t. | PI |
Aguado et al. (2015) [29] | Amitriptyline or minocycline or maropitant | (1) Saline, (2) remifentanil, (3) amitriptyline and remifentanil #, (4) minocycline and remifentanil #, (5) maropitant and remifentanil # | Amitriptyline: 50 mg/kg i.p. Minocycline: 100 mg/kg i.p. Maropitant: 30 mg/kg i.p. | N/A |
Jiang et al. (2015) [67] | KN93 | (1) Saline, (2) remifentanil, (3) KN93 25 μg/kg and remifentanil #, (4) KN93 50 μg/kg and remifentanil, (5) KN93 100 μg/kg and remifentanil | 25 μg/kg, 50 μg/kg, 100 μg/kg i.t. | PI |
Sun et al. (2015) [68] | Magnesium or ketamine | (1) Saline, (2) remifentanil, (3) ketamine and remifentanil, (4) magnesium 100 μg and remifentanil, (5) magnesium 300 μg and remifentanil | Ketamine: 10 μg i.t. Magnesium: 100 μg, 300 μg i.t. | PI |
Wang et al. (2015) [69] | Naltrindole | (1) Saline, (2) remifentanil, (3) naltrindole and remifentanil | 10 μL of 30 nM i.t. | PI |
Zhang et al. (2015) [70] | PHA-543613 and/or PNU-120596 | (1) Saline, (2) remifentanil, (3) PHA 3 μg and remifentanil, (4) PHA 6 μg and remifentanil, (5) PHA 12 μg and remifentanil, (6) PHU 2 μg and remifentanil, (7) PHU 4 μg and remifentanil, (8) PHU 8 μg and remifentanil, (9) PHA 6 μg and PHU 4 μg and remifentanil | PHA-543613: 3 μg, 6 μg, 12 μg i.t. PNU-120596: 2 μg, 4 μg, 8 μg i.t. | PI |
Cui et al. (2016) [32] | Lidocaine | (1) Experimentally naïve, (2) remifentanil, (3) lidocaine and remifentanil | 200 mg/kg/min i.v. infusion | N/A |
Gu et al. (2017) [37] | PNU-120596 or BDNF-sequester TrkB/Fc | (1) Saline, (2) remifentanil, (3) BDNF-sequester TrkB/Fc and remifentanil, (4) PNU-120596 and remifentanil | PNU-120596: 8 µg/kg i.t. BDNF-sequester TrkB/Fc: 5 µg i.t. | PI |
Liu et al. (2017) [34] | N-acetyl-cysteine | (1) Saline, (2) remifentanil, (3) remifentanil and NAC 25 mg/kg, (4) remifentanil and NAC 75 mg/kg, (5) remifentanil and NAC 150 mg/kg | 25 mg/kg, 75 mg/kg, 150 mg/kg i.p. | PI |
Liu et al. (2017) [71] | Naltrindole | (1) Saline, (2) remifentanil, (3) remifentanil and naltrindole | 10 μL of 30 nM i.t. | PI |
Sun et al. (2017) [72] | Magnesium | (1) Remifentanil, (2) magnesium 100 μg and remifentanil, (3) magnesium 300 μg and remifentanil | 100 μg, 300 μg i.t. | PI |
Yuan et al. (2017) [63] | Dexmedetomidine | (1) Saline, (2) remifentanil, (3) dexmedetomidine and remifentanil | 50 μg/kg s.c. | PI |
Lv et al. (2018) [35] | Betulinic acid | (1) Vehicle, (2) remifentanil, (3) betulinic acid and remifentanil | 25 mg/kg i.g. for 7 days | PI |
Li et al. (2019) [73] | Anxa1(2-26) | (1) Saline, (2) remifentanil, (3) Anxa1(2-26) 5 μg and remifentanil #, (4) Anxa1(2-26) 50 μg and remifentanil, (5) Anxa1(2-26) 500 μg and remifentanil | 5 μg, 50 μg, 500 μg i.t. | N/A |
Gao et al. (2020) [74] | IWP-2 or Ro 25-6981 | (1) Saline, (2) remifentanil, (3) IWP-2 60 μM and remifentanil #, (4) IWP-2 120 μM and remifentanil, (5) IWP-2 180 μM and remifentanil, (6) Ro 25-6981 and remifentanil | IWP-2: 60 μM, 120 μM, 180 μM i.t. In 10 μL. Ro25-6981: 1.5μg i.t. | PI |
Qi et al. (2020) [30] | Ketamine and/or KN93 | (1) Saline, (2) remifentanil, (3) ketamine 1.4 mg/kg and remifentanil, (4) ketamine 2.1 mg/kg and remifentanil, (5) ketamine 2.8 mg/kg and remifentanil, (6) KN93 50 μg/kg and remifentanil, (7) KN93 75 μg/kg and remifentanil, (8) KN93 100 μg/kg and remifentanil, (9) KN93 100 μg/kg and ketamine 2.1 mg/kg and remifentanil | Ketamine: 1.4 mg/kg, 2.1 mg/kg, 2.8 mg/kg s.c. infusion. KN93: 50 μg/kg, 75 μg/kg, 100 μg/kg i.t. | PI |
Zhou et al. (2020) [31] | Dezocine | (1) Saline, (2) remifentanil, (3) dezocine 1.5 mg/kg and remifentanil #, (4) dezocine 3 mg/kg and remifentanil, (5) dezocine 6 mg/kg and remifentanil, (6) ketamine and remifentanil | Dezocine: 1.5 mg/kg, 3 mg/kg, 6 mg/kg s.c. infusion. Ketamine: 2.8 mg/kg s.c. infusion. | PI |
Author & Year | Intervention | Study Groups | Dose & Administration | Injury |
---|---|---|---|---|
Célèrier et al. (2000) [75] | Ketamine | (1) Saline, (2) fentanyl, (3) ketamine and fentanyl | 10 mg/kg s.c. | N/A |
Kang et al. (2002) [42] | Ketorolac | (1) Fentanyl and 5 μg ketorolac #, (2) fentanyl and 15 μg ketorolac, (3) fentanyl and 50 μg ketorolac | 5 μg, 15 μg or 50 μg i.t. | N/A |
Liukin et al. (2002) [43] | Ketamine | (1) Saline, (2) fentanyl, (3) ketamine and fentanyl | 10 mg/kg s.c. | N/A |
Richebé et al. (2005) [21] | Nitrous oxide | (1) Saline, (2) fentanyl, (3) fentanyl and N2O 10%, (4) fentanyl and N2O 20%, (5) fentanyl and N2O 30%, (6) fentanyl and N2O 40%, (7) fentanyl and PI and N2O 50%, (8) fentanyl and CI and N2O 20% #, (9) fentanyl and CI and N2O 30%, (10) fentanyl and CI and N2O 40%, (11) fentanyl and CI and N2O 50% | 10%, 20%, 30%, 40%, 50% inhalation for 4 h 15 min | PI * or CI * |
Richebé et al. (2005) [22] | Ketamine | (1) Saline, (2) fentanyl, (3) ketamine and fentanyl | 10 mg/kg s.c. three times with 5 h intervals | PI |
Van Elstraete et al. (2006) [41] | Magnesium | (1) Saline, (2) fentanyl, (3) magnesium and fentanyl | 100 mg/kg i.p. | N/A |
Bessière et al. (2007) [23] | Nitrous oxide | (1) Saline, (2) fentanyl and CI+CI, (3) fentanyl and CI+CI and N2O, (4) fentanyl and CI+S, (5) fentanyl and CI+S and N2O | 50% inhalation for 4 h 15 min | CI+CI * or CI+S * |
Van Elstraete et al. (2008) [24] | Gabapentin | (1) Saline, (2) fentanyl, (3) fentanyl and gabapentin 30 mg/kg i.p. 30 min before first fentanyl dose #, (4) fentanyl and gabapentin 75 mg/kg i.p. 30 min before first fentanyl dose, (5) fentanyl and gabapentin 150 mg/kg i.p. 30 min before first fentanyl dose, (6) fentanyl and gabapentin 300 mg/kg i.p. 30 min before first fentanyl dose, (7) fentanyl and gabapentin 150 mg/kg i.p. 300 min after last fentanyl dose, (8) fentanyl and gabapentin 300 μg 30 min i.t. before first fentanyl dose, (9) CI and fentanyl and saline, (10) CI and fentanyl and gabapentin 150 mg/kg i.p. 30 min before first fentanyl dose | 30 mg/kg, 75 mg/kg, 150 mg/kg, 300 mg/kg i.p. or 300 μg i.t. | CI * |
Mert et al. (2009) [38] | Magnesium | (1) Saline, (2) fentanyl, (3) fentanyl and magnesium | 2 mg intraplantar injection | N/A |
Richebé et al. (2009) [25] | Sevoflurane | (1) Saline, (2) fentanyl, (3) sevoflurane 1% and fentanyl, (4) CI and fentanyl, (5) CI and sevoflurane 1% and fentanyl #, (6) CI and sevoflurane 1.5% and fentanyl # | 1%, 1.5% inhalation for 4 h 30 min | CI * |
Le Roy et al. (2011) [26] | BN2572 | (1) Saline, (2) fentanyl, (3) BN2572 and fentanyl | 0.3 mg/kg s.c. | S |
Van Elstraete et al. (2011) [39] | Ketamine and/or gabapentin | (1) Ketamine and fentanyl, (2) gabapentin and fentanyl, (3) ketamine and gabapentin and fentanyl | Ketamine: 10–15 mg/kg s.c. Gabapentin: 270–330 300 mg/kg i.p. Ketamine-gabapentin combination: 3–6 mg/kg s.c. and 90–180 mg/kg i.p. | N/A |
Wei and Wei (2012) [20] | Gabapentin | (1) Saline, (2) fentanyl, (3) gabapentin 25 mg/kg and fentanyl, (4) gabapentin 50 mg/kg and fentanyl | 25 mg/kg, 50 mg/kg i.p. | N/A |
Li et al. (2016) [40] | KN93 | (1) Fentanyl, (2) fentanyl and KN92, (3) fentanyl and KN93 5 nmol, (4) fentanyl and KN93 7.5 nmol, (5) fentanyl and KN93 10 nmol | 5–10 nmol microinjection to amygdala | N/A |
Author and Year | Intervention | Study Groups | Dose and Administration | Chronic/ Acute |
---|---|---|---|---|
Dunbar et al. (2000) [52] | Ibuprofen | (1) Saline, (2) morphine, (3) morphine and ibuprofen 136 nM, (4) morphine and ibuprofen 13.6 nM, (5) morphine and ibuprofen 1.36 nM # | 136 nM, 13.6 nM, 1.36 nM in 10 μL bolus via spinal catheter | C |
Crain and Shein (2001) [76] | Naltrexone | (1) Saline, (2) morphine 1 μg/kg, (3) naltrexone 1 ng/kg and morphine 1 μg/kg, (4) morphine 0.1 μg/kg, (5) naltrexone 1 pg/kg and morphine 0.1 μg/kg | 1 ng/kg, 1 pg/kg injection | A |
Raghavendra et al. (2004) [47] | Propentofylline | (1) Saline, (2) morphine, (3) morphine and propentofylline 1 μg, (4) morphine and propentofylline 10 μg | 1 μg, 10 μg i.t. daily for 5 days | C |
Dogrul et al. (2005) [48] | Amlodipine | (1) Saline, (2) morphine, (3) amlodipine and morphine | 10 μg i.t. twice a day for 8 days | C |
Van Elstraete et al. (2005) [77] | Ketamine | (1) Saline, (2) morphine, (2) ketamine and morphine | 10 mg/kg s.c. | A |
Juni et al. (2006) [78] | MK-801 | (1) Placebo pellets and morphine, (2) placebo pellets and MK-801 and morphine | 0.05 mg/kg MK-801 s.c. | C |
