The Impact of Shape and Decoration on User Experience and Visual Attention in Anthropomorphic Robot Design
Abstract
:1. Introduction
1.1. Design of Anthropomorphic Robots
1.2. User Experience
1.3. Visual Salience Theory and Emotional Design Theory
1.4. Eye-Tracking Research
1.5. The Design
1.6. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Equipment
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. User Experience
3.2. Eye Movement
4. Discussion
4.1. Impact of Shape and Decoration on User Experience
4.2. Impact of Shape and Decoration on Visual Attention
4.3. General Discussion
4.4. Implications
4.5. Limitations and Future Work
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duffy, B.R. Anthropomorphism and the Social Robot. Robot. Auton. Syst. 2003, 42, 177–190. [Google Scholar] [CrossRef]
- Bernotat, J.; Eyssel, F.; Sachse, J. The (Fe)Male Robot: How Robot Body Shape Impacts First Impressions and Trust Towards Robots. Int. J. Soc. Robot. 2021, 13, 477–489. [Google Scholar] [CrossRef]
- Phillips, E.; Ullman, D.; de Graaf, M.M.A.; Malle, B.F. What Does A Robot Look Like?: A Multi-Site Examination of User Expectations About Robot Appearance. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1215–1219. [Google Scholar] [CrossRef]
- Sun, J.; Aziz, A.A. Exploring the Redesign Value of Chinese Traditional Auspicious Patterns in the Context of Modern Design. EDUCATUM J. Soc. Sci. 2023, 9, 12–26. [Google Scholar] [CrossRef]
- Mohebbi, A. Human-Robot Interaction in Rehabilitation and Assistance: A Review. Curr. Robot. Rep. 2020, 1, 131–144. [Google Scholar] [CrossRef]
- Roesler, E.; Manzey, D.; Onnasch, L. A Meta-Analysis on the Effectiveness of Anthropomorphism in Human-Robot Interaction. Sci. Robot. 2021, 6, eabj5425. [Google Scholar] [CrossRef]
- Kühne, R.; Peter, J. Anthropomorphism in Human–Robot Interactions: A Multidimensional Conceptualization. Commun. Theory 2023, 33, 42–52. [Google Scholar] [CrossRef]
- Hutson, S.; Lim, S.L.; Bentley, P.J.; Bianchi-Berthouze, N.; Bowling, A. Investigating the Suitability of Social Robots for the Wellbeing of the Elderly. In Proceedings of the Affective Computing and Intelligent Interaction; D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 578–587. [Google Scholar]
- Onnasch, L.; Hildebrandt, C.L. Impact of Anthropomorphic Robot Design on Trust and Attention in Industrial Human-Robot Interaction. J. Hum.-Robot. Interact. 2021, 11, 2. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, X.; Li, X.; Ren, A. Service Robots’ Anthropomorphism: Dimensions, Factors and Internal Relationships. Electron. Mark. 2022, 32, 277–295. [Google Scholar] [CrossRef]
- Kou, G.; Zhang, S. The Influence of Culture in Shaping Anthropomorphic Attitudes Towards Robots: A Literature Review. In Proceedings of the HCI International 2024 Posters; Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 357–371. [Google Scholar]
- Zhang, D. Cultural Symbols in Chinese Architecture. Archit. Des. Rev. 2021, 3, 211. [Google Scholar] [CrossRef]
- Cao, Z.; Mustafa, M.; Mohd Isa, M.H. Regional Architecture Building Identity: The Mediating Role of Authentic Pride. Buildings 2024, 14, 1059. [Google Scholar] [CrossRef]
- Zeyu, L.; Sayuti, N.’A.A. Integrating Traditional Chinese Cloud Patterns into Modern Interior Design: A Visual Symbolism Study. Int. J. Innov. Ind. Revolut. 2024, 6, 220–231. [Google Scholar]