Dunbar et al. (2007) [44] | Ketorolac | (1) Saline, (2) morphine, (3) morphine and ketorolac, (4) morphine and naloxone, (5) morphine and ketorolac and naloxone | 5 mg/kg s.c. daily for 4 days | C |
Esmaeili-Mahani et al. (2007) [79] | Nifedipine | (1) Vehicle, (2) morphine 1 μg/kg, (3) nifedipine 2 mg/kg and morphine 1 μg/kg, (4) morphine 0.01 μg/kg, (5) nifedipine 10 μg/kg and morphine 0.01 μg/kg | 2 mg/kg i.p., 10 μg/kg i.t. | A |
Tumati et al. (2008) [55] | Raf-1 siRNA | (1) Vehicle, (2) morphine, (3) morphine and non-targeting dsRNA, (4) morphine and Raf-1 siRNA | 2 µg i.t. once a day for 3 days | C |
Esmaeili-Mahani et al. (2010) [80] | Olive leaf extract | (1) Vehicle, (2) morphine, (3) morphine and OLE 6 mg/kg, (4) morphine and OLE 12 mg/kg | 6 mg/kg, 12 mg/kg i.p. | A |
Tumati et al. (2010) [49] | Raf-1 siRNA | (1) Vehicle, (2) morphine, (3) non-targeting dsRNA and morphine, (4) Raf-1 siRNA and morphine | 2 µg i.t. once a day for 3 days | C |
Gupta et al. (2011) [81] | Magnesium or dextromethorphan or d-serine | (1) Saline, (2) morphine, (3) morphine and magnesium 2 mg/kg, (4) morphine and magnesium 5 mg/kg, (5) morphine and dextromethorphan 2 mg/kg, (6) morphine and dextromethorphan 5 mg/kg, (7) morphine and dextromethorphan 10 mg/kg, (8) morphine and d-serine 2 mg/kg, (9) morphine and d-serine 5 mg/kg, (10) morphine and d-serine 10 mg/kg | Magnesium: 2 mg/kg, 5 mg/kg i.p. Dextromethorphan: 2 mg/kg, 5 mg/kg, 10 mg/kg i.p. D-serine: 2 mg/kg, 5 mg/kg, 10 mg/kg i.p. | A |
Liang et al. (2011) [82] | Ondansetron | (1) Morphine, (2) morphine and ondansetron s.c., (3) morphine and ondansetron s.c. twice a day for 4 days, (4) morphine and ondansetron i.t., (5) morphine and ondansetron 1 μg peripheral injection #, (6) morphine and ondansetron 10 μg peripheral injection # | 2 mg/kg s.c. or 1 mg/kg s.c. twice a day for 4 days or 1 μg i.t. or 1 μg, 10 μg peripheral hind paw injection | C |
Tumati et al. (2011) [56] | PKA siRNA | (1) Vehicle, (2) morphine, (3) PKA siRNA and morphine | 2 µg i.t. once a day for 3 days | C |
Chen et al. (2012) [45] | Ceftriaxone | (1) Saline, (2) morphine, (3) ceftriaxone and morphine | 200 mg/kg i.p. daily for 7 days | C |
Tumati et al. (2012) [83] | L-732,138 | (1) Saline, (2) morphine, (3) morphine and L-732,138 | 20 μg/5 μL i.t. twice a day for 6 days | C |
Wei and Wei (2012) [20] | Gabapentin | (1) Saline, (2) morphine, (3) gabapentin 25 mg/kg and morphine, (4) gabapentin 50 mg/kg and morphine | 25 mg/kg, 50 mg/kg i.p. | C |
Xin et al. (2012) [84] | Melatonin | (1) Saline, (2) morphine, (3) morphine and melatonin 25 mg/kg #, (4) morphine and melatonin 50 mg/kg, (5) morphine and melatonin 100 mg/kg | 25 mg/kg, 50 mg/kg, 100 mg/kg i.g. once a day for 7 days | C |
Milne et al. (2013) [46] | Efaroxan or atipamezole or yohimbine | (1) Saline, (2) morphine, (3) morphine and (+) efaroxan, (4) morphine and (-) efaroxan #, (5) morphine and atipamezole, (6) morphine and yohimbine | Efaroxan: 1.3 ng i.t. Atipamezole: 0.08 ng i.t. Yohimbine: 0.02 ng i.t. | A |
Orrù et al. (2014) [85] | Withania somnifera root extract | (1) Saline, (2) morphine, (3) WSE and morphine | 100 mg/kg i.p. | A |
Li et al. (2014) [86] | Re or Rg1 or Rb1 ginsenosides | (1) Saline, (2) morphine, (3) morphine and Re 100 mg/kg #, (4) morphine and Re 200 mg/kg #, (5) morphine and Re 300 mg/kg, (6) morphine and Rg1 100 mg/kg #, (7) morphine and Rg1 200 mg/kg #, (8) morphine and Rg1 300 mg/kg #, (9) morphine and 100 mg/kg Rb1 #, (10) morphine and Rg1 200 mg/kg #, (11) morphine and Rg1 300 mg/kg # | 100 mg/kg, 200 mg/kg, 300 mg/kg i.g. twice a day for 2 days | C |
Sanna et al. (2015) [50] | CTOP or PD98059 | (1) Saline, (2) morphine, (3) morphine and CTOP, (4) PD98059 and morphine | PD98059: 20 µg i.t. CTOP: 0.1 mg i.t. | A |
Song et al. (2015) [87] | Melatonin | (1) Saline, (2) morphine, (3) morphine and melatonin | 10 mg/kg i.p. | C |
Hu et al. (2016) [88] | PLGA curcumin nanoformulation or unformulated curcumin | (1) Vehicle i.t., (2) morphine, (3) morphine and unformulated curcumin [6], (4) vehicle oral, (5) morphine and PLGA curcumin 2 mg/kg #, (6) morphine and PLGA curcumin 6 mg/kg, (7) morphine and PLGA curcumin 20 mg/kg | Unformulated curcumin: 30 μg i.t. PLGA curcumin: 2 mg/kg, 6 mg/kg, 20 mg/kg oral administration. | C |
Hua et al. (2016) [57] | MSC | (1) Saline, (2) morphine, (3) MSC i.t. 1 day before and morphine, (4) MSC i.v. 1 day before and morphine, (5) MSC i.t. 7 day before and morphine, (6) MSC i.v. 7 day before and morphine, (7) morphine and MSC i.t. on day 14, (8) morphine and MSC i.v. on day 14 | 0.5 million MSCs i.t. or 0.5 million MSCs i.v. | C |
Corder et al. (2017) [53] | Methylnaltrexone bromide | (1) Saline, (2) morphine, (3) morphine and methylnaltrexone bromide | 10 mg/kg s.c. once a day for 7 days | C |
Ferrini et al. (2017) [54] | CLP257 or CLP290 | (1) Saline, (2) morphine, (3) morphine and CLP290, (4) morphine and CLP257 on day 9, (5) morphine and CLP257 on day 7 and 8 | CLP290: 100 mg/kg orally twice a day for 7 days. CLP257: 100 mg/kg i.p. on day 7 and 8 or only day 9 | C |
Haleem and Nawas (2017) [51] | Buspirone | (1) Saline, (2) morphine, (3) morphine and buspirone 1 mg/kg, (4) morphine and buspirone 2 mg/kg | 1 mg/kg or 2 mg/kg i.p. | C |
Datta et al. (2020) [89] | DAMGO or GAT211 | (1) Saline, (2) morphine, (3) morphine and DAMGO 0.03 μg, (4) morphine and DAMGO 0.1 μg, (5) morphine and DAMGO 0.3 μg, (6) morphine and DAMGO 1 μg, (7) morphine and GAT211 1 μg #, (8) morphine and GAT211 1 μg #, (9) morphine and GAT211 5 μg #, (10) morphine and GAT211 10 μg #, (11) morphine and GAT211 20 μg # | DAMGO: 0.03 μg, 0.1 μg, 0.3 μg, 1 μg. GAT211: 1 μg, 5 μg, 10 μg, 20 μg | C |
Doyle et al. (2020) [27] | W146 or JTE-013 or CAY10444 or NIBR-14 or SEW2871 or S1pr1 siRNA or NIBR-15 or fingolimod or ponesimod | (1) Saline, (2) morphine, (3) morphine and W140, (4) morphine and W146 0.2 nmol/day, (5) morphine and W146 0.7 nmol/day, (6) morphine and W146 2 nmol/day, (7) morphine and JTE-013 #, (8) morphine and CAY1044 #, (9) morphine and NIBR-14 i.t. 3 nmol/day, (10) morphine and SEW2871 2 nmol/day #, (11) morphine and SEW2871 20 mg/kg/day #, (12) morphine and non-targeting siRNA, (13) morphine and S1pr1 siRNA, (14) morphine and oral NIBR-14 0.3 mg/kg/day #, (15) morphine and oral NIBR-14 1 mg/kg/day, (16) morphine and oral NIBR-14 3 mg/kg/day, (17) morphine and oral NIBR-15 3 mg/kg/day, (18) morphine and fingolimod 0.03 mg/kg/day #, (19) morphine and fingolimod 0.01 mg/kg/day, (20) morphine and fingolimod 0.1 mg/kg/day male rats, (21) morphine and fingolimod 0.1 mg/kg/day female rats, (22) morphine and ponesimod, (23) CCI and saline and vehicle, (24) CCI and morphine and vehicle, 25) CCI and morphine and fingolimod | W146: 0.2 nmol/day, 0.7 nmol/day, 2 nmol/day. JTE-013: 2 nmol/day. CAY1044: 2 nmol/day. NIBR-14: 3 nmol/day i.t., 0.3 mg/kg/day oral, 1 mg/kg/day oral, 3 mg/kg/day. NIBR-15: 3 mg/kg/day oral. SEW2871: 2 nmol/day i.t., 20 mg/kg/day i.p. S1pr1 siRNA: 2 μg i.t. Fingolimod: 0.03 mg/kg/day oral, 0.01 mg/kg/day oral, 0.1 mg/kg/day oral. Ponesimod: 3 mg/kg/day. | C |
Lin et al. (2020) [58] | TUDCA or AEBSF or 4μ8C or salubrinal or adenovirus-HSP70 or glibenclamide | (1) Vehicle, (2) morphine, (3) TUDCA and morphine, (4) AEBSF and morphine, (5) 4μ8C and morphine, (6) salubrinal and morphine #, (7) adenovirus-HSP70 and morphine, (8) glibenclamide 0.08 μg and morphine, (9) glibenclamide 0.4 μg and morphine, (10) glibenclamide 2 μg and morphine | TUDCA: 100 μg/10 μL i.t. Glibenclamide or TUDCA or AEBSF or 4μ8C or salubrinal or adenovirus-HSP70. Glibenclamide: 0.08 μg, 0.4 μg, 2 μg. | C |
4.4. Synthesis of Results
Remifentanil (27) | Fentanyl (9) | Morphine (52) | |||
---|---|---|---|---|---|
Effective | Ineffective | Effective | Ineffective | Effective | Ineffective |
Ketamine ×3 * Ro 25-6981 ×3 TDZD-8 ×3 KN93 x2 * Lidocaine ×2 Dexmedetomidine ×2 Naltrindole ×2 PNU-120596 ×2 Hydrogen-rich saline and Ro 25-6981 PHA-543613 and PNU-120596 Ketamine and KN93 Magnesium * Naloxone LiCl JWH015 Roscovitine Hydrogen rich saline PHA-543613 BDNF-sequester TrkB/Fc N-acetyl-cysteine Betulinic acid Anxa1(2-26) IWP-2 Dezocine | Amitriptyline Minocycline Maropitant | Ketamine ×4 * Gabapentin ×3 * Magnesium ×2 * Nitrous oxide ×2 Ketorolac * KN93 * Ketamine and gabapentin BN2572 Sevoflurane | - | Raf-1 siRNA ×2 Melatonin ×2 Ketamine * Ketorolac * Gabapentin * Ibuprofen Naltrexone Methylnaltrexone bromide Propentofylline Amlodipine MK-801 Nifedipine Olive leaf extract Magnesium Dextromethorphan D-serine Ondansetron PKA siRNA Ceftriaxone L-732,138 Efaroxan Atipamezole Yohimbine Withania somnifera root extract CTOP PD98059 PLGA curcumin Curcumin Mesenchymal stem cells CLP257 CLP290 Buspirone DAMGO W146 NIBR-14 S1pr1 siRNA NIBR-15 Fingolimod Ponesimod TUDCA AEBSF 4μ8C Salubrinal Adenovirus-HSP70 Glibenclamide Re ginsenoside | Rg1 ginsenoside Rb1 ginsenoside GAT211 JTE-013 CAY10444 SEW2871 |
In 8 Trials | In 4 Trials | In 3 Trials | In 2 Trials |
---|---|---|---|
Ketamine | Gabapentin | Magnesium Ro 25-6981 TDZD-8 KN93 | Lidocaine Dexmedetomidine Naltrindole PNU-120596 Nitrous oxide Ketorolac Raf-1 siRNA Melatonin |
Intervention | General Class | OIH Attenuation Mechanism | Mechanism Group |
---|---|---|---|
Ketamine | NMDAR blocker | NMDAR block | NMDAR inhibition |
Magnesium | |||
Ro 25–6981 | NR2B antagonist | NMDAR antagonism | |
Amitriptyline | Tricyclic antidepressant | ||
Naltrindole | Selective DOR inhibitor | NMDAR antagonism, NMDAR expression and trafficking inhibition | |
Dexmedetomidine | α2-adrenergic agonist | NMDAR antagonism, NMDAR phosphorylation inhibition, NMDAR expression and trafficking inhibition | |
IWP-2 | Wnt3a inhibitor | NMDAR expression inhibition | |
Hydrogen-rich saline | Superoxide remover | NMDAR expression and trafficking inhibition | |
KN93 | CaMKII inhibitor | CaMKII inhibition | |
Dezocine | Mixed opioid R partial agonist/antagonist | CaMKII phosphorylation inhibition | |
Lidocaine | VGSC blocker | ||
Anxa1(2–26) | Annexin A1-derived peptide | ||
Naloxone | Opioid antagonist | NMDAR antagonism, TLR4 antagonism | NMDAR inhibition, TLR4 inhibition |
Roscovitine | Cdk5 inhibitor | NMDAR phosphorylation inhibition, mGluR5 phosphorylation inhibition | NMDAR inhibition, mGluR5 inhibition |
TDZD-8 | Selective GSK-3β inhibitor | NMDAR antagonism, NMDA expression, trafficking inhibition, AMPAR expression inhibition | NMDAR inhibition, AMPAR inhibition |
PHA-543613 | α7-nAChR selective agonist | NMDAR phosphorylation inhibition, proinflammatory cytokine reduction | NMDAR inhibition, proinflammatory cytokine reduction |
PNU-120596 | α7-nAChR type II PAM | NMDAR phosphorylation inhibition, proinflammatory cytokine reduction, KCC2 expression enhancement | NMDAR inhibition, proinflammatory cytokine reduction, KCC2 enhancement |
N-acetyl-cysteine | Cysteine donor | MMP-9 inhibition and NMDAR phosphorylation inhibition | NMDAR inhibition, proinflammatory cytokine reduction, glial inhibition |
LiCl | Selective GSK-3β inhibitor | AMPAR expression inhibition | AMPAR inhibition |
Naltrindole | Selective DOR inhibitor | AMPAR antagonism, AMPAR trafficking inhibition | AMPAR inhibition |
JWH015 | CB2 agonist | Glial inhibition, proinflammatory cytokine production inhibition, CB2 expression enhancement, NMDAR phosphorylation inhibition | Glial inhibition |
Minocycline | Microglia inhibitor | Inhibitor of microglia proliferation and proinflammatory cytokine release | Glial inhibition, proinflammatory cytokine inhibition |
Maropitant | NK-1 antagonist | NK-1 R antagonism | NK-1 R inhibition |
BDNF-sequester TrkB/Fc | BDNF neutraliser | KCC2 expression enhancement | BDNF/trkB-KCC2 signal enhancement |
Betulinic acid | Pentacyclic triterpenoid | Malondialdehyde, 3-nitrotyrosine, and proinflammatory cytokine production inhibition | Oxidative stress reduction, proinflammatory cytokine reduction |
Intervention | General Class | OIH Attenuation Mechanism | Mechanism Group |
---|---|---|---|
Ketamine | NMDAR blocker | NMDAR block | NMDAR inhibition |
Magnesium | |||
BN2572 | NMDAR-antagonist | NMDAR antagonism | |
Nitrous oxide | NMDAR antagonist and benzodiazepine agonist | ||
Sevoflurane | Volatile anaesthetic | ||
KN93 | CaMKII inhibitor | CaMKII inhibition | |
Ketorolac | COX inhibitor | COX inhibition | COX inhibition |
Gabapentin | VGCC inhibitor | VGCC inhibition | VGCC inhibition |
Intervention | General Class | OIH Attenuation Mechanism | Mechanism Group |
---|---|---|---|
Ketamine | NMDAR blocker | NMDAR block | NMDAR inhibition |
Magnesium | |||
Dextromethorphan | NMDAR antagonist | NMDAR antagonism | |
MK-801 | |||
D-serine | NMDAR agonist | NMDAR internalisation | |
PLGA curcumin | Diarylheptanoid | CaMKII inhibition | |
Unformulated curcumin | |||
CTOP | MOR antagonist | MOR antagonism | Opioid R inhibition |
DAMGO | |||
Methylnaltrexone bromide | Peripherally restricted MOR antagonist | MOR antagonism | |
Naltrexone | Opioid antagonist | Excitatory opioid R inhibition | |
Withania somnifera root extract | Unclear | GABAAR agonism, GABABR agonism, NMDAR antagonism, DOR antagonism | GABAAR enhancement, GABABR enhancement, NMDAR inhibition, DOR inhibition |
Gabapentin | VGCC inhibitor | Adenylyl cyclase, PKC inhibition, NMDAR antagonism | Adenylyl cyclase, PKC inhibition, NMDAR inhibition |
Melatonin | Melatonin R agonist | cAMP downregulation, PKC inhibition, NMDAR expression inhibition | cAMP reduction, PKC inhibition, NMDAR inhibition |
AEBSF | Serine protease inhibitor | ER stress suppression, NMDAR and PKA phosphorylation inhibition | ER stress suppression, NMDAR and PKA phosphorylation inhibition |
4μ8C | IRE1α inhibitor | ||
TUDCA | ER stress suppressor | ER stress suppression | ER stress suppression |
Salubrinal | eIF2α dephosphorylation inhibitor | ||
Adenovirus-HSP70 | HSP70 overexpressor | ||
Glibenclamide | Potassium channel blocker | ||
Propentofylline | Phosphodiesterase inhibitor | Glial inhibition and proinflammatory cytokine reduction | Glial inhibition and proinflammatory cytokine reduction |
L-732,138 | Tachykinin NK1 R antagonist | ||
MSC | Stem cell | ||
Olive leaf extract | Unclear | Calcium channel block, proinflammatory cytokine reduction | Calcium channel inhibition, proinflammatory cytokine reduction |
Amlodipine | L-type calcium channel blocker | L-type calcium channel block | L-type calcium channel inhibition |
Nifedipine | Calcium channel blocker | Morphine-induced corticosterone secretion inhibition | Morphine-induced corticosterone secretion inhibition |
Ibuprofen | COX inhibitor | COX inhibition | COX inhibition |
Ketorolac | COX inhibitor | ||
Raf-1 siRNA | Raf-1 siRNA | Raf-1 expression inhibition | CGRP inhibition |
PKA siRNA | PKA siRNA | PKA expression inhibition | CGRP inhibition |
Ondansetron | 5-HT3 R antagonist | 5-HT3 R antagonism | 5-HT3 R inhibition |
Buspirone | 5-HT1A R partial agonist | 5-HT1A agonism | 5-HT1A enhancement |
Ceftriaxone | β-lactam antibiotic | GLT-1 expression enhancement | GLT-1 enhancement |
Efaroxan | α2 adrenergic R antagonist | α2 adrenergic R antagonism | α2 adrenergic R inhibition |
Atipamezole | |||
Yohimbine | |||
CLP257 | KCC2 enhancer | KCC2 expression enhancement | KCC2 enhancement |
CLP290 | |||
PD98059 | MEK inhibitor | ERK pathway inhibition | ERK pathway inhibition |
GAT211 | CB1R PAM | CB1R PAM | CB1R enhancement |
W146 | S1PR1 antagonist | S1PR antagonism | S1PR inhibition |
NIBR-14 | |||
NIBR-15 | |||
Fingolimod | |||
Ponesimod | |||
JTE-013 | S1PR2 antagonist | ||
CAY10444 | S1PR3 antagonist | ||
S1pr1 silencer | S1PR expression inhibition | S1pr1 silencer | |
SEW2871 | S1PR1 agonist | S1PR agonism | S1PR enhancement |
Re ginsenoside | Ginsenoside | Not known | Not known |
Rg1 ginsenoside | |||
Rb1 ginsenoside |
5. Discussion
5.1. Summary of Evidence
5.2. Limitations
5.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT3 R | 5-hydroxytryptamine type 3 receptor |
5-HT1A R | 5-hydroxytryptamine type 1A receptor |
AEBSF | 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride |
α7-nAChR | alpha 7-nicotinic acetylcholine receptor |
BDNF | brain-derived neurotrophic factor |
CaMKII | calcium/calmodulin-dependent protein kinase II |
cAMP | cyclic adenosine-monophosphate |
CB1 | cannabinoid receptor type 1 |
CB2 | cannabinoid receptor type 2 |
CCI | chronic constriction injury |
Cdk5 | cyclin dependent kinase 5 |
CI | carrageenan injection |
COX | cyclooxygenase |
DOR | delta-opioid receptor |