- Jing, S.; Aziz, A.A. The Characteristics of Chinese Traditional Auspicious Patterns in Design. Asian J. Res. Educ. Soc. Sci. 2023, 5, 122–136. [Google Scholar] [CrossRef]
- Mao, Y. Influence of Material and Decoration on Design Style, Aesthetic Performance, and Visual Attention in Chinese-Style Chairs. For. Prod. J. 2024, 74, 220–232. [Google Scholar] [CrossRef]
- Hassenzahl, M.; Tractinsky, N. User Experience—A Research Agenda. Behav. Inf. Technol. 2006, 25, 91–97. [Google Scholar] [CrossRef]
- Chuah, S.H.-W.; Yu, J. The Future of Service: The Power of Emotion in Human-Robot Interaction. J. Retail. Consum. Serv. 2021, 61, 102551. [Google Scholar] [CrossRef]
- Han, J.; Forbes, H.; Schaefer, D. An Exploration of How Creativity, Functionality, and Aesthetics Are Related in Design. Res. Eng. Des. 2021, 32, 289–307. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Ajovalasit, M. Involving Cultural Sensitivity in the Design Process: A Design Toolkit for Chinese Cultural Products. Int. J. Art. Des. Educ. 2020, 39, 565–584. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, R. Application and Innovation of Chinese Characteristic Cultural Elements in Cultural and Creative Product Design in the Information Age. Appl. Math. Nonlinear Sci. 2024, 9, 1–16. [Google Scholar] [CrossRef]
- Lim, V.; Rooksby, M.; Cross, E.S. Social Robots on a Global Stage: Establishing a Role for Culture During Human–Robot Interaction. Int. J. Soc. Robot. 2021, 13, 1307–1333. [Google Scholar] [CrossRef]
- Saraiva, M.; Ayanoğlu, H.; Özcan, B. Emotional Design and Human-Robot Interaction. In Emotional Design in Human-Robot Interaction: Theory, Methods and Applications; Ayanoğlu, H., Duarte, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–141. ISBN 978-3-319-96722-6. [Google Scholar]
- Yu, Z. The Application of Chinese Traditional Cultural Elements in Modern Environmental Art Design. Probe-Media Commun. Stud. 2023, 5, 98–100. [Google Scholar] [CrossRef]
- Lin, Z.; Li, C. Innovative Application of Elements of Traditional Chinese Culture in Modern Corporate Image Design. Art. Perform. Lett. 2023, 4, 7–13. [Google Scholar] [CrossRef]
- Itti, L. Visual Salience. Scholarpedia 2007, 2, 3327. [Google Scholar] [CrossRef]
- Brüns, J.D.; Meißner, M. Show Me That You Are Advertising: Visual Salience of Products Attenuates Detrimental Effects of Persuasion Knowledge Activation in Influencer Advertising. Comput. Hum. Behav. 2023, 148, 107891. [Google Scholar] [CrossRef]
- Bhandari, U.; Chang, K.; Neben, T. Understanding the Impact of Perceived Visual Aesthetics on User Evaluations: An Emotional Perspective. Inf. Manag. 2019, 56, 85–93. [Google Scholar] [CrossRef]
- Norman, D.A. Emotional Design: Why We Love (or Hate) Everyday Things, 1st ed.; Basic Books: New York, NY, USA, 2005; ISBN 978-0-465-05136-6. [Google Scholar]
- Desmet, P. Measuring Emotion: Development and Application of an Instrument to Measure Emotional Responses to Products. Hum.-Comput. Interact. Ser. 2004, 3, 111–123. [Google Scholar] [CrossRef]
- Kasztalska, A.M. Louis vuitton as an example of the old and modern in the same time luxury brand in the eyes of its clientele. CBU Int. Conf. Proc. 2018, 6, 226–230. [Google Scholar] [CrossRef]
- Merdian, P.; Piroth, P.; Rueger-Muck, E.; Raab, G. Looking behind Eye-Catching Design: An Eye-Tracking Study on Wine Bottle Design Preference. Int. J. Wine Bus. Res. 2020, 33, 134–151. [Google Scholar] [CrossRef]