eIF2α | eukaryotic initiation factor-2 alpha |
ER | endoplasmic reticulum |
ERK | extracellular signal-regulated kinase |
FIH | fentanyl-induced hyperalgesia |
GABAAR | gamma-aminobutyric acid type A receptor |
GABABR | gamma-aminobutyric acid type B receptor |
GLT-1 | glutamate transporter-1 |
GSK-3β | glycogen synthase kinase-3 beta |
HSP70 | heat shock protein 70 |
HRS | hydrogen-rich saline |
i.g. | intragastric |
i.p. | intraperitoneal |
i.t. | intrathecal |
i.v. | intravenous |
ICR | Institute of Cancer Research |
IRE1α | inositol-requiring transmembrane kinase endoribonuclease-1 alpha |
IWP-2 | inhibitor of Wnt productions-2 |
KCC2 | potassium-chloride cotransporter |
LiCl | lithium chloride |
mGluR5 | metabotropic glutamate receptor type 5 |
MEK | mitogen-activated and extracellular signal-regulated kinase |
MMP-9 | matrix metallopeptidase 9 |
MSC | mesenchymal stem cell |
NAC | N-acetyl-cysteine |
NK-1 | neurokinin-1 |
NMDAR | N-methyl-D-aspartate receptor |
NNES | non-nociceptive environmental stress |
NR2B | N-methyl-D-aspartate receptor subunit 2B |
OIH | opioid-induced hyperalgesia |
PAM | positive allosteric modulator |
PI | plantar incision |
PKA | protein kinase A |
PKC | protein kinase C |
PLGA | polylactic-co-glycolic acid |
QST | quantitative sensory test |
Raf-1 | rapidly accelerated fibrosarcoma 1 |
RIH | remifentanil-induced hyperalgesia |
s.c. | subcutaneous |
S1PR | sphingosine-1-phosphate receptor |
siRNA | small interfering ribonucleic acid |
SIH | sufentanil-induced hyperalgesia |
TDZD-8 | thiadiazolidinone-8 |
TIH | tramadol-induced hyperalgesia |
TLR4 | toll-like receptor 4 |
TUDCA | tauroursodeoxycholic acid |
TrkB/Fc | tropomyosin receptor kinase fragment crystallizable (region) |
VGCC | voltage-gated calcium channel |
VGSC | voltage-gated sodium channel |
Appendix A. PRISMA-ScR Checklist
Main Section | Subsection | Number of the Item in the Review |
---|---|---|
Title | - | - |
Abstract | - | - |
Introduction | Rationale | 1. |
Objectives | 2. | |
Methods | Registration | N/A |
Protocol | 3.1. | |
Eligibility criteria | 3.2. | |
Information sources | 3.3. | |
Search | 3.4. | |
Selection of sources of evidence | 3.5. | |
Data charting | 3.6. | |
Data items | 3.6. | |
Critical appraisal of individual sources of evidence | N/A | |
Synthesis of results | 3.7. | |
Results | Selection of sources of evidence | 4.1. |
Characteristics of sources of evidence | 4.2. | |
Critical appraisal within sources of evidence | N/A | |
Results of individual sources of evidence | 4.3. | |
Synthesis of results | 4.4. | |
Discussion | Summary of evidence | 5.1. |
Limitations | 5.2. | |
Conclusions | 5.3. | |
Funding | - | N/A |
Appendix B. Search Strategies
Search Terms | Results | |
---|---|---|
1 | opioid induced hyperalgesia/ | 306 |
2 | opioid induced hyperalgesia.mp. | 878 |
3 | opioid-induced hyperalgesia.mp. | 878 |
4 | opioid induced hypersensitivity.mp. | 7 |
5 | remifentanil induced hyperalgesia.mp. | 114 |
6 | fentanyl induced hyperalgesia.mp. | 21 |
7 | morphine induced hyperalgesia.mp. | 77 |
8 | 1 or 2 or 3 or 4 or 5 or 6 or 7 | 1016 |
9 | Animal research filter by van der Mierden et al. (2021) | 7,961,031 |
10 | 8 and 9 | 413 |
11 | drug therapy.mp. or drug therapy/ | 4,902,242 |
12 | pharmacological intervention.mp. | 7773 |
13 | pharmacological treatment.mp. | 27,737 |
14 | pharmacotherapy.mp. | 53,406 |
15 | rehabilitation.mp. or rehabilitation/ | 398,934 |
16 | treat*.mp. | 9,169,701 |
17 | intervention.mp. or intervention study/or early intervention/ | 1,108,613 |
18 | prevent*.mp. or prevention/ | 3,040,390 |
19 | remedy.mp. | 16,393 |
20 | acetazolamide.mp. or acetazolamide/ | 20,761 |
21 | amantadine.mp. or amantadine/ | 16,993 |
22 | amlodipine.mp. or amlodipine/ | 28,139 |
23 | buprenorphine/or buprenorphine.mp. | 23,199 |
24 | butorphanol/or butorphanol.mp. | 5151 |
25 | clonidine/or clonidine.mp. | 44,729 |
26 | dextro serine.mp. or dextro serine/or d-serine.mp. | 3484 |
27 | dexmedetomidine.mp. or dexmedetomidine/ | 14,959 |
28 | dextromethorphan/or dextromethorphan.mp. | 8385 |
29 | flurbiprofen axetil.mp. or flurbiprofen axetil/ | 405 |
30 | gabapentin.mp. or gabapentin/ | 34,854 |
31 | hydrogen-rich saline.mp. | 252 |
32 | ketamine.mp. or ketamine/ | 50,685 |
33 | ketorolac.mp. or ketorolac/ | 13,261 |
34 | lidocaine.mp. or lidocaine/ | 82,854 |
35 | magnesium.mp. or magnesium sulfate/or magnesium sulfate.mp. or magnesium sulphate.mp. | 168,729 |
36 | methadone/or methadone.mp. | 37,154 |
37 | methylnaltrexone bromide.mp. or 17 methylnaltrexone/ | 1140 |
38 | minocycline.mp. or minocycline/ | 27,121 |
39 | nalbuphine.mp. or nalbuphine/ | 3416 |
40 | naloxone/or naloxone.mp. | 49,605 |
41 | naltrexone.mp. or naltrexone/ | 17,475 |
42 | nitrous oxide.mp. or nitrous oxide/ | 40,446 |
43 | paracetamol.mp. or paracetamol/or acetaminophen.mp. | 107,661 |
44 | parecoxib.mp. or parecoxib/ | 2198 |
45 | pregabalin/or pregabalin.mp. | 16,715 |
46 | propofol/or propofol.mp. | 63,465 |
47 | propranolol/or propranolol.mp. | 98,141 |
48 | 11 or 12 or … 48 | 13,625,596 |
49 | 10 and 48 | 345 |
Search Terms | Results | |
---|---|---|
1 | opioid induced hyperalgesia/or opioid induced hyperalgesia.mp. or opioid-induced hyperalgesia.mp. or opioid induced hypersensitivity.mp. or remifentanil induced hyperalgesia.mp. or fentanyl induced hyperalgesia.mp. or morphine induced hyperalgesia.mp. | 1016 |
2 | Animal research filter by van der Mierden et al. (2021) | 7,961,031 |
3 | drug therapy.mp. or drug therapy/or pharmacological intervention.mp. or pharmacological treatment.mp. or pharmacotherapy.mp. or rehabilitation.mp. or rehabilitation/or treat*.mp. or intervention.mp. or intervention study/or early intervention/or prevent*.mp. or prevention/or remedy.mp. or acetazolamide.mp. or acetazolamide/or amantadine.mp. or amantadine/or amlodipine.mp. or amlodipine/or buprenorphine/or buprenorphine.mp. or butorphanol/or butorphanol.mp. or clonidine/or clonidine.mp. or dextro serine.mp. or dextro serine/or d-serine.mp. or dexmedetomidine.mp. or dexmedetomidine/or dextromethorphan/or dextromethorphan.mp. or flurbiprofen axetil.mp. or flurbiprofen axetil/or gabapentin.mp. or gabapentin/or hydrogen-rich saline.mp. or ketamine.mp. or ketamine/or ketorolac.mp. or ketorolac/or lidocaine.mp. or lidocaine/or magnesium.mp. or magnesium sulfate/or magnesium sulfate.mp. or magnesium sulphate.mp. or methadone/or methadone.mp. or methylnaltrexone bromide.mp. or 17 methylnaltrexone/or minocycline.mp. or minocycline/or nalbuphine.mp. or nalbuphine/or naloxone/or naloxone.mp. or naltrexone.mp. or naltrexone/or nitrous oxide.mp. or nitrous oxide/or paracetamol.mp. or paracetamol/or parecoxib.mp. or acetaminophen.mp. or parecoxib/or pregabalin/or pregabalin.mp. or propofol/or propofol.mp. or propranolol/or propranolol.mp. | 13,625,596 |
4 | 1 and 2 and 3 | 345 |
Search Terms | Results | |
---|---|---|
1 | “opioid induced hyperalgesia” [tw] | 558 |
2 | “opioid induced hypersensitivity” [tw] | 6 |
3 | “remifentanil induced hyperalgesia” [tw] | 94 |
4 | “fentanyl induced hyperalgesia” [tw] | 19 |
5 | “morphine induced hyperalgesia” [tw] | 63 |
6 | 1 or 2 or 3 or 4 or 5 | 681 |
7 | Animal research filter by van der Mierden et al. (2021) | 3,635,995 |
8 | 6 and 7 | 244 |
9 | “drug therapy” [mesh] or “drug therapy” [tw] | 3,228,093 |
10 | “pharmacological intervention” [tw] | 5440 |
11 | “pharmacological treatment” [tw] | 17,511 |
12 | “pharmacotherapy” [tw] | 33,828 |
13 | “rehabilitation” [mesh] or “rehabilitation” [tw] | 570,257 |
14 | “treat*” [tw] | 6,576,870 |
15 | “intervention” [tw] or “early medical intervention” [mesh] or “intervention study” [tw] | 718,556 |
16 | “prevent*” [tw] | 2,606,090 |
17 | “remedy” [tw] | 12,443 |
18 | “Acetazolamide” [Mesh] or “Acetazolamide” [tw] | 9586 |
19 | “Amantadine” [Mesh] or “Amantadine” [tw] | 7748 |
20 | “Amlodipine” [Mesh] or “Amlodipine” [tw] | 5955 |
21 | “Buprenorphine” [Mesh] or “Buprenorphine” [tw] | 9051 |
22 | “Butorphanol” [Mesh] or “Butorphanol” [tw] | 1761 |
23 | “Clonidine” [Mesh] or “Clonidine” [tw] | 18,563 |
24 | “Dextro serine” [tw] or “D serine” [tw] | 2184 |
25 | “Dexmedetomidine” [Mesh] or “Dexmedetomidine” [tw] | 7487 |
26 | “Dextromethorphan” [Mesh] or “Dextromethorphan” [tw] | 3035 |
27 | “Flurbiprofen axetil” [tw] | 137 |
28 | “Gabapentin” [Mesh] or “Gabapentin” [tw] | 7559 |
29 | “Hydrogen rich saline” [tw] | 216 |
30 | “Ketamine” [Mesh] or “Ketamine” [tw] | 22,022 |
31 | “Ketorolac” [Mesh] or “Ketorolac” [tw] | 3460 |
32 | “Lidocaine” [Mesh] or “Lidocaine” [tw] | 33,864 |
33 | “Magnesium” [Mesh] or “Magnesium Sulfate” [Mesh] or “magnesium” [tw] or “magnesium sulfate” [tw] or “magnesium sulphate” [tw] | 113,626 |
34 | “Methadone” [Mesh] or “Methadone” [tw] | 17,983 |
35 | “Methylnaltrexone bromide” [tw] or “17 methylnaltrexone” [tw] | 29 |
36 | “Minocycline” [Mesh] or “Minocycline” [tw] | 9586 |
37 | “Nalbuphine” [Mesh] or “Nalbuphine” [tw] | 1098 |
38 | “Naloxone” [Mesh] or “Naloxone” [tw] | 35,000 |
39 | “Naltrexone” [Mesh] or “Naltrexone” [tw] | 10,726 |
40 | “Nitrous Oxide” [Mesh] or “Nitrous Oxide” [tw] | 22,788 |
41 | “Acetaminophen” [Mesh] or “Acetaminophen” [tw] or “paracetamol” [tw] | 31,289 |
42 | “Parecoxib” [tw] | 640 |
43 | “Pregabalin” [Mesh] or “Pregabalin” [tw] | 4190 |
44 | “Propofol” [Mesh] or “Propofol” [tw] | 24,145 |
45 | “Propranolol” [Mesh] or “Propranolol” [tw] | 45,817 |
46 | 9 or 10 or … 45 | 10,427,552 |
47 | 8 and 46 | 211 |
Search Terms | Results | |
---|---|---|
1 | “opioid induced hyperalgesia” [tw] or “opioid induced hypersensitivity” [tw] or “remifentanil induced hyperalgesia” [tw] or “fentanyl induced hyperalgesia” [tw] or “morphine induced hyperalgesia” [tw] | 681 |
2 | Animal research filter by van der Mierden et al. (2021) | 3,635,995 |
3 | “drug therapy” [mesh] or “drug therapy” [tw] or “pharmacological intervention” [tw] or “pharmacological treatment” [tw] or “pharmacotherapy” [tw] or “rehabilitation” [mesh] or “rehabilitation” [tw] or “treat*” [tw] or “intervention” [tw] or “early medical intervention” [mesh] or “intervention study” [tw] or “prevent*” [tw] or “remedy” [tw] or “acetazolamide” [mesh] or “acetazolamide” [tw] or “Amantadine” [Mesh] or “Amantadine” [tw] or “Amlodipine” [Mesh] or “Amlodipine” [tw] or “Buprenorphine” [Mesh] or “Buprenorphine” [tw] or “Butorphanol” [Mesh] or “Butorphanol” [tw] or “Clonidine” [Mesh] or “Clonidine” [tw] or “Dextro serine” [tw] or “D serine” [tw] or “Dexmedetomidine” [Mesh] or “Dexmedetomidine” [tw] or “Dextromethorphan” [Mesh] or “Dextromethorphan” [tw] or “Flurbiprofen axetil” [tw] or “Gabapentin” [Mesh] or “Gabapentin” [tw] or “Hydrogen rich saline” [tw] or “Ketamine” [Mesh] or “Ketamine” [tw] or “Ketorolac” [Mesh] or “Ketorolac” [tw] or “Lidocaine” [Mesh] or “Lidocaine” [tw] or “Magnesium” [Mesh] or “Magnesium Sulfate” [Mesh] or “magnesium” [tw] or “magnesium sulfate” [tw] or “magnesium sulphate” [tw] or “Methadone” [Mesh] or “Methadone” [tw] or “Methylnaltrexone bromide” [tw] or “Minocycline” [Mesh] or “Minocycline” [tw] or “Nalbuphine” [Mesh] or “Nalbuphine” [tw] or “Naloxone” [Mesh] or “Naloxone” [tw] or “Naltrexone” [Mesh] or “Naltrexone” [tw] or “Nitrous Oxide” [Mesh] or “Nitrous Oxide” [tw] or “Acetaminophen” [Mesh] or “Acetaminophen” [tw] or “paracetamol” [tw] or “Parecoxib” [tw] or “Pregabalin” [Mesh] or “Pregabalin” [tw] or “Propofol” [Mesh] or “Propofol” [tw] or “Propranolol” [Mesh] or “Propranolol” [tw] | 10,427,552 |
4 | 1 and 2 and 3 | 211 |
Search Terms | Results | |
---|---|---|
1 | ts = (“opioid induced hyperalgesia”) | 779 |
2 | ts = (“opioid induced hypersensitivity”) | 6 |
3 | ts = (“remifentanil induced hyperalgesia”) | 94 |
4 | ts = (“fentanyl induced hyperalgesia”) | 18 |
5 | ts = (“morphine induced hyperalgesia”) | 62 |
6 | 1 or 2 or 3 or 4 or 5 | 861 |
7 | Animal research filter by van der Mierden et al. (2021) | 9,810,826 |
8 | 6 and 7 | 439 |
9 | ts = (“drug therapy”) | 39,876 |
10 | ts = (“pharmacological intervention”) | 5148 |
11 | ts = (“pharmacological treatment”) | 18,485 |
12 | ts = (“pharmacotherapy”) | 35,666 |
13 | ts = (“rehabilitation”) | 245,741 |
14 | ts = (“treat*”) | 6,832,946 |
15 | ts = (“intervention” or “intervention study” or “early intervention”) | 858,721 |
16 | ts = (“prevent*”) | 1,962,441 |
17 | ts = (“remedy”) | 29,394 |
18 | ts = (“acetazolamide”) | 7226 |
19 | ts = (“amantadine”) | 5035 |
20 | ts = (“amlodipine”) | 7923 |
21 | ts = (“buprenorphine”) | 10,932 |
22 | ts = (“butorphanol”) | 2492 |
23 | ts = (“clonidine”) | 15,979 |
24 | ts = (“dextro serine” or “d-serine”) | 3664 |
25 | ts = (“dexmedetomidine”) | 9172 |
26 | ts = (“dextromethorphan”) | 3747 |
27 | ts = (“flurbiprofen axetil”) | 128 |
28 | ts = (“gabapentin”) | 9611 |
29 | ts = (“hydrogen-rich saline”) | 232 |
30 | ts = (“ketamine”) | 25094 |
31 | ts = (“ketorolac”) | 4474 |
32 | ts = (“lidocaine”) | 26513 |
33 | ts = (“magnesium” or “magnesium sulfate” or “magnesium sulphate”) | 198,241 |
34 | ts = (“methadone”) | 19,746 |
35 | ts = (“methylnaltrexone bromide” or “17 methylnaltrexone”) | 26 |
36 | ts = (“minocycline”) | 8298 |
37 | ts = (“nalbuphine”) | 1164 |
38 | ts = (“naloxone”) | 22,357 |
39 | ts = (“naltrexone”) | 9675 |
40 | ts = (“nitrous oxide”) | 36,654 |
41 | ts = (“paracetamol” or “acetaminophen”) | 37,680 |
42 | ts = (“parecoxib”) | 802 |
43 | ts = (“pregabalin”) | 5451 |
44 | ts = (“propofol”) | 29,558 |
45 | ts = (“propranolol”) | 29,323 |
46 | 9 or 10 … or 45 | 9,247,720 |
47 | 8 and 46 | 348 |
Search Terms | Results | |
---|---|---|
1 | ts = (“opioid induced hyperalgesia” or “opioid induced hypersensitivity” or “remifentanil induced hyperalgesia” or “fentanyl induced hyperalgesia” or “morphine induced hyperalgesia”) | 861 |
2 | Animal research filter by van der Mierden et al. (2021) | 9,810,826 |
3 | ts = (“drug therapy” or “pharmacological intervention” or “pharmacological treatment” or “pharmacotherapy” or “rehabilitation” or “rehabilitation” or “treat*” or “intervention” or “intervention study” or “early intervention” or “prevent*” or “remedy” or “acetazolamide” or “amantadine” or “amlodipine” or “buprenorphine” or “butorphanol” or “clonidine” or “dextro serine” or “d-serine” or “dexmedetomidine” or “dextromethorphan” or “flurbiprofen axetil” or “gabapentin” or “hydrogen-rich saline” or “ketamine” or “ketorolac” or “lidocaine” or “magnesium” or “magnesium sulfate” or “magnesium sulphate” or “methadone” or “methylnaltrexone bromide” or “17 methylnaltrexone” or “minocycline” or “nalbuphine” or “naloxone” or “naltrexone” or “nitrous oxide” or “paracetamol” or “acetaminophen” or “parecoxib” or “pregabalin” or “propofol” or “propranolol”) | 9,247,720 |
4 | 1 and 2 and 3 | 348 |
References
- Khomula, E.V.; Araldi, D.; Bonet, I.J.M.; Levine, J.D. Opioid-Induced Hyperalgesic Priming in Single Nociceptors. J. Neurosci. 2021, 41, 31–46. [Google Scholar] [CrossRef]
- Lee, M.; Silverman, S.; Hansen, H.; Patel, V.; Manchikanti, L. A Comprehensive Review of Opioid-Induced Hyperalgesia. Pain Physician 2011, 14, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Mao, J. Clinical Diagnosis of Opioid-Induced Hyperalgesia. Reg. Anesth. Pain. Med. 2015, 40, 663–664. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.; Martinez, V. Opioid-induced hyperalgesia in patients after surgery: A systematic review and a meta-analysis. Br. J. Anaesth. 2014, 112, 991–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.Z.; Sin, B.; Beckhusen, J.; Xia, D.; Khaimova, R.; Iliev, I. Opioid-Induced Hyperalgesia in the Nonsurgical Setting: A Systematic Review. Am. J. Ther. 2019, 26, e397–e405. [Google Scholar] [CrossRef]
- Higgins, C.; Smith, B.H.; Matthews, K. Evidence of opioid-induced hyperalgesia in clinical populations after chronic opioid exposure: A systematic review and meta-analysis. Br. J. Anaesth. 2019, 122, e114–e126. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Fan, R.; Zhu, Q.; Ye, X.; Chen, Y.; Zhang, M. Exercise Reduces Morphine-Induced Hyperalgesia and Antinociceptive Tolerance. BioMed Res. Int. 2021, 2021, 6667474. [Google Scholar] [CrossRef] [PubMed]
- Laboureyras, E.; Boujema, M.B.; Mauborgne, A.; Simmers, J.; Pohl, M.; Simonnet, G. Fentanyl-induced hyperalgesia and analgesic tolerance in male rats: Common underlying mechanisms and prevention by a polyamine deficient diet. Neuropsychopharmacology 2022, 47, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-Y.; Liu, L.-Y.; Cai, J.; Cui, Y.-J.; Xing, G.-G. Electroacupuncture Treatment Alleviates the Remifentanil-Induced Hyperalgesia by Regulating the Activities of the Ventral Posterior Lateral Nucleus of the Thalamus Neurons in Rats. Neural Plast. 2018, 2018, 6109723. [Google Scholar] [CrossRef]