- Khalighy, S.; Green, G.; Scheepers, C.; Whittet, C. Quantifying the Qualities of Aesthetics in Product Design Using Eye-Tracking Technology. Int. J. Ind. Ergon. 2015, 49, 31–43. [Google Scholar] [CrossRef]
- Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H.; Bhandarkar, S.; Matusik, W.; Torralba, A. Eye Tracking for Everyone. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2176–2184. [Google Scholar]
- Mollenbach, E.; Hansen, J.P.; Lillholm, M. Eye Movements in Gaze Interaction. J. Eye Mov. Res. 2013, 6, 1–15. [Google Scholar] [CrossRef]
- Birmingham, E.; Bischof, W.; Kingstone, A. Why Do We Look at People’s Eyes? J. Eye Mov. Res. 2007, 1, 1–6. [Google Scholar] [CrossRef]
- Cholewa-Wójcik, A.; Kawecka, A.; Jarossová, M.; Wiażewicz, J. Analysis of Health Warning Signs on Alcoholic Beverage Packaging Using the Eye-Tracking Method. Eng. Manag. Prod. Serv. 2024, 16, 104–117. [Google Scholar] [CrossRef]
- Clay, V.; Koenig, P.; Koenig, S. Eye Tracking in Virtual Reality. J. Eye Mov. Res. 2019, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Halszka, J.; Holmqvist, K.; Gruber, H. Eye Tracking in Educational Science: Theoretical Frameworks and Research Agendas. J. Eye Mov. Res. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Mao, Y.; Ban, S.; Zhang, G. Design Criticism and Eye Movement Strategy in Reading: A Comparative Study of Design and Non-Design Students. Int. J. Technol. Des. Educ. 2024, 35, 257–282. [Google Scholar] [CrossRef]
- Magyari, L.; Mangen, A.; Kuzmicova, A.; Jacobs, A.M.; Luedtke, J. Eye Movements and Mental Imagery during Reading of Literary Texts in Different Narrative Styles. J. Eye Mov. Res. 2020, 13, 3. [Google Scholar] [CrossRef]
- Takemoto, A.; Nakazawa, A.; Kumada, T. Non-Goal-Driven Eye Movement after Visual Search Task. J. Eye Mov. Res. 2022, 15, 2. [Google Scholar] [CrossRef]
- Allport, A. Visual Attention. In Foundations of cognitive science; The MIT Press: Cambridge, MA, USA, 1989; pp. 631–682. ISBN 978-0-262-16112-1. [Google Scholar]
- Tsotsos, J.; Kotseruba, I.; Wloka, C. A Focus on Selection for Fixation. J. Eye Mov. Res. 2016, 9, 1–34. [Google Scholar] [CrossRef]
- van der Laan, L.N.; Hooge, I.T.C.; de Ridder, D.T.D.; Viergever, M.A.; Smeets, P.A.M. Do You like What You See? The Role of First Fixation and Total Fixation Duration in Consumer Choice. Food Qual. Prefer. 2015, 39, 46–55. [Google Scholar] [CrossRef]
- Wang, H.-C.; Hwang, A.D.; Pomplun, M. Object Frequency and Predictability Effects on Eye Fixation Durations in Real-World Scene Viewing. J. Eye Mov. Res. 2010, 3, 10. [Google Scholar] [CrossRef]
- Jian, Y.-C.; Su, J.-H.; Hsiao, Y.-R. Differentiated Processing Strategies for Science Reading among Sixth-Grade Students: Exploration of Eye Movements Using Cluster Analysis. Comput. Educ. 2019, 142, 103652. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, B.; Hua, H.; Lou, Y.; Lin, N.; Li, X. Individual Differences in First-Pass Fixation Duration in Reading Are Related to Resting-State Functional Connectivity. Brain Lang. 2021, 213, 104893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, B.; Zhang, T. Aesthetic Study of Patterns Based on Event-related Potential and Eye-tracking: Taking the Decorative Patterns of the Tang Dynasty as an Example. J. Soc. Inf. Disp. 2020, 29, 119–129. [Google Scholar] [CrossRef]