- Ramasubbu, C.; Gupta, A. Pharmacological Treatment of Opioid-Induced Hyperalgesia: A Review of the Evidence. J. Pain Palliat. Care Pharmacother. 2011, 25, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.H.; Hellman, K.M.; James, D.; Adler, A.C.; Chandrakantan, A. Mechanisms, diagnosis, prevention and management of perioperative opioid-induced hyperalgesia. Pain Manag. 2021, 11, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Linglan, X.; Xiaoyong, W.; Lihua, J. Different Methods for Alleviating Remifentanil-Induced Hyperalgesia after General Anesthesia in Patients: A Bayesian Network Meta-Analysis. PROSPERO CRD42020178240 2020. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020178240 (accessed on 17 July 2022).
- Weiji, X.; Wei, L.; Yongchun, L.; Jishuang, H.; Haofeng, C. Pharmacological Interventions for Preventing Opioid-Induced Hyperalgesia in Adults after General Anesthesia: A Bayesian Network meta-Analysis. PROSPERO CRD42021225361 2021. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021225361 (accessed on 18 July 2022).
- Heinl, C.; Drdla-Schutting, R.; Xanthos, D.N.; Sandkuhler, J. Distinct Mechanisms Underlying Pronociceptive Effects of Opioids. J. Neurosci. 2011, 31, 16748–16756. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Syst. Rev. 2017, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Leenaars, M.; Hooijmans, C.R.; van Veggel, N.; ter Riet, G.; Leeflang, M.; Hooft, L.; Van Der Wilt, J.G.; Tillema, A.; Ritskes-Hoitinga, M. A step-by-step guide to systematically identify all relevant animal studies. Lab Anim. 2012, 46, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Mierden, S.; Hooijmans, C.R.; Tillema, A.H.; Rehn, S.; Bleich, A.; Leenaars, C.H. Laboratory animals search filter for different literature databases: PubMed, Embase, Web of Science and PsycINFO. Lab. Anim. 2022, 56, 279–286. [Google Scholar] [CrossRef]
- Wei, X.; Wei, W. Role of gabapentin in preventing fentanyl-and morphine-withdrawal-induced hyperalgesia in rats. J. Anesth. 2012, 26, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Richebé, P.; Rivat, C.; Creton, C.; Laulin, J.-P.; Maurette, P.; Lemaire, M.; Simonnet, G. Nitrous Oxide Revisited. Anesthesiology 2005, 103, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Richebé, P.; Rivat, C.; Laulin, J.-P.; Maurette, P.; Simonnet, G. Ketamine Improves the Management of Exaggerated Postoperative Pain Observed in Perioperative Fentanyl-treated Rats. Anesthesiology 2005, 102, 421–428. [Google Scholar] [CrossRef]
- Bessière, B.; Richebé, P.; Laboureyras, E.; Laulin, J.-P.; Contarino, A.; Simonnet, G. Nitrous oxide (N2O) prevents latent pain sensitization and long-term anxiety-like behavior in pain and opioid-experienced rats. Neuropharmacology 2007, 53, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Van Elstraete, A.C.; Sitbon, P.; Mazoit, J.-X.; Benhamou, D. Gabapentin Prevents Delayed and Long-lasting Hyperalgesia Induced by Fentanyl in Rats. Anesthesiology 2008, 108, 484–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richebé, P.; Rivalan, B.; Rivat, C.; Laulin, J.-P.; Janvier, G.; Maurette, P.; Simonnet, G. Effects of sevoflurane on carrageenan- and fentanyl-induced pain hypersensitivity in Sprague-Dawley rats. Can. J. Anesth./Can. d’Anesth. 2009, 56, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Le Roy, C.; Laboureyras, E.; Gavello-Baudy, S.; Chateauraynaud, J.; Laulin, J.-P.; Simonnet, G. Endogenous Opioids Released During Non-Nociceptive Environmental Stress Induce Latent Pain Sensitization Via a NMDA-Dependent Process. J. Pain 2011, 12, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.M.; Janes, K.; Chen, Z.; Grace, P.M.; Esposito, E.; Cuzzocrea, S.; Largent-Milnes, T.; Neumann, W.L.; Watkins, L.R.; Spiegel, S.; et al. Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents. Pain 2020, 161, 2107–2118. [Google Scholar] [CrossRef]
- Aguado, D.; Abreu, M.; Benito, J.; Garcia-Fernandez, J.; Gómez de Segura, I.A. Effects of Naloxone on Opioid-induced Hyperalgesia and Tolerance to Remifentanil under Sevoflurane Anesthesia in Rats. Anesthesiology 2013, 118, 1160–1169. [Google Scholar] [CrossRef]
- Aguado, D.; Abreu, M.; Benito, J.; García-Fernández, J.; Gómez de Segura, I.A. Amitriptyline, minocycline and maropitant reduce the sevoflurane minimum alveolar concentration and potentiate remifentanil but do not prevent acute opioid tolerance and hyperalgesia in the rat: A randomised laboratory study. Eur. J. Anaesthesiol. 2015, 32, 248–254. [Google Scholar] [CrossRef]
- Qi, F.; Liu, T.; Zhang, X.; Gao, X.; Li, Z.; Chen, L.; Lin, C.; Wang, L.; Wang, Z.J.; Tang, H.; et al. Ketamine reduces remifentanil-induced postoperative hyperalgesia mediated by CaMKII-NMDAR in the primary somatosensory cerebral cortex region in mice. Neuropharmacology 2020, 162, 107783. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, F.; Hu, Z.; Zhang, L.; Li, Z.; Wang, Z.J.; Tang, H.; Chen, Z. Dezocine attenuates the remifentanil-induced postoperative hyperalgesia by inhibition of phosphorylation of CaMKⅡα. Eur. J. Pharmacol. 2020, 869, 172882. [Google Scholar] [CrossRef]
- Cui, W.; Wang, S.; Han, R.; Wang, Q.; Li, J. CaMKII Phosphorylation in Primary Somatosensory Cortical Neurons is Involved in the Inhibition of Remifentanil-induced Hyperalgesia by Lidocaine in Male Sprague-Dawley Rats. J. Neurosurg. Anesthesiol. 2016, 28, 44–50. [Google Scholar] [CrossRef]
- Cui, W.; Li, Y.; Li, S.; Yang, W.; Jiang, J.; Han, S.; Li, J. Systemic Lidocaine Inhibits Remifentanil-induced Hyperalgesia via the Inhibition of cPKCgamma Membrane Translocation in Spinal Dorsal Horn of Rats. J. Neurosurg. Anesthesiol. 2009, 21, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ni, Y.; Zhang, W.; Sun, Y.-E.; Ma, Z.; Gu, X. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia. Oncotarget 2017, 8, 16988–17001. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.-C.; Xia, M.-L.; Shu, S.-J.; Chen, F.; Jiang, L.-S. Attenuation of Remifentanil-Induced Hyperalgesia by Betulinic Acid Associates with Inhibiting Oxidative Stress and Inflammation in Spinal Dorsal Horn. Pharmacology 2018, 102, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, X.; Wang, C.; Hu, N.; Xie, K.; Wang, H.; Yu, Y.; Wang, G. Glycogen Synthase Kinase-3β Inhibition Prevents Remifentanil-Induced Postoperative Hyperalgesia via Regulating the Expression and Function of AMPA Receptors. Anesth. Analg. 2014, 119, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhang, W.; Lei, Y.; Cui, Y.; Chu, S.; Gu, X.; Ma, Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor shortens the duration of remifentanil-induced postoperative hyperalgesia by upregulating KCC2 in the spinal dorsal horn in rats. Mol. Pain 2017, 13, 174480691770476. [Google Scholar] [CrossRef] [Green Version]
- Mert, T.; Gunes, Y.; Ozcengiz, D.; Gunay, I. Magnesium modifies fentanyl-induced local antinociception and hyperalgesia. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2009, 380, 415–420. [Google Scholar] [CrossRef]
- Van Elstraete, A.C.; Sitbon, P.; Benhamou, D.; Mazoit, J.-X. The Median Effective Dose of Ketamine and Gabapentin in Opioid-Induced Hyperalgesia in Rats: An Isobolographic Analysis of Their Interaction. Anesth. Analg. 2011, 113, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, C.; Yin, P.; Wang, Z.J.; Luo, F. Inhibition of CaMKII in the Central Nucleus of Amygdala Attenuates Fentanyl-Induced Hyperalgesia in Rats. J. Pharmacol. Exp. Ther. 2016, 359, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Elstraete, A.C.; Sitbon, P.; Mazoit, J.-X.; Conti, M.; Benhamou, D. Protective effect of prior administration of magnesium on delayed hyperalgesia induced by fentanyl in rats. Can. J. Anesth. 2006, 53, 1180–1185. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.-J.; Vincler, M.; Li, X.; Conklin, D.; Eisenach, J.C. Intrathecal Ketorolac Reverses Hypersensitivity following Acute Fentanyl Exposure. Anesthesiology 2002, 97, 1641–1644. [Google Scholar] [CrossRef]
- Laulin, J.-P.; Maurette, P.; Corcuff, J.-B.; Rivat, C.; Chauvin, M.; Simonnet, G. The Role of Ketamine in Preventing Fentanyl-Induced Hyperalgesia and Subsequent Acute Morphine Tolerance. Anesth. Analg. 2002, 94, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, S.A.; Karamian, I.; Zhang, J. Ketorolac prevents recurrent withdrawal induced hyperalgesia but does not inhibit tolerance to spinal morphine in the rat. Eur. J. Pain 2007, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; He, Y.; Wang, Z.J. The beta-lactam antibiotic, ceftriaxone, inhibits the development of opioid-induced hyperalgesia in mice. Neurosci. Lett. 2012, 509, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Milne, B.; Jhamandas, K.; Sutak, M.; Grenier, P.; Cahill, C.M. Stereo-selective inhibition of spinal morphine tolerance and hyperalgesia by an ultra-low dose of the alpha-2-adrenoceptor antagonist efaroxan. Eur. J. Pharmacol. 2013, 702, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavendra, V.; Tanga, F.Y.; DeLeo, J.A. Attenuation of Morphine Tolerance, Withdrawal-Induced Hyperalgesia, and Associated Spinal Inflammatory Immune Responses by Propentofylline in Rats. Neuropsychopharmacology 2004, 29, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Dogrul, A.; Bilsky, E.J.; Ossipov, M.H.; Lai, J.; Porreca, F. Spinal L-Type Calcium Channel Blockade Abolishes Opioid-Induced Sensory Hypersensitivity and Antinociceptive Tolerance. Anesth. Analg. 2005, 101, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Tumati, S.; Roeske, W.; Largent-Milnes, T.; Wang, R.; Vanderah, T.; Varga, E. Sustained morphine-mediated pain sensitization and antinociceptive tolerance are blocked by intrathecal treatment with Raf-1-selective siRNA: The role of Raf-1 in morphine tolerance. Br. J. Pharmacol. 2010, 161, 51–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanna, M.D.; Mello, T.; Ghelardini, C.; Galeotti, N. Inhibition of spinal ERK1/2–c-JUN signaling pathway counteracts the development of low doses morphine-induced hyperalgesia. Eur. J. Pharmacol. 2015, 764, 271–277. [Google Scholar] [CrossRef]
- Haleem, D.J.; Nawaz, S. Inhibition of Reinforcing, Hyperalgesic, and Motor Effects of Morphine by Buspirone in Rats. J. Pain 2017, 18, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, S.A.; Karamov, I.G.; Buerkle, H. The Effect of Spinal Ibuprofen on Opioid Withdrawal in the Rat. Anesth. Analg. 2000, 91, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Corder, G.; Tawfik, V.L.; Wang, D.; Sypek, E.I.; Low, S.A.; Dickinson, J.R.; Sotoudeh, C.; Clark, J.D.; Barres, B.A.; Bohlen, C.J.; et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat. Med. 2017, 23, 164–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrini, F.; Lorenzo, L.-E.; Godin, A.G.; Quang, M.L.; De Koninck, Y. Enhancing KCC2 function counteracts morphine-induced hyperalgesia. Sci. Rep. 2017, 7, 3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumati, S.; Milnes, T.L.; Yamamura, H.I.; Vanderah, T.W.; Roeske, W.R.; Varga, E.V. Intrathecal Raf-1-selective siRNA attenuates sustained morphine-mediated thermal hyperalgesia. Eur. J Pharmacol. 2008, 601, 207–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumati, S.; Roeske, W.R.; Largent-Milnes, T.M.; Vanderah, T.W.; Varga, E.V. Intrathecal PKA-selective siRNA treatment blocks sustained morphine-mediated pain sensitization and antinociceptive tolerance in rats. J. Neurosci. Methods 2011, 199, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.; Liu, L.; Shen, J.; Cheng, K.; Liu, A.; Yang, J.; Wang, L.; Qu, T.; Yang, H.; Li, Y.; et al. Mesenchymal Stem Cells Reversed Morphine Tolerance and Opioid-induced Hyperalgesia. Sci. Rep. 2016, 6, 32096. [Google Scholar] [CrossRef]
- Lin, T.-T.; Qu, J.; Wang, C.-Y.; Yang, X.; Hu, F.; Hu, L.; Wu, X.; Jiang, C.; Liu, W.; Han, Y. Rescue of HSP70 in Spinal Neurons Alleviates Opioids-Induced Hyperalgesia via the Suppression of Endoplasmic Reticulum Stress in Rodents. Front. Cell Dev. Biol. 2020, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wu, X.; Liu, Y.; Cui, S.; Ma, Z. Tyrosine Phosphorylation of the N-Methyl-D-Aspartate Receptor 2B Subunit in Spinal Cord Contributes to Remifentanil-Induced Postoperative Hyperalgesia: The Preventive Effect of Ketamine. Mol. Pain 2009, 5, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Cui, S.; Liu, Y.; Zhang, J.; Zhang, W.; Zhang, J.; Gu, X.; Ma, Z. Dexmedetomidine prevents remifentanil-induced postoperative hyperalgesia and decreases spinal tyrosine phosphorylation of N-methyl-d-aspartate receptor 2B subunit. Brain Res. Bull. 2012, 87, 427–431. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, W.; Ma, Z.; Gu, X. Antinociception and prevention of hyperalgesia by intrathecal administration of Ro 25-6981, a highly selective antagonist of the 2B subunit of N-methyl-d-aspartate receptor. Pharmacol. Biochem. Behav. 2013, 112, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Xie, K.; Wang, C.; Yang, Z.; Yu, Y.; Wang, G. Inhibition of Glycogen Synthase Kinase-3β Prevents Remifentanil-Induced Hyperalgesia via Regulating the Expression and Function of Spinal N-Methyl-D-Aspartate Receptors In Vivo and Vitro. PLoS ONE 2013, 8, e77790. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, Z.; Chen, Y.; Zheng, Y.; Xie, K.; He, Y.; Wang, Z.; Wang, G.; Yu, Y. Prevention of Remifentanil Induced Postoperative Hyperalgesia by Dexmedetomidine via Regulating the Trafficking and Function of Spinal NMDA Receptors as well as PKC and CaMKII Level In Vivo and In Vitro. PLoS ONE 2017, 12, e0171348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zhang, W.; Liu, Y.; Liu, X.; Ma, Z.; Gu, X. Intrathecal Injection of JWH015 Attenuates Remifentanil-Induced Postoperative Hyperalgesia by Inhibiting Activation of Spinal Glia in a Rat Model. Anesth. Analg 2014, 118, 841–853. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, Y.; Zhang, J.; Zhang, W.; Sun, Y.-E.; Gu, X.; Ma, Z. Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-d-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Res. Bull. 2014, 106, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shu, R.; Wang, H.; Yu, Y.; Wang, C.; Yang, M.; Wang, M.; Wang, G. Hydrogen-rich saline prevents remifentanil-induced hyperalgesia and inhibits MnSOD nitration via regulation of NR2B-containing NMDA receptor in rats. Neuroscience 2014, 280, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhang, W.; Cheng, C.; Ma, Z.; Gu, X. Intrathecal injection of KN93 attenuates paradoxical remifentanil-induced postoperative hyperalgesia by inhibiting spinal CaMKII phosphorylation in rats. Pharmacol. Biochem. Behav. 2015, 134, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lin, H.; Feng, X.; Dong, J.; Ansong, E.; Xu, X. A comparison of intrathecal magnesium and ketamine in attenuating remifentanil-induced hyperalgesia in rats. BMC Anesthesiol. 2015, 16, 74. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, Y.; Wang, H.; Xie, K.; Shu, R.; Zhang, L.; Hu, N.; Yu, Y.; Wang, G. Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro. Brain Res. Bull. 2015, 110, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Hou, B.; Gu, X.; Ma, Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor attenuates remifentanil-induced postoperative hyperalgesia. Int. J. Clin. Exp. Med. 2015, 8, 1871–1879. [Google Scholar] [PubMed]
- Liu, A.; Wang, X.; Wang, H.; Lv, G.; Li, Y.; Li, H. Δ-opioid receptor inhibition prevents remifentanil-induced post-operative hyperalgesia via regulating GluR1 trafficking and AMPA receptor function. Exp. Ther. Med. 2018, 15, 2140–2147. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lin, H.; He, G.; Lin, W.; Yang, J. Magnesium sulphate attenuate remifentanil-induced postoperative hyperalgesia via regulating tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord. BMC Anesthesiol. 2017, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, H.; Wang, J.; Chen, Y.; Yang, C.; Zhao, M.; Wang, G.; Yang, Z. Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats. Neurosci. Res. 2019, 144, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, S.; Pan, Y.; Gu, L.; He, Y.; Sun, J. Wnt3a Inhibitor Attenuates Remifentanil-Induced Hyperalgesia via Downregulating Spinal NMDA Receptor in Rats. J. Pain Res. 2020, 13, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Célèrier, E.; Rivat, C.; Jun, Y.; Laulin, J.-P.; Larcher, A.; Reynier, P.; Simonnet, G. Long-lasting Hyperalgesia Induced by Fentanyl in Rats. Anesthesiology 2000, 92, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Crain, S.M.; Shen, K.-F. Acute thermal hyperalgesia elicited by low-dose morphine in normal mice is blocked by ultra-low-dose naltrexone, unmasking potent opioid analgesia. Brain Res. 2001, 888, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Van Elstraete, A.C.; Sitbon, P.; Trabold, F.; Mazoit, J.-X.; Benhamou, D. A Single Dose of Intrathecal Morphine in Rats Induces Long-Lasting Hyperalgesia: The Protective Effect of Prior Administration of Ketamine. Anesth. Analg. 2005, 101, 6. [Google Scholar] [CrossRef] [PubMed]