- Bergstrom, J.R.; Schall, A. Eye Tracking in User Experience Design; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-416709-4. [Google Scholar]
- Lin, S.; Ban, X. Study on Cultural and Creative Design of Traditional Chinese Calligraphy Tools in Digital Era. In Proceedings of the 6th International Conference on Arts, Design and Contemporary Education (ICADCE 2020); Atlantis Press: Dordrecht, The Netherlands, 6 January 2021; pp. 427–430. [Google Scholar]
- Tan, H.; Wang, D.; Sabanovic, S. Projecting Life Onto Robots: The Effects of Cultural Factors and Design Type on Multi-Level Evaluations of Robot Anthropomorphism. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Tai’an, China, 27–31 August 2018; pp. 129–136. [Google Scholar]
- Giugliano, G.; Laudante, E. Design as Collaborative Connection between User, Technology and Cultural Context. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012010. [Google Scholar] [CrossRef]
- Zhagn, Z.; Xu, B. Tang Dynasty Chair Feature Design Based on Kansi Evaluation and Eye Tracking System. WR 2020, 65, 161–174. [Google Scholar] [CrossRef]
- Wan, Q.; Wang, G.G.; Zhang, Y.C.; Song, S.S.; Fei, B.H.; Li, X.H. Cognitve Processing Torword Traditional and New Chinese Style Furniture: Evidence from Eye-Tracking Technology. Wood Res. 2018, 63, 727–739. [Google Scholar]
- Puškarević, I.; Nedeljković, U.; Dimovski, V.; Možina, K. Eye Tracking Study of Attention to Print Advertisements: Effects of Typeface Figuration. J. Eye Mov. Res. 2016, 9, 1–18. [Google Scholar] [CrossRef]
- Li, Y.; Fu, H.; Huang, S. (Sam) Does Conspicuous Decoration Style Influence Customer’s Intention to Purchase? The Moderating Effect of CSR Practices. Int. J. Hosp. Manag. 2015, 51, 19–29. [Google Scholar] [CrossRef]
- Mao, Y.; Li, P.; Hao, P. The Effects of Wooden Furniture Color, Floor Material, and Age on Design Evaluation, Visual Attention, and Emotions in Office Environments. Buildings 2024, 14, 1498. [Google Scholar] [CrossRef]
- Wang, C.F. The Study on Modern Art Design for Product Decoration Design. Adv. Mater. Res. 2012, 433–440, 3329–3334. [Google Scholar] [CrossRef]
- Wan, Q.; Hu, Q.; Chen, B.; Fang, H.; Ke, Q.; Song, S. Study on the Visual Cognition of Laminated Bamboo Furniture. For. Prod. J. 2021, 71, 84–91. [Google Scholar] [CrossRef]
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and Evaluation of a User Experience Questionnaire. In Proceedings of the HCI and Usability for Education and Work; Holzinger, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–76. [Google Scholar]
- Schrepp, M.; Hinderks, A.; Thomaschewski, J. Applying the User Experience Questionnaire (UEQ) in Different Evaluation Scenarios. In Design, User Experience, and Usability. Theories, Methods, and Tools for Designing the User Experience. DUXU 2014; Springer: Cham, Switzerland, 2014; p. 392. ISBN 978-3-319-07667-6. [Google Scholar]
- Mendoza, S.; Sánchez-Adame, L.M.; Urquiza-Yllescas, J.F.; González-Beltrán, B.A.; Decouchant, D. A Model to Develop Chatbots for Assisting the Teaching and Learning Process. Sensors 2022, 22, 5532. [Google Scholar] [CrossRef] [PubMed]
- Mishima, N. Quantification of Shape Design and Its Correlation with User’s Preference. In Transdisciplinary Engineering for Complex Socio-technical Systems; IOS Press: Amsterdam, The Netherlands, 2019; pp. 252–260. [Google Scholar]