- Juni, A.; Klein, G.; Kest, B. Morphine hyperalgesia in mice is unrelated to opioid activity, analgesia, or tolerance: Evidence for multiple diverse hyperalgesic systems. Brain Res. 2006, 1070, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili-Mahani, S.; Fereidoni, M.; Javan, M.; Maghsoudi, N.; Motamedi, F.; Ahmadiani, A. Nifedipine suppresses morphine-induced thermal hyperalgesia: Evidence for the role of corticosterone. Eur. J. Pharmacol. 2007, 567, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili-Mahani, S.; Rezaeezadeh-Roukerd, M.; Esmaeilpour, K.; Abbasnejad, M.; Rasoulian, B.; Sheibani, V.; Kaeidi, A.; Hajializadeh, Z. Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats. J. Ethnopharmacol. 2010, 132, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Gupta, L.; Gupta, R.; Tripathi, C. N-Methyl-d-aspartate receptor modulators block hyperalgesia induced by acute low-dose morphine: NMDA modulators in morphine hyperalgesia. Clin. Exp. Pharmacol. Physiol. 2011, 38, 592–597. [Google Scholar] [CrossRef]
- Liang, D.-Y.; Li, X.; Clark, J.D. 5-Hydroxytryptamine Type 3 Receptor Modulates Opioid-induced Hyperalgesia and Tolerance in Mice. Anesthesiology 2011, 114, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Tumati, S.; Largent-Milnes, T.M.; Keresztes, A.I.; Yamamoto, T.; Vanderah, T.W.; Roeske, W.R.; Hruby, V.J.; Varga, E.V. Tachykinin NK1 receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation. Eur. J. Pharmacol. 2012, 684, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Xin, W.; Chun, W.; Ling, L.; Wei, W. Role of Melatonin in the Prevention of Morphine-Induced Hyperalgesia and Spinal Glial Activation in Rats: Protein Kinase C Pathway Involved. Int. J. Neurosci. 2012, 122, 154–163. [Google Scholar] [CrossRef]
- Orrù, A.; Marchese, G.; Casu, G.; Casu, M.A.; Kasture, S.; Cottiglia, F.; Acquas, E.; Mascia, M.P.; Anzani, N.; Ruiu, S. Withania somnifera root extract prolongs analgesia and suppresses hyperalgesia in mice treated with morphine. Phytomedicine 2014, 21, 745–752. [Google Scholar] [CrossRef]
- Li, P.; Tang, M.; Li, H.; Huang, X.; Chen, L.; Zhai, H. Effects of ginsenosides on opioid-induced hyperalgesia in mice. NeuroReport 2014, 25, 749–752. [Google Scholar] [CrossRef]
- Song, L.; Wu, C.; Zuo, Y. Melatonin prevents morphine-induced hyperalgesia and tolerance in rats: Role of protein kinase C and N-methyl-D-aspartate receptors. BMC Anesthesiol. 2015, 15, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Huang, F.; Szymusiak, M.; Tian, X.; Liu, Y.; Wang, Z.J. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα. PLoS ONE 2016, 11, e0146393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, U.; Kelley, L.K.; Middleton, J.W.; Gilpin, N.W. Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats. Psychopharmacology 2020, 237, 3729–3739. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, W.; Kreuer, S. The place for short-acting opioids: Special emphasis on remifentanil. Crit. Care 2008, 12, S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Matos, C.F.; Bistas, K.G.; Lopez-Ojeda, W. Fentanyl; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Peng, P.W.H.; Sandler, A.N. A Review of the Use of Fentanyl Analgesia in the Management of Acute Pain in Adults. Anesthesiology 1999, 90, 576–599. [Google Scholar] [CrossRef] [PubMed]
- Waxman, A.R.; Arout, C.; Caldwell, M.; Dahan, A.; Kest, B. Acute and chronic fentanyl administration causes hyperalgesia independently of opioid receptor activity in mice. Neurosci. Lett. 2009, 462, 68–72. [Google Scholar] [CrossRef]
- Murphy, P.B.; Bechmann, S.; Barrett, M.J. Morphine; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Roeckel, L.-A.; Le Coz, G.-M.; Gavériaux-Ruff, C.; Simonin, F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016, 338, 160–182. [Google Scholar] [CrossRef]
- Fillingim, R.B. Sex, gender, and pain: Women and men really are different. Curr. Rev. Pain 2000, 4, 24–30. [Google Scholar] [CrossRef]
- Holtman, J.R.; Wala, E.P. Characterization of morphine-induced hyperalgesia in male and female rats. Pain 2005, 114, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.-Y.; Liao, G.; Wang, J.; Usuka, J.; Guo, Y.; Peltz, G.; Clark, J.D. A Genetic Analysis of Opioid-induced Hyperalgesia in Mice. Anesthesiology 2006, 104, 1054–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juni, A.; Klein, G.; Kowalczyk, B.; Ragnauth, A.; Kest, B. Sex differences in hyperalgesia during morphine infusion: Effect of gonadectomy and estrogen treatment. Neuropharmacology 2008, 54, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minville, V.; Fourcade, O.; Girolami, J.-P.; Tack, I. Opioid-induced hyperalgesia in a mice model of orthopaedic pain: Preventive effect of ketamine. Br. J. Anaesth. 2010, 104, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, M.; Aguado, D.; Benito, J.; García-Fernández, J.; de Segura Gómez, I.A. Tramadol-induced hyperalgesia and its prevention by ketamine in rats: A randomised experimental study. Eur. J. Anaesthesiol. 2015, 32, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Lavand’homme, P. Opioid-free anaesthesia: Pro damned if you don’t use opioids during surgery. Eur. J. Anaesthesiol. 2019, 36, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Drieu la Rochelle, A.; Guillemyn, K.; Dumitrascuta, M.; Martin, C.; Utard, V.; Quillet, R.; Schneider, S.; Daubeuf, F.; Willemse, T.; Mampuys, P. A bifunctional-biased mu-opioid agonist-neuropeptide FF receptor antagonist as analgesic with improved acute and chronic side effects. Pain 2018, 159, 1705–1718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, B.; Zhang, Q.; Chen, D.; Zhang, M.; Zhao, G.; Xu, K.; Xiao, J.; Zhu, H.; Niu, J.; et al. Spinal administration of the multi-functional opioid/neuropeptide FF agonist BN-9 produced potent antinociception without development of tolerance and opioid-induced hyperalgesia. Eur. J. Pharmacol. 2020, 880, 173169. [Google Scholar] [CrossRef] [PubMed]
- Comelon, M.; Raeder, J.; Stubhaug, A.; Nielsen, C.S.; Draegni, T.; Lenz, H. Gradual withdrawal of remifentanil infusion may prevent opioid-induced hyperalgesia. Br. J. Anaesth. 2016, 116, 524–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richebé, P.; Pouquet, O.; Jelacic, S.; Mehta, S.; Calderon, J.; Picard, W.; Rivat, C.; Cahana, A.; Janvier, G. Target-Controlled Dosing of Remifentanil During Cardiac Surgery Reduces Postoperative Hyperalgesia. J. Cardiothorac. Vasc. Anesth. 2011, 25, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Leenaars, C.H.C.; Kouwenaar, C.; Stafleu, F.R.; Bleich, A.; Ritskes-Hoitinga, M.; De Vries, R.B.M.; Meijboom, F.L.B. Animal to human translation: A systematic scoping review of reported concordance rates. J. Transl. Med. 2019, 17, 223. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koponen, M.E.; Forget, P. Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials. J. Clin. Med. 2022, 11, 7060. https://doi.org/10.3390/jcm11237060
Koponen ME, Forget P. Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials. Journal of Clinical Medicine. 2022; 11(23):7060. https://doi.org/10.3390/jcm11237060
Chicago/Turabian StyleKoponen, Mia Elena, and Patrice Forget. 2022. "Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials" Journal of Clinical Medicine 11, no. 23: 7060. https://doi.org/10.3390/jcm11237060
APA StyleKoponen, M. E., & Forget, P. (2022). Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials. Journal of Clinical Medicine, 11(23), 7060. https://doi.org/10.3390/jcm11237060