- Mohamed, T.I. Using Modern Decorative Design in the Products to Win New Customers and Markets. Int. J. Public Sect. Perform. Manag. 2022, 10, 120–130. [Google Scholar] [CrossRef]
- Schnurr, B.; Brunner-Sperdin, A.; Stokburger-Sauer, N.E. The Effect of Context Attractiveness on Product Attractiveness and Product Quality: The Moderating Role of Product Familiarity. Mark. Lett. 2017, 28, 241–253. [Google Scholar] [CrossRef]
- Huang, K.-L.; Xu, N.; Lin, H.; Jiang, J. Research on the Attractive Factors and Design of Cultural Derivative Commodities Under Cultural Sustainability. In Proceedings of the HCI International 2021—Late Breaking Papers: Design and User Experience; Stephanidis, C., Soares, M.M., Rosenzweig, E., Marcus, A., Yamamoto, S., Mori, H., Rau, P.-L.P., Meiselwitz, G., Fang, X., Moallem, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 522–538. [Google Scholar]
- Bongard-Blanchy, K.; Bouchard, C. Dimensions of User Experience—From the Product Design Perspective. J. D’interaction Pers.-Système 2015, 3, 1284. [Google Scholar] [CrossRef]
- Cárdenas, R.A.; Harris, L.J. Symmetrical Decorations Enhance the Attractiveness of Faces and Abstract Designs. Evol. Hum. Behav. 2006, 27, 1–18. [Google Scholar] [CrossRef]
- Hung, W.-K.; Chen, L.-L. Effects of Novelty and Its Dimensions on Aesthetic Preference in Product Design. Int. J. Des. 2012, 6, 81–90. [Google Scholar]
- Juric, M.; Pavlović, N.P.; Valerjev, P.; Pehar, F. Banner Features That Attract Visual Attention: An Eye-Tracking Study of Email Signatures. In Proceedings of the 2024 47th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 20–24 May 2024; pp. 1405–1410. [Google Scholar]
- Treisman, A.; Gormican, S. Feature Analysis in Early Vision: Evidence from Search Asymmetries. Psychol. Rev. 1988, 95, 15–48. [Google Scholar] [CrossRef]
- Chassy, P.; Lindell, T.A.E.; Jones, J.A.; Paramei, G.V. A Relationship Between Visual Complexity and Aesthetic Appraisal of Car Front Images: An Eye-Tracker Study. Perception 2015, 44, 1085–1097. [Google Scholar] [CrossRef]
- Kersbergen, I.; Field, M. Visual Attention to Alcohol Cues and Responsible Drinking Statements within Alcohol Advertisements and Public Health Campaigns: Relationships with Drinking Intentions and Alcohol Consumption in the Laboratory. Psychol. Addict. Behav. 2017, 31, 435–446. [Google Scholar] [CrossRef]
Eye Movement Metrics | Description |
---|---|
Time to first fixation | Time taken from the start until the first fixation appears within the AOI |
First-pass total fixation duration | Duration of fixation during the first entry into the AOI |
Second-pass total fixation duration | Duration of all fixations after the first entry, including subsequent entries into the AOI |
Eye movement metrics | Description |
Variable | M | SD | N | |
---|---|---|---|---|
Non-hat | Non-pattern | 3.2 | 0.49 | 20 |
Pattern | 3.7 | 0.30 | 20 | |
Total | 3.4 | 0.46 | 40 | |
Hat | Non-pattern | 3.7 | 0.45 | 20 |
Pattern | 3.8 | 0.38 | 20 | |
Total | 3.7 | 0.42 | 40 | |
Total | Non-pattern | 3.5 | 0.52 | 40 |
Pattern | 3.7 | 0.35 | 40 | |
Total | 3.6 | 0.46 | 80 |
Variable | Attractiveness | Perspicuity | Efficiency | Dependability | Stimulation | Novelty | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | ||
Non-hat | Non-pattern | 3.6 | 1.02 | 3.8 | 1.07 | 3.4 | 0.92 | 3.2 | 1.13 | 2.7 | 0.76 | 2.9 | 0.84 |
Pattern | 4.2 | 1.06 | 3.6 | 0.95 | 3.2 | 1.04 | 3.4 | 1.06 | 3.7 | 1.07 | 4.0 | 1.29 | |
Total | 3.9 | 1.07 | 3.7 | 1.00 | 3.3 | 0.97 | 3.3 | 1.09 | 3.2 | 1.05 | 3.4 | 1.22 | |
Hat | Non-pattern | 5.2 | 1.22 | 4.1 | 1.22 | 3.3 | 0.88 | 2.8 | 0.93 | 3.5 | 1.36 | 3.3 | 0.92 |
Pattern | 5.1 | 1.21 | 3.6 | 0.94 | 3.5 | 0.86 | 3.2 | 1.10 | 4.0 | 1.24 | 3.5 | 1.28 | |
Total | 5.1 | 1.20 | 3.8 | 1.11 | 3.4 | 0.87 | 3.0 | 1.03 | 3.8 | 1.32 | 3.4 | 1.10 | |
Total | Non-pattern | 4.4 | 1.39 | 4.0 | 1.14 | 3.3 | 0.89 | 3.0 | 1.04 | 3.1 | 1.16 | 3.1 | 0.90 |
Pattern | 4.6 | 1.21 | 3.6 | 0.93 | 3.3 | 0.95 | 3.3 | 1.07 | 3.9 | 1.16 | 3.7 | 1.30 | |
Total | 4.5 | 1.30 | 3.8 | 1.05 | 3.3 | 0.92 | 3.1 | 1.06 | 3.5 | 1.21 | 3.4 | 1.15 |
Interaction | Variables | I | J | Mean Difference (I–J) | F | p | η2 |
---|---|---|---|---|---|---|---|
Shape × Decoration | Non-pattern | Non-hat | Hat | −0.460 | 1.739 | 0.191 | 0.022 |
Pattern | Non-hat | Hat | 0.530 | 2.308 | 0.133 | 0.029 | |
Non-hat | Non-pattern | Pattern | −1.115 | 10.217 | 0.002 | 0.119 | |
Hat | Non-pattern | Pattern | −0.125 | 0.128 | 0.721 | 0.002 |
Variable | M | SD | N | |
---|---|---|---|---|
Non-hat | Non-pattern | 2.7 | 0.55 | 20 |
Pattern | 2.9 | 0.69 | 20 | |
Total | 2.8 | 0.62 | 40 | |
Hat | Non-pattern | 2.7 | 0.46 | 20 |
Pattern | 1.7 | 0.47 | 20 | |
Total | 2.2 | 0.69 | 40 | |
Total | Non-pattern | 2.7 | 0.50 | 40 |
Pattern | 2.3 | 0.85 | 40 | |
Total | 2.5 | 0.73 | 80 |
Interaction | Variables | I | J | Mean Difference (I–J) | F | p | η2 |
---|---|---|---|---|---|---|---|
Shape × Decoration | Non-pattern | Non-hat | Hat | 0.050 | 0.082 | 0.775 | 0.001 |
Pattern | Non-hat | Hat | 1.225 | 49.473 | <0.001 | 0.394 | |
Non-hat | Non-pattern | Pattern | −0.140 | 0.646 | 0.424 | 0.008 | |
Hat | Non-pattern | Pattern | 1.035 | 35.316 | <0.001 | 0.317 |
Variable | M | SD | N | |
---|---|---|---|---|
Non-hat | Non-pattern | 1.1 | 0.34 | 20 |
Pattern | 2.1 | 0.61 | 20 | |
Total | 1.6 | 0.71 | 40 | |
Hat | Non-pattern | 1.8 | 0.75 | 20 |
Pattern | 2.5 | 0.69 | 20 | |
Total | 2.1 | 0.79 | 40 | |
Total | Non-pattern | 1.4 | 0.67 | 40 |
Pattern | 2.3 | 0.67 | 40 | |
Total | 1.9 | 0.79 | 80 |
Variable | M | SD | N | |
---|---|---|---|---|
Non-hat | Non-pattern | 3.8 | 1.52 | 20 |
Pattern | 5.6 | 1.32 | 20 | |
Total | 4.7 | 1.66 | 40 | |
Hat | Non-pattern | 5.4 | 1.11 | 20 |
Pattern | 7.4 | 1.72 | 20 | |
Total | 6.4 | 1.77 | 40 | |
Total | Non-pattern | 4.6 | 1.54 | 40 |
Pattern | 6.5 | 1.78 | 40 | |
Total | 5.5 | 1.91 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T. The Impact of Shape and Decoration on User Experience and Visual Attention in Anthropomorphic Robot Design. J. Eye Mov. Res. 2025, 18, 5. https://doi.org/10.3390/jemr18020005
Song T. The Impact of Shape and Decoration on User Experience and Visual Attention in Anthropomorphic Robot Design. Journal of Eye Movement Research. 2025; 18(2):5. https://doi.org/10.3390/jemr18020005
Chicago/Turabian StyleSong, Tao. 2025. "The Impact of Shape and Decoration on User Experience and Visual Attention in Anthropomorphic Robot Design" Journal of Eye Movement Research 18, no. 2: 5. https://doi.org/10.3390/jemr18020005
APA StyleSong, T. (2025). The Impact of Shape and Decoration on User Experience and Visual Attention in Anthropomorphic Robot Design. Journal of Eye Movement Research, 18(2), 5. https://doi.org/10.3390/jemr18020005